The Software and Hardware Architectural Design of the Vessel Thermal Map Real-Time System in JET

The installation of ITER-relevant materials for the Plasma Facing Components (PFCs) in the Joint European Torus (JET) is expected to have a strong impact on the operation and protection of the experiment. In particular, the use of all-beryllium tiles, which deteriorate at a substantially lower temperature than the formerly installed Carbon Fiber Composite (CFC) tiles, imposes strict thermal restrictions on the PFCs during operation. Prompt and precise responses are therefore required whenever anomalous temperatures are detected. The new Vessel Thermal Map (VTM) real-time application collects the temperature measurements provided by dedicated pyrometers and Infra-Red (IR) cameras, groups them according to spatial location and probable offending heat source and raises alarms that will trigger appropriate protective responses. In the context of JETs global scheme for the protection of the new wall, the system is required to run on a 10 millisecond cycle communicating with other systems through the Real-Time Data Network (RTDN). In order to meet these requirements a Commercial Off-The-Shelf (COTS) solution has been adopted based on standard x86 multi-core technology. Linux and the Multi-threaded Application Real-Time executor (MARTe) software framework were respectively the operating system of choice and the real-time framework used to build the application. This paper presents an overview of the system with particular technical focus on the configuration of its real-time capability and the benefits of the modular development approach and advanced tools provided by the MARTe framework.
Name Size  
EFDC110603 708.03 Kb