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ABSTRACT

First results are reported on the prediction of disruptions in one tokamak, based on neural networks

trained on another tokamak. The studies use data from the JET and ASDEX Upgrade devices, with

a neural network trained on just 7 normalised plasma parameters. In this way, a simple single layer

perceptron network trained solely on JET correctly anticipated 67% of disruptions on ASDEX

Upgrade in advance of 0.01 seconds before the disruption. The converse test led to a 69% success

rate in advance of 0.04 seconds before the disruption in JET. Only one overall time scaling parameter

is allowed between the devices, which can be introduced from theoretical arguments. Disruption

prediction performance based on such networks trained and tested on the same device shows even

higher success rates (JET: 86%; ASDEX Upgrade 90%), despite the small number of inputs used

and simplicity of the network. It is found that while performance for networks trained and tested on

the same device can be improved with more complex networks and many adjustable weights, for

cross machine testing the best approach is a simple single layer perceptron. This offers the basis of

a potentially useful technique for large future devices such as ITER, which with further development,

might help to reduce disruption frequency and minimise the need for a large disruption campaign to

train disruption avoidance systems.

1. INTRODUCTION

Disruptions [1,2] are a key design issue for tokamaks, limiting their operational domain. They

naturally arise in tokamaks, particularly when new regimes or techniques are explored, performance

limits are pushed, or particular systems fail. On present day tokamaks disruptions are generally

tolerable. However on future power-plant scale devices, such as ITER, only a limited number of

disruptions will be tolerable - con   cerns range from reduced device lifetime to possible structural

damage. In a disruption the plasma thermal energy is lost rapidly with the result that the plasma

position and shape changes, causing the plasma to interact with the containment vessel walls, and

dump its current over a very short period. The resulting eddy and halo currents in the device structure

interact with the high magnetic field to create large mechanical forces that may require the imposition of

operational and design constraints. Serious concerns are also posed by the accompanying heat load on

plasma facing components and the potential for creating a narrowly focused ‘runaway’ electron beam.

Thus disruption avoidance, or mitigation, is highly desirable, and it is prudent to consider how

our knowledge of the circumstances of disruptions in a given tokamak could be used to predict

disruptions in another tokamak.  If successful, this approach would allow the deployment of disruption

protection systems in future tokamaks, such as ITER, without the need to have a large number of

‘training’ disruptions in that device.  It would also enable that device to operate in a more cautious

manner, until the safety of particular scenarios was established.

The starting point of such a study is the search for plasma diagnostic parameters that are indicative

of disruptive behaviour. A great deal of progress has now been made in this field using the ASDEX

Upgrade (AUG)[3], DIII-D[4], COMPASS-D, JET[5] and JT-60U[6], TEXT[7,8] and ADITYA[9]

tokamaks. These studies indicate that for around 80% to 90% of disruptive shots the time of disruption
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can be predicted early enough to take corrective action. They also show a considerable measure of

agreement over the best choice of parameters.

These previous studies have all used neural network classifiers [10] for the prediction of

disruptions. Neural classifiers use a database of historical data where each example is a set of

plasma parameters from a given time in a given shot. During network training each training example

item is associated with a “target” indicating the time to disruption, or some function of it. The

parameters of the network are adjusted during the training process until, for each set of training

example inputs, the network outputs most closely match their targets. The trained network can be

used in subsequent testing sessions to predict the time to disruption for any new set of example

parameters.  Essentially the network searches the multi-dimensional space of the chosen plasma

parameters for previous examples having parameters close to the current values of the parameters,

and assumes that the subsequent evolution of the plasma will be similar.  It should be noted however

that neural network application developed here is unique in that the training and testing data are

from 2 completely distinct sources (i.e. two different tokamaks). There is therefore a degree of

extrapolation required by the network, as the data ranges of the two devices are not entirely

overlapping.

In this paper, we start with a discussion of the basis of our approach, key parameters used, and

description of the databases used. We then explain the neural network learning and testing procedure.

To present results, we first explore performance based on training and testing within a single device,

considering first ASDEX Upgrade, then JET. This then sets the framework for an evaluation of

cross-machine prediction, which is performed in each direction. We then present our conclusions.

2. BASIS OF THE APPROACH

For comparison between tokamaks of differing size and structure to be valid, the plasma parameters

must be made dimensionless. Some parameters, for example the edge safety factor, q95, are

intrinsically dimensionless. Other possible parameters such as the radiated plasma power can be

made formally dimensionless by dividing by say, the plasma input power, to define a radiated

power fraction parameter. In this work we do not allow further adjustment factors in scaling

dimensionless parameters between devices.

The normalised plasma parameters used here are based on quantities that are known to play a

role in tokamak plasma disruptivity. They are largely based on those used in the ASDEX Upgrade

disruption prediction [11,12], with three changes. (i) The MARFE (Multi-faceted Asymmetric

Radiation From the Edge) indicator used as one of the ASDEX Upgrade parameters had no exactly

equivalent on JET, so this variable was not used. (ii) The time differential variables were not used.

(iii) It was found that the confinement time in the present application was more predictive when

normalised by a simple average confinement time over the relevant tokamak database than by the

L-mode confinement time scaling law of Franzen et al. [13] used in the ASDEX Upgrade work.

This is partly because such scaling laws depend on parameters which are sometimes varying in the

approach to a disruption, normalising actual time to confinement law scaling time can lead to
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considerable fluctuation in the normalised time input parameter. Results will be given for the network

performance trained using a smaller dataset containing only a logarithmically spaced selection of

times before any disruption and using a new target with a dimensionless time variable. Testing is

performed on different datasets containing a much larger number of time points at a uniform spacing.

2.1 NETWORK INPUT PARAMETERS:

The normalised plasma variables to be used in disruption studies are defined as follows:

1. The edge safety factor: P1 = q95. This is the value of the safety factor at the 95% flux surface. A

low value (<~3) is indicative of disruptive behaviour.

2. Internal inductance: P2 =li. This is the ratio of the average value of the magnetic field over the

average value of the field at the plasma edge. It therefore is also dimensionless. A high value of

the internal inductance is known to increase the likelihood of disruption [2].

