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Disruptions are dangerous events in tokamaks that require mitigation methods to alleviate its detrimental 

effects. A prerequisite to trigger any mitigation action is the existence of a reliable disruption predictor. This article 

assesses a predictor that relates in a linear way consecutive samples of a single quantity (in particular, the magnetic 

perturbation time derivative signal has been used). With this kind of predictor, the recognition of disruptions does 

not depend on how large the signal amplitude is but on how large the signal increments are: small increments mean 

smooth plasma evolution whereas abrupt increments reflect a non-smooth evolution and potential risk of disruption. 

Results are presented with data from the JT-60U tokamak and high-beta discharges. Two training methods have 

been tested: a classical approach in which the more data for training the better and an adaptive method that starts 

from scratch. In both cases the success rate is about 95%. It should be noted that predictors based on signal 

increments and their adaptive versions can be of big interest for next devices such as JT-60SA or ITER. 
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1. Introduction 

So far, the most simple disruption predictor used in 

all tokamaks utilizes the mode lock (ML) signal 

amplitude, where the rise of this amplitude above a 

certain level can be considered a precursor of a 

forthcoming disruption. Rotating magnetohydrodynamic 

(MHD) modes can be decelerated and become locked to 

the wall. The ML signal increases when the MHD mode 

rotation decreases or when the MHD mode amplitude 

grows. Therefore, an alarm is triggered when the ML 

amplitude is above a certain threshold (that can be set-up 

prior to each discharge). However, this simple predictor 

is not able to cope with success rates close to 100%. 

An alternative to ML thresholds is the development 

of data-driven models by means of general machine 

learning methods (for example neural networks, Support 

Vector Machines (SVM) and deep learning among 

others). Machine learning methods split the parameter 

space into two zones (disruptive/non-disruptive) and 

determine the separation frontier between both zones. 

During the training process, the mathematical form of 

the frontier is obtained. During the execution of a 

discharge, points are projected into the parameter space 

and an alarm is raised when the point appears in the 

disruptive zone. 

The main drawback of disruption predictors based on 

data-driven models resides on the fact that the 

mathematical form of the separating frontier is quite 

complex [1] and it does not allow a physics 

interpretation of the disruption. In other words, it is 

possible to predict disruptions but the physics reasons 

remain unknown [2]. 

The objective of this article is to test two different 

approaches of a new kind of disruption predictors that 

are not based on either general machine learning 

methods or amplitude thresholds. The rationale for the 

new type of predictors has been to follow the 

experimental evidence provided by magnetic signals 

close to a disruption. For example, the mode lock or the 

magnetic perturbation time derivative signals show 

abrupt changes in their amplitudes between consecutive 

samples and, therefore, large signal variations can be 

used as disruption precursors. 

Section 2 describes the mathematical formulation of 

the predictor and section 3 explains the training 

procedure. Section 4 provides the assessment of the 

predictor under two different approaches and section 5 is 

a short discussion.   

2. Mathematical formulation of the predictor 

The predictor has been tested with a database of high 

beta experiments in the JT-60U tokamak, where the beta 

value was close or above the no-wall beta limit [3]. 

Specifically, the predictor based on signal increments 

uses the magnetic perturbation time derivative (MPTD) 

signal with a sampling period 1 ms  . Fig. 1 shows the 

plasma current and the MPTD signal of a non-disruptive 

discharge. Because the aim is to recognize abrupt 

changes between consecutive samples, the parameter 

space of the predictor is a 2-dimensional space where the 

y coordinate of each point is the  MPTD t  amplitude at 

a certain time t and the x coordinate is the  MPTD t   

amplitude of the previous sample, where  is the 

sampling period. Fig. 1c is the parameter space 

corresponding to the whole discharge. It should be noted 

that the MPTD signal shows oscillations (fig. 1b) but the 

differences between consecutive samples are small and 



 

all the points in the scatterplot are located around the 

point (0, 0). 

 

Fig. 1. (a) Plasma current of a non-disruptive 

discharge. (b) Magnetic perturbation time derivative. 

(c) Predictor parameter space. 

Fig. 2 shows a disruptive discharge. Points in the 

parameter space are concentrated around (0, 0), but they 

appear far from the origin when the disruption 

approaches. 

 

Fig. 2.  (a) Plasma current of a disruptive discharge. (b) 

Magnetic perturbation time derivative. (c) Predictor 

parameter space. 

Figures 1 and 2 suggest the possibility of condensing 

the disruptive and non-disruptive character of the 

discharges into two single points (or centroids) in the 

parameter space. The non-disruptive centroid will be 

located close to (0, 0) but the disruptive centroid will 

appear far from (0, 0). 

