EFDA-JET-PR(04)63

A Cross-Tokamak Neural Network Disruption Predictor for the JET and ASDEX Upgrade Tokamaks

First results are reported on the prediction of disruptions in one tokamak, based on neural networks trained on another tokamak. The studies use data from the JET and ASDEX Upgrade devices, with a neural network trained on just 7 normalised plasma parameters. In this way, a simple single layer perceptron network trained solely on JET correctly anticipated 67% of disruptions on ASDEX Upgrade in advance of 0.01 seconds before the disruption. The converse test led to a 69% success rate in advance of 0.04 seconds before the disruption in JET. Only one overall time scaling parameter is allowed between the devices, which can be introduced from theoretical arguments. Disruption prediction performance based on such networks trained and tested on the same device shows even higher success rates (JET: 86%; ASDEX Upgrade 90%), despite the small number of inputs used and simplicity of the network. It is found that while performance for networks trained and tested on the same device can be improved with more complex networks and many adjustable weights, for cross machine testing the best approach is a simple single layer perceptron. This offers the basis of a potentially useful technique for large future devices such as ITER, which with further development, might help to reduce disruption frequency and minimise the need for a large disruption campaign to train disruption avoidance systems.
Name Size  
EFDP04063 1.51 Mb