3. The normalised toroidal beta: P3 = βN =  βT /(I p[MA] /a[m] BT[T] ) with βT =2µ0<p>/BT
2 and

the normalisation depending on the plasma current (Ip) the minor radius (a) and the toroidal

field (BT) arising from the predicted Sykes-Troyon b-limit [1]. Sawtoothing ELMy H-mode

plasmas tend to become unstable if the parameter P3 rises above about 3.5.

4. The Greenwald density limit P4 = nN = ne / I p/(πa2κ). Here ne is the measured line average

density, and I p /(πa2κ) is a generalised Greenwald density including the elongation κ. A high

value of P4 (>~κ) increases the probability of a disruption via radiative collapse.

5. The radiated power fraction:  P5 = Pfrac = PRad / PInp. Here PRad is the radiated power from the

plasma determined from bolometer measurements.  PInp is the input power from external and

Ohmic heating. A high radiated power fraction (>~100%) is characteristic of disruptive activity.

6. The normalised energy confinement time: P6 = τN = τcon/<τcon>. The confinement time is

calculated from the stored energy, divided by the total energy, less the time derivative of the

energy. The confinement time is normalised according to the average value over the dataset, so

this is not an H factor. A low normalised confinement time is suggestive of a disruptive plasma.

7.    The normalised locked mode indicator: P7 = LN. The signal is normalised to a maximum value

of unity so that it switches rapidly from zero (no locked mode) to unity (locked mode present).

2.2 THE DATABASES USED FOR ASDEX UPGRADE AND JET

The ASDEX Upgrade disruption database used consists of ELMy H-mode shots selected from

1,400 pulses with lower single-null plasmas and a flat-top current. Shots were omitted if they

contained incomplete or unreliable measurements. Disruptions caused by killer pellets or vertical

displacement instabilities were also excluded (as these represent machine specific causes that will

vary according to specification between devices). The training set included values of chosen variables

measured every 0.0025 seconds. Generally times up to 0.8 seconds before any disruption were

included. A complementary set of non-disruptive shots were selected to provide a broader definition

of the non-disruptive parameter space. For our study  only those disruptive shots where parameters

were recorded for at least 0.067 seconds before the disruption were included. For training data not



4

all times were used. Since the disruption-significant variables change rather rapidly just before the

disruption, but less rapidly at much earlier times, an equal spacing of time points gives an inefficient

picture of the approach to the disruption. Variables at adjacent time points well before a disruption

tend to be highly correlated with each other, potentially leading to excessive training in the time

region well before the disruption while sparsely representing the important data close to the

disruption. A logarithmic time variation was therefore chosen with the earliest time 0.005 seconds

before the disruption and earlier times at intervals of 21/2 times the previous time. This ratio was a

compromise between adequate representation of the time variation up of the variable up to the

disruption and the avoidance of large numbers of correlated points. The idea is to create a dataset

where the features at each example point are only poorly correlated with those of its immediate

neighbours. Instead of around 185 time points for each disruptive shot, there are now just 16 spanning

a time range up to 0.64 sec. before the disruption. We suggest that this relatively small number of

example points, moving smoothly from a long time before a disruption to fine time resolution just

before it, nicely captures the essence of the disruptive behaviour. The time points in non-disruptive

training points were randomly chosen so as to give a similar number of time points. The result was

a database of 1101 sets of variables (time points) from 59 disruptive shots and 30 non-disruptive

shots in ASDEX Upgrade.

A quite separate database was created for testing purposes, since it was realised that the large

time intervals in the training data well before a disruption might permit short lived excursions

towards disruptive behaviour leading to false alarms being missed. For this reason all time points

were included in the test database provided that they originated from a plasma current flat top

region of the shot. This testing database contained some 17,967 time points.

The JET database was generated from a list of ELMy H-mode disruptive shots and excludes

those caused by loss of vertical control. From these, only shots with disruptions in the plasma

current flat-top region were chosen. Non-disruptive shots were chosen to correspond closely with

the plasma conditions of some of the disruptive shots. Once again the parameters at logarithmically

spaced time intervals were chosen for training, with the first time 0.01 seconds before the disruption

and the last 3.2 seconds before the disruption. This gave again around 15 training points spanning the

time range before the disruption. There were 1290 sets of variables from 68 disruptive shots and 18 non-

disruptive shots in the final training database. Again a separate test database of 41,100 time points was

constructed containing all the time points within the flat-top region of the selected shots.

An example of the type of scatter plot used initially to define potential variables for disruption prediction

is shown in Fig.1. This is a plot of the internal inductance li against the safety factor q95 which Wesson

[2] and Milani [5] have emphasised as a defining diagram to separate regions of stability and instability.

3. THE NEURAL NETWORK LEARNING AND TESTING PROCEDURE

The neural network which has run on-line on ASDEX Upgrade [12] used the time to disruption (in

seconds) as its target and was able to predict around 85% of the disruptions (based on a different

success criteria to that used in this paper).
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A first objective of the present work was to confirm these results using a revised target involving a

time to disruption normalised by the average confinement time for a given device. The revised

target used has the form:

T = exp{ -F(tdis - t) / < τcon >}                                              (1)

Here t is the time, tdis is the disruption time and F is an arbitrary factor, typically about 8. <tcon> is

the average confinement time over the dataset as defined earlier in the definition of the normalised

energy confinement time. This target has the advantages that it smoothly approaches 1 as the

disruption is approached and smoothly decays to zero at times far from any disruption. It can

readily be given the value 0 for any times within non-disruptive shots. The factor F can be adjusted,

as described later in Section 6, so that optimum predictive performance is achieved with the largest

target variation occurring at those times when the network is most predictive.