To compress the disruptive and non-disruptive 

behaviors into two centroids, a training dataset from past 

discharges has to be used. After computing the centroids, 

points can be projected in real-time to the plane 

   MPTD t MPTD t   during the execution of 

discharges.  As the sampling period is , there will be a 

new projection  1 2,P x x  in the parameter space with 

this period (fig. 3). The predictor output will be 

‘disruptive’ (‘non-disruptive’) when the nearest centroid 

to P is the disruptive (non-disruptive) centroid. 

Therefore, given the coordinates of the disruptive 
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where ,P Cd  are the Euclidean distances. In other words, 

the condition of disruptive behavior is given by 
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After simple algebraic manipulations 
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Fig. 3.  The point P is a projection at time t in the 

parameter space. If P is closer to the disruptive 

centroid, it identifies a disruptive behavior. Otherwise, 

the plasma evolves in a non-disruptive way. 

Equation (1) establishes a linear relationship between 

the amplitudes 2x  and 1x  to identify an incoming 

disruption and it has been obtained according to the 

nearest centroid approach. 

3. Determination of centroids 

The computation of centroids has to be considered as 

a training process. Also, it is important to note that the 

non-disruptive centroid and the disruptive one are 

computed in a different way. 

3.1 Non-disruptive centroid 

Given a dataset of NN non-disruptive discharges, one 

centroid is computed per non-disruptive shot. To this 

end, all pairs 
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of each discharge between t1 and tn are considered, 

where t1 is the first time in which the plasma current is 

above 0.1 MA and tn is the last time in which the plasma 

current is above 0.1 MA (it should be noted that an even 

number of samples are required and, perhaps, the y 

coordinate of the last pair could be the last but one 

sample with plasma current above 0.1 MA). Therefore, 

NN individual centroids are determined, 

 , ,, , 1, ...,j j X j Y NC C C j N , where 

  
1, 2 , 0,1, 2, ...j XC mean MPTD t K K    , 

    
1, 2 1 , 0,1, 2, ...j YC mean MPTD t K K      



 

and  mean   is the mean value. Once that the NN 

individual centroids have been determined, the global 

centroid that condense all the non-disruptive behavior is 

    1 , 2 ,, , 1, ..., .N j X j Y NC c mean C c mean C j N 

According to the reasoning of section 2 regarding non-

disruptive discharges,    1 2, 0, 0c c  . 

3.2 Disruptive centroid 

Given a dataset of ND disruptive discharges, one 

centroid per discharge is determined in the parameter 

space:  , ,, , 1, ...,j j X j Y DC d d j N . The coordinate dj,Y 

is the minimum amplitude of the MPTD signal within a 

time window 20 ms long around the disruption time (fig. 

4). The coordinate dj,X is the previous sample to dj,Y. 

 

Fig. 4. Centroid of a disruptive discharge. The green 

line shows the disruption time. 

The global disruptive centroid CD is the mean value 

of the individual centroids, i.e. 

    1 , 2 ,, , 1, ...,D j X j Y DC d mean d d mean d j N  

 

4. Predictor assessment 

A dataset of 154 discharges (76 unintentional 

disruptions and 78 non-disruptive shots) in the range 

47756 – 49826 and corresponding to high beta operation 

of JT-60U has been used. The linear predictor has been 

tested under two different training conditions. The first 

one utilizes approximately 40% of disruptive and non-

disruptive discharges for training and the rest for test. 

The second training condition uses an adaptive training 

as explained in section 4.2. In all cases, the predictor 

triggers an alarm when two consecutive predictions 

recognize a disruptive behavior. This has been 

established to reduce the number of false alarms without 

affecting the success rate. 

Five parameters have been considered to qualify the 

tests: 

GSR (%): global success rate: number of disruptions 

identified over the total number of disruptions in the test 

set. 

SRP (%): success rate with positive warning time: 

number of disruptions identified before the disruption 

over the total number of disruptions in the test set. 

MA (%): missed alarm rate: number of disruptive 

discharges not recognized as disruptions over the total 

number of disruptive shots. 

FA (%): false alarm rate: number of non-disruptive 

discharges that triggered an alarm over the total number 

of non-disruptive discharges. 

AVGWT (ms): average warning time: anticipation time 

(on average) of the alarms before the disruption. 

4.1 Non-adaptive approach 

The training and test datasets have been chosen at 

random from the available set of discharges. In 

particular, 32 disruptive and 30 non-disruptive 

discharges have been used for training purposes (i.e. to 

compute the centroids) and 44 disruptive and 48 non-

disruptive discharges for test. 

