EFDA-JET-CP(07)06/07
HALEKAR Modelling of Fast Particle Transport and Losses with TF Ripple in JET
In preparation for ripple experiments at JET the heat loads from fast ions to plasma facing components were calculated by orbit following Monte Carlo codes. The calculations show that losses are generated by two mechanisms, ripple-trapping and ripple-banana diffusion, and that the heat loads could cause damage to plasma facing components. During the experiments the auxiliary power was therefore kept below the limits inferred from the simulations. Measurements of the losses of fast ions from NBI using visible-light and infrared cameras have been shown to be in agreement with the predictions from the simulations. Finally, interactions between fast ions and the non-axisymmetric magnetic field are shown to generate a toroidal torque, which in JET with ~1% ripple is of the same order as that from neutral beam injection.