In any “learning by example” procedure great care has to be taken to ensure the optimal position

between the twin evils of using too many adjustable parameters so that unimportant details in the

training data are “over-learnt”, and using too few parameters so that even general trends in the

training data fail to be followed. In the multi-layer perceptron networks discussed here the key

variable is the number of weights in the network. For a two-layer network of n0 input variables, n1

hidden layer neurons and a single output neuron n2=1, the number of adjustable weights is

nwts = n0 . ( n1 +1) + n1 +1                                                   (2)

The number of weights can therefore be adjusted by changing the number of hidden neurons n1 ,

and also reduced by cutting out input variables n0. A further step is to eliminate the hidden neuron

layer altogether to make the single-layer perceptron, where the single output neuron o1, receives

signals o0ik  input from each of the inputs i, of example k, multiplied by the weights wi, less a

threshold w10

o1  = G{ [ Σi o0ik . wi  ] - w10 } where G{x} =1/[1+ exp( -x/kTB )].                    (3)

Here G(x) is the non-linear function of the argument x, changing from zero for large negative x to 1

for large positive x. TB is a pseudo-temperature defining the degree of smoothness of the transition.

In the present code the single-layer perceptron, n1 =0, is treated as a continuation of the finite

hidden unit number series.  During the learning process all the adjustable weights are varied iteratively

to reduce the “output” residual, Ro, between the actual outputs ok  for each training example k and

the known targets Tk .

Ro = Σk     (ok  - Tk )
2                                                     (4)

The summation here is taken over all examples in the data, in contrast to that in the “time residual”

used later in equation (5) where the summation is only over times of interest in predicting the
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disruption. The learning rate must be slow enough to ensure a smooth reduction of the residual Ro

in Eq.(4) and the number of iterations large enough to ensure reasonable convergence. When we

are considering examples from a single tokamak, the available examples can be divided into training

and testing example datasets. However a better way is to perform “leave-one-shot-out” testing

where the network is trained from scratch with just one shot left out of the training data, and

subsequently tested on the data from this shot alone [17].  The process is then repeated leaving out

each shot in turn, so that a statistic measuring performance against all shots can be compiled. This

method has been used exclusively in this work for the single tokamak studies. For the inter-tokamak

studies that are the main subject of this work, the complication does not arise. One tokamak supplies

training data and another the test data.

A neural network code incorporating the standard Rumelhart and McClelland back propagation

algorithm [15], was written in 1990 as part of the European ESPRIT II project “Applications of

Neural Networks for Industry in Europe” [16]. This has been developed to allow leave-one-shot-

out testing and to allow a smooth transition to zero hidden units.

The convergence of the network was tested by performing a scan of test performance against the

number of  iterations. Our code was written so that any of the neural network performance parameters

could be automatically scanned and the full test performance noted. These tests were performed on

the ASDEX Upgrade alone run 1 of Table 1. The test failure rate improved up to 300,000 iterations

but showed little improvement with more iterations. The best results were for 600,000 iterations

and this value was used in all the results shown. For cross-tokamak training and testing, this

conclusion would not be valid. The cross-tokamak test performance with several hidden units is

improved by using say 60,000 instead of 600,000 iterations. However its performance still falls

below the zero hidden unit network. Tests were also made with the learning rate - i.e. the rate at

which the neural network weights are changed after each iteration in the back propagation formalism

of Rumelhart and McClelland [15]. A low learning rate is best but most time consuming. A high

value can give problems of instability shown by a residual which fluctuates rather than reducing

steadily. The learning rate was initially set to 1.0 with 300,000 iterations. An appreciable improvement

was obtained by reducing this to 0.5 and doubling the number of iterations to 600,000. However a

further factor of two change with more iterations and still lower learning rate produced little further

improvement. A scan was made of the factor F in equation 1, which multiplies the time-to-disruption

before evaluation of the exponential in the target. It was found that the residual decreased rapidly as

the factor increased from 1 to around 8 but then showed little further change. No momentum term

in the back propagation formalism of Rumelhart and McClelland [15] was used.

Network performance testing can be refined beyond the residual of Eq.4 to include the factors

that make the prediction of disruption in a particular shot practically useful or not. These are illustrated

in Fig.2, which shows the predicted time to disruption, evaluated by inverting Eq.1, against the

actual time to disruption for several shots. A “perfect” prediction would give a trajectory following

the unit gradient line shown. An adjustable threshold time Tthres  shown by the horizontal dashed

line is used to define the onset of a disruption. The vertical dashed line to the right of the figure
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defines the prediction time Tpred, before which shots are considered to be non-disruptive. The vertical

dashed line to the left of the figure represents the mitigation time Tmit after which it is too late to

perform any actions to mitigate the effects of the disruption. This time has been chosen relatively

arbitrarily and is not based on any particular mitigation method. We shall define 4 types of shot:

a) An “early” failure shot has a predicted time to disruption falling below Tthres for actual times

earlier than Tpred.

b) A “late” failure shot has a predicted time to disruption failing to fall below Tthres for any actual

times before Tmit. In our code a shot which is both “early” and “late” is defined as a“late” shot.

c) An “non-disruptive” failure shot occurs if the predicted time to disruption falls below Tthres at

any time.

d) A “good” shot has a predicted time to disruption falling below  Tthres for actual times somewhere

between Tmit and Tpred or for a non-disruptive shot, the predicted time must remain above Tthres

for all times.

Performance is defined as the  (number of “good” shots)/(total number of shots). The failure rate

is defined as (1 – performance) and can be subdivided into “early”, “late” and”“non-disruptive”

failure rates.

The choice of Tmit and Tpred depends on the tokamak, and both are critical to the performance

results. In ASDEX Upgrade there is experience in disruption mitigation by impurity gas injection[12].

Values that are consistent with the present hardware are a mitigation time Tmit =0.010 seconds and

a prediction time Tpred =0.100 seconds. For JET the figures will be corresponding longer. In the

work of Cannas et al. [14] on JET, Tmit  was scanned between 0.04 and 0.20 seconds and the lowest

number of missed alarms found was at 0.04 seconds. Tpred was chosen as  0.440 seconds. Here we

have used the (minor radius)2 scaling to give a consistent factor 4 time ratio between JET and

ASDEX Upgrade. This gives the values Tmit = 0.040 seconds and Tpred = 0.400 seconds, consistent

with the work of Cannas et al.. This mitigation time is of the order that is sufficient to allow an

adequate mitigation strategy. Note that the figures have a time axis extending to 20% above Tpred to

give clarity to the time region close to the disruption. The actual range of the considered time points

extends to many times this value. Time points greater than this limit are superimposed on the right-

hand axis and are included in performance statistics. Later in Fig.9 we show some example inter-

tokamak predictions using such an expanded time scale.

