EFDA-JET-PR(10)12

Perturbative Studies of Toroidal Momentum Transport using NBI Modulation in JET: Experimental Results, Analysis Methodology and First Principle Modelling

Perturbative experiments have been carried out in the JET tokamak in order to identify the diffusive and convective components of toroidal momentum transport. The torque source was modulated either by modulating tangential neutral beam power or by modulating in anti-phase tangential and normal beams to produce a torque perturbation in the absence of a power perturbation. The resulting periodic perturbation in the toroidal rotation velocity was modelled using time dependent transport simulations in order to extract empirical profiles of momentum diffusivity and pinch. Details of the experimental technique, data analysis and modelling are provided. The momentum diffusivity in the core region (0.2<ρ<0.8) was found to be close to the ion heat diffusivity (χϕ/χi ~ 0.7-1.7) and a significant inward momentum convection term, up to 20m/s, was found, leading to an effective momentum diffusivity significantly lower than the ion heat diffusivity (χϕ eff/χi eff ~ 0.4). These results have significant implications on the prediction of toroidal rotation velocities in future tokamaks and are qualitatively consistent with recent developments in momentum transport theory. Detailed quantitative comparisons with the theoretical predictions of the linear gyro-kinetic code GKW and of the quasi-linear fluid Weiland model are presented for two analyzed discharges.
Name Size  
EFDP10012 2.01 Mb