EFDA-JET-CP(01)04/03
The Evolution of Real-Time Control Systems at JET
Real-time feedback control of the JET experiment is based upon a collection of diagnostics providing signals which are processed by various controllers that manipulate actuator parameters for plasma current, shape and heating. The Real-Time Data Network (RTDN) connects the diagnostic, controller and actuator systems to form a flexible feedback and protection system for plasma monitoring and control. The controllers are mainly VME systems based on the Motorola 680X0 (68K) processor with some computationally intensive systems utilising Texas Instruments TMS320C40 (C40) Digital Signal Processors (DSP), though lately there has been a move towards PowerPC 750 based processors. The majority of 68K VME systems use VxWorks, a hard real time operating system. There is an ongoing requirement to improve the efficiency of the real-time control systems at JET. This is driven by a desire to either add more input signals, reduce the feedback cycle time or increase algorithm complexity. New technology has a major role to play in the upgrade of the real-time control systems but the novel redeployment of existing equipment can also be used to enhance performance. This paper examines the configuration of existing systems, both hardware and software, and how new technology can be gradually integrated without jeopardising the current functionality. The adoption of Asynchronous Transfer Mode (ATM) as the connection medium for the RTDN is key to the evolutional development of the control systems. The ATM network is extremely flexible to configure and benefits from low message latency and deterministic delivery time, essential properties for a real-time network.