4. RESULTS FOR TRAINING AND THE LEAVE-ONE-SHOT-OUT TESTING WITH

ASDEX UPGRADE

Table 1 shows the results of several optimisations performed on the ASDEX Upgrade data alone

and JET data alone, giving time residuals, success rates and optimum threshold times. The “reference”

calculation includes all 7 parameters and is performed with the no-hidden layer simple perceptron,

and with leave-one-shot-out testing. Three independent measures of performance are used in Table 1.

These are the output residual of Eq.4, the total percentage of shots not correctly classified, and a

“time” residual, Rt, equal to
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Rt = Σ ⏐ (tnn - tactual )/tactual ⏐                                             (5)

Where tnn and tactual are the neural network predicted and actual times to disruption, and the

summation only runs over times between Tmit and Tpred  for disruptive shots, and over all times for

non-disruptive shots. Figure 3 shows, for the ASDEX Upgrade shots, the predicted time to disruption

plotted against the actual time to disruption for times up to 0.12 sec.

The lines in Fig.3(a) shows the ASDEX Upgrade time-to-disruption plots in the style of Fig.2

for leave-one-shot out-training. Perfect performance of the neural network would result in all

trajectories lying on the y=x line. The resulting 8.9% overall failure rate of this network, which is

given by a simple sum of “early”, “late” and”“non-disruptive” failures, arises from 4 “late”, 3

“early” and one non-disruptive shots. One”“late” shot is seen falling steeply on the extreme upper-

left of the figure. The two “early” shots are nearly flat at the bottom of the figure. Despite this good

performance it is seen that the time-to-disruption traces have a systematic trend away from the

expected unit gradient, most notably for times further away than about 0.04 seconds or so from the

disruption. The predicted time to disruption tends to flatten off at about 0.06 seconds. We believe

this to be caused by the decreasing disruption predictive behaviour of the input parameters. At a

sufficiently long time before a disruption there is little distinction between the input parameters

from disruptive and non-disruptive shot. For a single tokamak, predictive power is generally increased

by a more complex network with more hidden units. A 6-hidden unit multi-layer perceptron, detailed

as Run 2 in Table 1, gives a slightly reduced output residual and error rate. We detail the single-

layer perceptron results here for comparison with the inter-tokamak results presented later. The

horizontal line in figure 3a shows the threshold time giving the best overall performance. This

value has been determined as in figure 3b by changing the threshold over a wide range and examining

the number of “early” and”“late plus non-disruptive” errors. There is generally a minimum where

the threshold is neither too low to prevent indications of “early” disruptions or false alarms, nor so

high to prevent the indication of a true disruption. Figure 3(c) shows how the performance changes

as the number of hidden units is increased. With more than 6 hidden units, the performance is

improved. This result is consistent with other studies where optimal performance on a given tokamak

has been achieved using networks with several hidden units. [3]

Table 2 shows the saliency analysis when each of the input parameters are omitted in turn, and

the usefulness of each one evaluated from the deterioration in the performance. This shows that all

parameters are useful when tested on the ASDEX Upgrade data. It should be noted here that the

saliency test is against the failure criteria (Fig.2) whereas the network performance is optimised

against the residuals. Results for networks corresponding to the three most salient parameters of

Table 2 are shown in “Run 3” of Table 1.

It is interesting that almost identical results are obtained when all the available ASDEX Upgrade

data is used for training. The similarity between this “100% learning” case and the leave-one-shot-

out analysis, shows that there is little tendency for these small networks to exhibit the “over-learning”
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behaviour typical of larger networks. They have only 8 adjustable parameters (7 feature parameter

weights and a threshold weight), compared with say 78 for a 7-input, 10-hidden unit multi-layer

perceptron. The larger number of variable weights in the multi-layer perceptron allows the training

to pick out unimportant details in the training dataset to minimise the residual between the target

and the network output. These details may well not occur in testing so that the extra precision of the

training cannot be used and the network is said to be “overtrained”.

5. RESULTS FOR TRAINING AND THE LEAVE-ONE-OUT TESTING WITH JET

Corresponding results to AUG are shown from JET in Fig.4. For the present, it will be assumed that

the JET time normalisation (in Eq.1 and parameter P6) is a factor 4 greater than for ASDEX Upgrade.

This multiplier is consistent with a (minor radius)2 scaling. Theoretically, this might originate from

arguments relating to the resistive nature of the disruption process. For example a resistive evolution

of the current profile towards disruption. [2]) . The resistive time constant of the plasma would be

expected to scale with (minor radius)2. Its role will be explored in more detail later in this paper.

Table 1 also shows the JET data results. They show slightly worse performance than the ASDEX

Upgrade data (13.6% failure rate versus 8.9%). The reason for this could well be the greater variety

of shot types included in the JET database. These results can be compared with those of Cannas et

al. [14] on JET which showed around 9% errors for similar times for the mitigation time Tmit = 0.04

seconds and the prediction time Tpred = 0.44 seconds. The predicted times to disruptions of Fig.4(a)

follow the correct trend quite well below 0.2 seconds. The hidden unit dependence is similar to that

observed for ASDEX Upgrade, again showing an improvement in performance up to about 10

hidden units. Table 2 shows that most variables are of some use, and none decrease performance.

The normalised confinement time is the most important parameter. Table 1 (runs 1 and 5) shows

that the optimum threshold for JET is a factor 3 over that of AUG, not too far from the overall factor

4 between time normalisation between devices assumed above. The relatively high maximum values

of the input parameters safety factor q95, normalised toroidal beta βN  and normalised density nN

suggest that the database includes shots not far from several types of disruptive behaviour.

6. EXTENDING TECHNIQUES TO CROSS-MACHINE PREDICTION, AND

NETWORK OPTIMISATION

The ultimate purpose of this study is to predict the disruption performance of a new tokamak

having no database of disruptions. Testing with data from a new tokamak should therefore not

depend on any threshold, or other performance parameter depending in any way on the test data. In

the present application this means there are no problems with the division between training and

testing data. All the ASDEX Upgrade data can be used for training and all the JET data can be used

for testing (or vice-versa). However some new complexities are introduced. In neural network

training it is usual to normalise the input parameters into the range 0 to 1 and this has been done for

each tokamak in the previous two sections. The actual non-normalised ranges of the 7 input

parameters are shown on the left hand side in Table 3. As discussed later, they vary appreciably
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between the two tokamaks although the extremes of the range are often caused by one or two

unrepresentative shots. It follows that the range appropriate for training the ASDEX Upgrade data

is inappropriate for use in testing the JET data. It was found that a good strategy was to use the

range appropriate to the test tokamak, whatever the training tokamak range.  This means that for

application to new devices (e.g. ITER), although no actual disruption data is required, the likely

operating range of that device must be anticipated.

Related to this problem is the choice of time scaling factor between the devices, used in Eq.1 and

the definition of normalisation of the 6th parameter, the normalised confinement time, P6. A good

starting point, mentioned in section 5, is to use (minor radius)2 scaling giving a factor close to 4 for

JET compared to ASDEX Upgrade. It was less satisfactory to use actual averages of confinement

time over the two databases, as there was no certainty that the shots in the two databases from each

tokamak correspond to sufficiently similar scenarios, and it also requires anticipation of the average

confinement time on the test device. A third choice is to treat the JET/AUG mean confinement time

ratio as an adjustable parameter in the inter-tokamak predictions – we compare this approach with

the above minor radius assumption, below. In section 3, the origins for the choices of mitigation

and prediction times (Tmit and Tpred) were given, based on previous work and on the ASDEX

Upgrade practical experience. For the purposes of inter-device comparisons in this paper we have

always maintained the ratio between devices of each of these times to be fixed, equal to the overall

time ratio discussed above. For a future device, neither of these parameters are required for the

operation of a predictive network - only for evaluating its success (whether disruption predictions

are too early or too late). However, for testing on a future device, Tmit will depend on the physics

processes associated with the chosen termination system (eg a massive gas puff), while Tpred could

be further optimised to give best performance on the training device, before being scaled to the test

device. We have not explored such variation in this work, and this remains an issue for the future.

The full line in Fig.5 shows the disruption prediction performance for the JET data trained on

ASDEX Upgrade data, with a threshold equal to that giving the best performance on the ASDEX

Upgrade training data scaled by the particular confinement time ratio. It is seen that the expected

minimum around a value from 2 to 4 is achieved with a failure rate of 29.4% . The dashed line

shows the improved performance for JET data trained on ASDEX Upgrade that could be obtained

if the JET time threshold for disruption prediction is optimised independently for each possible

value of cross-device time scaling factor. The failure rate is decreased to 28.4% at a confinement

time ratio of  3.0.

7. RESULTS, TRAINING ON ASDEX UPGRADE AND TESTING ON JET

Details of the inter-tokamak predictions are given in table 4, with summaries of the prediction of

JET disruptions by an ASDEX Upgrade trained network given in Fig.6. In this figure the predicted

threshold scaled from the ASDEX Upgrade training, corresponding to the full line in Fig.5(a) has

been used. In Fig.6(a) it is seen that, below around 0.2 seconds, the calculated times to disruption
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move with more-or-less the correct gradient. However they are uniformly above the unit gradient

time-line where the actual time to disruption equals the calculated one. The predicted times to

disruption near the disruption are uniformly high by about 0.05 sec. This is in contrast to the

corresponding lines for ASDEX Upgrade data alone in Fig.3 or the JET data alone in Fig.4. There

is curvature away from the unit gradient for times greater than 0.2 seconds where the predicted

times to disruption  fall in the range seen for non-disruptive shots. Figure 6(b) shows that the

optimum JET performance corresponds to a failure rate of 30.7%. Figure 6(d) shows that this

optimum is achieved at a JET threshold time of 0.5 seconds essentially identical to that of the feint

curve in Fig.6(d) showing the threshold achieved with both training and testing on ASDEX, scaled

by a factor of 4.

It is noteworthy that these results are very much better than earlier calculations using a revised

target where the average confinement time <τconf> was replaced by the instantaneous confinement

time τ(t) prediction at the particular time t. (In other words the H-factor was used). The hidden unit

number scan results shown in Fig.6(c) are interesting in showing an appreciable deterioration in the

performance as 3-layer perceptrons are introduced with more adjustable parameters. This again

contrasts with the more conventional corresponding results for JET-alone of Fig.4(c). It is true that

in general, more complex systems require more adjustable parameters in the neural net. In the

cross-tokamak prediction we have a different situation. The complexity of the system remains

identical to the single-tokamak system, but the danger of over-learning becomes much greater. The

training and test systems are different, their different parameter ranges are only one aspect of their

differences, and for some time in this project we had networks which trained well, but whose test

results were dismal. Typical networks had test outputs that gave a long predicted time to disruption,

which hardly changed as the actual time to disruption decreased.   This result explains the emphasis

we have given to the single-layer perceptron. It is probably because “over-learning” of irrelevant

features in the training data is much more likely in the present situation where the areas of feature

space occupied by the two tokamaks are significantly different. Table 2 shows that for this situation

all the chosen feature variables contribute positively to the prediction. It should be noted that in

other situations, such as that mentioned earlier when times were normalised by the instantaneous

predicted confinement time, only a few of the variables contributed positively.

In Fig.6(d) we explore the role of threshold time when the cross-machine time factor is fixed to

the  value of 4 predicted by the minor radius scaling. Here are plotted failure rates for cases from

JET and from AUG tested against the same JET trained network (with AUG times scaled by factor

4). This shows that the optimal threshold times between the two devices are highly consistent,

separated by the same time factor applied to the rest of the data.

Figure 7 explores the approach to disruption over a longer time scale than the previous figures.

The data and thresholds are identical. However the time scale has been increased by a factor 5 and

only a selection of mostly failing shots is shown. The notation is similar to Fig.2 except that a non-

disruptive shot has been displayed on an arbitrary time axis.
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A typical good prediction, say Pulse No: 43864, only achieves a reasonable agreement between

predicted and actual time to disruption at times of order 0.3 sec. At greater times to disruption, the

predicted time to disruption levels off at around 0.3 to 0.6 seconds. There is little information in the

input parameters to suggest the presence of the oncoming disruption until 0.3 seconds or so before

the disruption. This justifies our choice of training data, with its emphasis on times close to the

disruption and its increasingly sparse information at longer times to disruption.

Of the two disruption prediction failures, Pulse No: 43814 shows an incipient disruption at

around 0.8 seconds before the disruption. This is an ICRH heated pulse in which the coupling is

repeatedly lost and re-established with the radiated power just before ICRH coupling is re-established

rising close to the input power – a likely indicator of an imminent disruption. It is observed that the

minima in the time to disruption corresponds well with peaks in radiated power and the ICRH

coupling being re-established. These peaks end 0.8 seconds before the disruption, and the predicted

time to disruption recovers well to give rather close agreement between predicted and actual times

to disruption. However the predicted time to disruption suddenly rises to give a “late” error. Pulse

No: 44087 follows a steady decrease in the predicted time to disruption around 0.7 to 0.5 seconds

before the disruption. Once again it recovers but later follows a classic approach to the disruption.

The non-disruptive Pulse No: 49511 is shown plotted against an arbitrarily shifted time, adjusted so

that the interesting time region occurs in the centre of the figure. The actual scale is measured as if

a disruption occurred at 21.56 seconds. The two dips below the threshold in the time to disruption

therefore correspond to real times of 20.06 to 20.088 and 20.163 to 20.213 seconds. In fact from

19.85 to 20.00 seconds the NBI plasma heating was rapidly ramped down from 14MW to zero.

This may have got the plasma close to a radiative collapse (although the density remains well

below the Greenwald limit). The bolometer exhibits two peaks after the NBI power was turned off,

one at 20.03 seconds the other at 20.17 seconds with the bolometer power to total power ratio

peaking at 8 then 3MW, well exceeding the input power of around 1MW at this time.  In this sense

the network is accurately reflecting that an unsustainable level of radiation is happening at this

time. Although the plasma survived in this case, it is known that too rapid a switch off of heating

power on JET can lead to disruption, and so the network was correctly indicating a high potential

for disruption.

8. RESULTS, TRAINING ON JET AND TESTING ON ASDEX UPGRADE

The situation is readily reversed so that ASDEX Upgrade data is tested on a network trained on JET

data. It initially proved difficult to get good results for this case. Improved results (see Figs.8 and 9)

were obtained by addressing the normalisation (mapping them into the 0→1 range) of the parameters

for Power Fraction, P5, and Normalised Confinement, P6. As Table 3 indicated these can be a

factor of 2 or so larger for ASDEX Upgrade than for JET. However it must be emphasised that the

left hand side of Table 3 refers only to the extreme values, rather than to more typical spreads.

Typically on both tokamaks a few shots show up as “outliers” with values exceeding the average
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spread in the data by 100% or more. Simple normalisation to the largest values was not a problem

in the JET from ASDEX Upgrade predictions. However in the reverse direction, it is as if the detail

in the JET test tokamak Normalised Confinement parameter has been “lost in the noise” (with little

dynamic range in the JET data) when trained with the generally larger ASDEX Upgrade parameter.

For the AUG trained network of section 7, normalising to the JET values greatly improved the JET

prediction, but of course at the expense of a decreased performance for the ASDEX Upgrade single

machine prediction performance.

The right hand side of Table 3 shows the lower and upper limits of the parameters when they are

estimated from a histogram of the data against each parameter. Here the low value is when the

histogram first exceeds 10% of the total area and the high value when the histogram last falls below

90% of the total area. These histogram limits give much more understandable ranges for the parameters.

Sample studies show that these histogram limits lead to similar values to those reported in the paper.

Figure 8 shows that for a JET-trained network, the best predictive performance is obtained for a

JET/AUG confinement time ratio of around 3, although a factor 4 still gives good performance.

The best ASDEX Upgrade performance when the time factor and threshold are independently

optimised in Fig.8, is 26.7% achieved at a time ratio of 2.4. Figure 9(a) has many features similar to

Fig.6(a). Again the predicted time to disruption is generally some 0.02 seconds longer than the

actual time within 0.04 seconds of the disruption. At larger times before the disruption times we

have a flattening off of the predicted time to disruption to a limit of around 0.06 seconds. It follows

that the network has little cross-tokamak prediction capacity at times greater than 0.06 seconds

before the disruption. The best prediction performance of 26.7% (Fig.9(b)) is obtained including

all the parameters  but including any hidden units degrades performance (Fig.9(c)). Table 2 shows

that once again all feature parameters contribute positively to the prediction. Figure 9(d) shows that

threshold times are again consistent between the devices, giving an optimal prediction for ASDEX

Upgrade performance of 26.7% failure rate.

CONCLUSIONS

Neural network techniques previously used for predicting disruptions on a single tokamak have

been extended to make cross machine predictions of disruption time on one tokamak, based on

networks trained on another tokamak. This has been achieved by using a reduced set of dimensionless

input parameters and simplified network structures that are better able to accommodate the degree

of extrapolation required between tokamaks.

For a single tokamak (training and testing on the same tokamak), neural networks can predict

disruptions with around 80 to 90% accuracy, even with a reduced input parameter set compared to

previous studies. Optimum performance is obtained using multi-layer perceptrons with several

hidden units. When predictions are made between tokamaks (JET and ASDEX Upgrade), an accuracy

in the 70% range has been obtained, with optimum performance using a simple single layer

perceptron.
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Best results have been obtained with a target based on the time to disruption divided by an average

confinement time for a given tokamak. In predicting performance on the second tokamak, an overall

time scaling factor must be applied to all time-to-disruption and confinement time type measurement.

This can be predicted from arguments based on resistive timescale for the disruption process, giving

a factor 4 between AUG and JET, which is in close agreement with the empirically optimised time

scale factor between tokamaks. This provides a ‘first principles’ method of applying the data set to

new devices without measurement of disruptive behaviour on those devices.

Further performance improvements are possible if threshold times for disruption prediction are

allowed to vary independently of the above time factor between tokamaks. This also leads to optimum

cross-machine performance for time factors significantly different from the above factor 4, but

requires data from the test tokamak to determine the appropriate threshold level. With the cross-

machine predictions, there is a danger of “over-learning” which is minimised by using the simple

perceptron with no hidden units, and is found to give the best cross-machine performance. Care

must also be taken with input parameter normalisation when the parameter ranges are different on

the two tokamaks. Neural network input parameters are usually further normalised to fill a 0 to 1

input range. However with a degree of extrapolation between different tokamaks, the likely operating

range of the test tokamak must be anticipated for reasonable performance to be maintained.

These studies are encouraging and indicate that the potential key weakness of the neural network

approach to disruption prediction in a newly constructed tokamak, the need for a large training set

of disruptions, might be overcome by training using data from a pre-existing tokamak (or tokamaks).

This offers the basis of a potentially useful technique for large future devices such as ITER, to help

reduce disruption frequency and avoid the need for a large disruption campaigns to train disruption

avoidance systems. It would also enable that device to operate in a more cautious manner, until the

safety of particular scenarios was established. Further work is needed to explore variations in

performance and optimisation with key parameters such as Tmit and Tpred  (assumed from previous

studies in this work). In addition, for a more cautious operational approach, more natural disruptions

(‘late failures’ which here account for ~10-20% in the best networks) could be avoided, at the

expense of an increased number of network-triggered terminations, which may be considered as

safer more controlled events. The present failure rate of 30% may be too high to be acceptable and

so although the results presented here are a positive step, further refinements are desirable. The

technique described here could also be extended to disruptions in regimes other than the ELMy H-

mode, or to include data from other tokamaks.
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Table 3: The ranges of the 7 parameters in the two tokamaks

Table 4: Results for disruption prediction performance between tokamaks

TTTTaaaabbbblllleeee    1111    SSSSiiiinnnngggglllleeee    ttttooookkkkaaaammmmaaaakkkk    ssssccccaaaannnnssss     
Run Tokamak Training Hidden Output Time Thres (s) Total % Early % Late (%) Non-d (%)

units residual residual failure failure failure failure
1 AUG leave-one-shot-out 0 0.085 0.164 0.025 8.89 4.44 3.33 1.12
2 AUG hidden unit scan 6 0.067 0.015 0.019 7.78 3.33 3.33 1.12
3 AUG Saliency:1 -Pfrac 0 0.141 1.010 0.027 32.58 17.98 14.61 0.00

Saliency:2 -TauN 0 0.121 1.277 0.029 25.84 17.98 7.87 0.00
Saliency:3 -li 0 0.117 0.730 0.027 15.73 10.11 4.49 0.00

4 JET leave-one-shot-out 0 0.043 0.000 0.096 13.64 3.41 10.23 0.00
5 JET hidden unit scan 8 0.080 0.327 0.058 12.50 2.27 10.23 0.00
6 JET Saliency:1 -Taun 0 0.119 0.568 0.088 50.00 38.64 11.64 0.00

Saliency:2 -Lock 0 0.069 0.349 0.124 18.18 7.95 7.95 0.00
Saliency:3 -Pfrac 0 0.057 0.387 0.076 18.18 7.95 10.23 0.00

TTTTaaaabbbblllleeee    2222::::    TTTThhhheeee    ssssaaaalllliiiieeeennnnccccyyyy    ttttaaaabbbblllleeee    sssshhhhoooowwwwiiiinnnngggg    tttthhhheeee    pppprrrreeeeddddiiiiccccttttiiiioooonnnn    ffffaaaaiiiilllluuuurrrreeee    rrrraaaatttteeee
    aaaassss    eeeeaaaacccchhhh    ooooffff    tttthhhheeee    iiiinnnnppppuuuutttt    ppppaaaarrrraaaammmmeeeetttteeeerrrrssss    iiiissss    oooommmmiiiitttttttteeeedddd    iiiinnnn    ttttuuuurrrrnnnn

 Train tokamak ASDEX-U JET ASDEX-U JET
Test tokamak ASDEX-U JET JET ASDEX-U

All Failure rate (%) 8.9 13.6 29.6 26.7
1 Q95 11.2 13.6 29.6 27.8
2 li 15.7 15.9 31.8 34.8
3 Normalised beta 10.1 15.9 30.7 27.8
4 Normalised density 13.5 15.9 35.2 50.0
5 Power fraction 33332222....6666 18.8 34.1 24.4
6 Confinement time 25.8 55550000....0000 77778888....4444 30.0

TTTTaaaabbbblllleeee    3333    TTTThhhheeee    eeeexxxxttttrrrreeeemmmmeeee    rrrraaaannnnggggeeeessss    aaaannnndddd    tttthhhheeee    99990000%%%%    hhhhiiiissssttttooooggggrrrraaaammmm    rrrraaaannnnggggeeeessss    ooooffff    tttthhhheeee    7777    ppppaaaarrrraaaammmmeeeetttteeeerrrrssss    iiiinnnn    tttthhhheeee    ttttwwwwoooo    ttttooookkkkaaaammmmaaaakkkkssss
 Extreme limits . . 10% excluded points on either side

Parameter AUG min AUGmax JETmin JETmax AUG min AUG max JETmin JETmax
1 Q95 3.111 5.930 1.932 5.123 3.691 5.550 2.752 4.131
2 li 0.745 1.932 0.692 1.498 0.971 1.771 0.940 1.312
3 Normalised beta 0.123 2.975 0.060 4.282 0.263 1.443 0.466 2.088
4 Normalised density 0.016 5.081 0.197 3.266 0.590 1.937 0.615 1.713
5 Power fraction 0.086 4.000 0.009 3.066 0.268 2.723 0.188 0.807
6 Confinement time 0.052 8.108 0.023 4.144 0.302 1.422 0.182 1.582
7 Locked mode 0.000 1.000 0.003 1.000 0.000 0.920 0.005 0.960

TTTTaaaabbbblllleeee    4444::::    RRRReeeessssuuuullllttttssss    ttttaaaabbbblllleeee    ffffoooorrrr    iiiinnnntttteeeerrrr----ttttooookkkkaaaammmmaaaakkkk    pppprrrreeeeddddiiiiccccttttiiiioooonnnnssss         
Run Train Run Hidden Train Test Output Time Threshold % failure Early % L

tok. units % Failure tok residual residual secs best failure
7 AUG JET best prediction 0 3.37 JET 0.047 0.046 0.128 30.68 13.64
8 AUG JET time ratio=3.0 0 7.78 JET 0.003 0.158 0.116 28.41 12.50
9 AUG JET hidden unit scan 10 5.56 JET 0.044 0.916 0.104 46.59 15.91
10 AUG Saliency:1 -TauN 0 13.33 JET 0.141 0.158 0.072 72.73 37.50

Saliency:2 -DenN 0 8.89 JET 0.003 0.158 0.100 35.23 19.32
Saliency:3 -Lock 0 8.89 JET 0.006 0.158 0.124 35.23 17.05

11 JET AUG best prediction 0 32.95 AUG 0.055 0.038 0.036 26.67 16.67
12 JET AUG  time ratio=2.4 0 28.41 AUG 0.054 0.045 0.042 21.11 12.22
13 JET AUG hidden unit scan 10 30.68 AUG 0.044 0.180 0.056 45.56 40.00
14 JET Saliency:1 -Lmode 0 20.45 AUG 0.049 0.646 0.051 65.56 64.44

Saliency:2 -DenN 0 40.91 AUG 0.032 0.052 0.054 51.11 46.67
Saliency:3 -li 0 36.36 AUG 0.041 0.054 0.061 47.78 25.56

Table 1: A numerical resume of disruption prediction performance results for single tokamaks

Table 2: The saliency table showing the prediction failure rate as each of the input parameters is omitted in turn.
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Figure 1: The scatter plot of the internal inductance against the safety factor for ASDEX Upgrade
(feint circles) and JET (dark triangles) disruptive and non-disruptive shots. The larger symbols
are just prior to the disruption. The dashed lines are for non-disruptive shots.

Figure 2: The time-to-disruption plot used to classify disruptions. A successfully predicted
disruption (full circles) has a trajectory passing below Tthres between times Tmit and Tpred .
“Early” predictions, or false alarms, (crosses) fall below Tthres  before Tpred . “Late”, or missed,
predictions (plus signs) fall below Tthres  only after Tmit. Points in non-disruptive shots (triangles)
are defined as failures if their trajectory falls below Tthres  at any time. A perfect prediction
would follow the line of unit gradient.
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Figure 3: (a). The actual time to disruption from ASDEX Upgrade shots plotted against the
predicted time for leave-one-shot-out testing. Included times in disruptive shots above the axis
time limit, and all non-disruptive data are plotted down the right hand axis. (b) A performance
plot of the number of “late” disruption prediction errors against the number of “early plus
non-disruptive” errors as Tthresh is varied. The heavy point indicates the best value of the
threshold time, and the lowest failure rate is indicated by “Best”. (c) A plot of the time-residual
between actual and predicted times to disruption as a function of the number of hidden units.
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Figure 4: A corresponding plot to Fig.3 for the JET database.

Figure 5: The disruption prediction failure rate for JET
data tested using a network trained on the ASDEX
Upgrade data, as a function of the time ratio between
JET and ASDEX Upgrade. The full curve shows the
predicted JET performance at the best ASDEX Upgrade
threshold (Tthresh) as the time ratio between devices is
varied. The light dashed curve shows the JET performance
if the JET threshold is independently optimised. The plot
shows the expected minimum around 4, - the value
expected from the ratio of the square of the minor radii of
the tokamaks.
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Figure 6: The plots corresponding to Figs.3 and 4 for JET data tested using a network trained on the ASDEX Upgrade
data. All variables have been included in this test. A simple perceptron with 100% learning has been used with a JET/
AUG confinement time ratio of 4. In (b) the large triangle indicates the disruption threshold time giving the best
performance. The feint points and line show the training data performance. In (c) the deterioration of performance
with increasing hidden unit number is shown.  In (d) the performance figures are shown plotted against the threshold.
The optimal threshold plot shown in previous figures has limited validity, as for a future tokamak there may exist no
database over which to vary the threshold.

0

0.2

0.4

0.2 0.40
Time to disruption (s)

P
re

di
ct

ed
 ti

m
e 

to
 d

is
ru

pt
io

n 
(s

)

JG
05

.1
78

-6
a

t > 0.12 and
non-disruptive

T
th

re
sh

Tmit

Tpred 0

30

10

20

10 20 300

JG
05

.1
78

-6
b

La
te

 fa
ilu

re
 r

at
e 

(%
)

Early failure rate (%)

�Best = 30.7%

JET trained from ASDEX upgrade

ASDEX upgrade 100% training

10

20

30

40

50

0
5 100 15

JG
05

.1
78

-6
c

Le
av

e-
on

e-
ou

t t
es

t f
ai

lu
re

 r
at

e 
(%

)

Number of hidden units (n1)

JET trained from ASDEX upgrade

0

20

40

60

80

0 1.00.80.60.40.2

F
ai

lu
re

 r
at

e 
(%

)

JG
05

.1
78

-6
d

JET threshold time (s)

JET trained from
ASDEX upgrade

JET failure rate predicted
 from best AUG 

threshold =24.0%

http://figures.jet.efda.org/JG05.178-6a.eps
http://figures.jet.efda.org/JG05.178-6b.eps
http://figures.jet.efda.org/JG05.178-6c.eps
http://figures.jet.efda.org/JG05.178-6d.eps


21

Figure 7: A version of Fig.6(a) with the time axis extended by a factor of 5 and with only a
selection of shots shown. The time origin of the non-disruptive shot is arbitrarily adjusted to
fit in the centre of the page. With the same notation as in Fig.2, a “good” shot, “early”,
“late”, and  “non-disruptive” failures are shown by full circles, triangles, crosses and feint
triangles respectively. The example good shot is shown by black diamonds.

Figure 8: The corresponding plot to Fig.5 showing the disruption prediction failure rate for
ASDEX Upgrade data tested using a network trained on the JET data, as a function of the time
ratio between JET and ASDEX Upgrade (average confinement times).
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Figure 9: The corresponding plot from Fig.6 corresponding to ASDEX Upgrade data tested using a network trained
on the JET data. All variables have been included in this test. A simple perceptron with 100% learning has been used,
except in the hidden unit plot of Fig.9(c).
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