Fig. 5 shows the individual centroids of the training 

discharges (circles) together with the global centroids 

(crosses). It is important to note that the non-disruptive 

centroids are located practically in the same point. 

 

Fig. 5. The blue and red crosses are, respectively, the 

global centroids of non-disruptive and disruptive shots. 

Row 1 of table 1 shows the results obtained with the 

previous dataset of discharges. However, to remove any 

possible bias in the random selection of shots, 10 

additional random sets for training/test were chosen. The 

outcomes appear from row 2 to 10. The results are quite 

similar in all cases and the global result of the linear 

predictor are shown in the last row. 

Table 1.  Prediction results with 11 random selections of 

training/test datasets. 

#test GSR SRP MA FA AVGWT 

1 100 97.7 0 6.2 20 

2 97.7 97.7 2.3 4.2 17 

3 100 97.7 0 4.2 13 

4 95.5 90.9 4.5 4.2 14 

5 97.7 95.5 2.3 2.1 14 

6 97.7 90.9 2.3 8.3 19 

7 100 97.7 0 6.2 18 

8 97.7 95.5 2.3 10.4 20 

9 100 97.7 0 8.3 18 

10 95.5 90.9 4.5 0 17 

11 100 97.7 0 4.2 20 

Mean 98.3 95.4 1.7 5.3 17 

 

With the centroids of fig. 5, equation (1) is: 

 2 10.3300 0.4152x x      



 

where  2x MPTD t  and  1x MPTD t   . Fig. 6 

shows the parameter space of three different situations: a 

non-disruptive discharge, a successful recognition of a 

disruptive behavior and a false alarm. It is important to 

emphasize that most of the false alarms correspond to 

minor disruptions. In these cases, the plasma is able to 

recover but the predictor triggers an alarm because at 

least two consecutive projections appear in the disruptive 

zone of the parameter space. 

 

Fig. 6. Parameter spaces corresponding to a non-

disruptive shot (left), disruptive shot (middle) and false 

alarm (right). Black squares are the centroids. 

Fig. 7 plots the cumulative fraction of detected 

disruptions for the case of the first row of table 1. 100% 

of disruptions are recognized but one of them is 

identified 2 ms after the disruption (tardy detection). The 

cumulative fraction increases mainly for warning times 

less than 14 ms which makes this predictor suitable for 

mitigation purposes. 

 

Fig. 7.  Blue bins represent positive warning times and the 

brown one is a tardy detection. Bin width is 2 ms. 29.6%, 

86.4% and 97.7% of the disruptions are recognized with a 

warning time greater than 14 ms, 2 ms and 0 respectively. 

4.2 Adaptive approach from scratch 

So far, there is neither theory from first principles nor 

a single physics model to explain the disruptive 

instability. Therefore, each tokamak develops its own 

predictors from its own database of past discharges. An 

attempt to create cross-predictors were made in the past, 

for example between JET and AUG [4], but more work 

is necessary. Therefore, due to the lack of databases in 

new devices such as JT-60SA or ITER, predictors have 

to be created from scratch and have to learn in an 

adaptive way. Several predictors from scratch have been 

applied to JET [5-7]. 

The objective of prediction from scratch is to process 

the discharges in chronological order, as it happens in 

real operation, and to create the first predictor after 

having (at least) 1 disruptive discharge and 1 non-

disruptive discharge. The criterion used in this article to 

retrain the predictor establishes that it has to be carried 

out after each missed alarm. 

The application of centroids to predict from scratch 

to the dataset of 154 discharges from JT-60U provides 

the results of table 2. The first predictor uses 1 disruptive 

discharge and 2 non-disruptive discharges. Only 2 

disruptions are missed and, therefore, only 2 re-trainings 

have been necessary. The inequality from equation (1) to 

recognize disruptive behaviors is: 

 2 10.5580 0.3664x x      

The adaptive approach seems to be very sensible to 

disruptive behaviors and this is the reason of the high 

rate of false alarms and the high value of the AVGWT 

parameter in comparison with the values of table 1. 

Possibly, this fact is a consequence of using discharges 

in a wide range of +2000 shots (154 discharges between 

47756 and 49826) instead of learning with shots in a 

short range. 

Table 2.  Prediction results with adaptive prediction from 

scratch. 

GSR SRP MA FA AVGWT 

97.3 94.7 2.7 19.7 59 

 

5. Discussion 

Disruption predictors based on signal increments 

allow linear relationships to make simple predictions and 

to ensure straightforward real-time implementations. 

Two training approaches have been tested (non-adaptive 

and adaptive predictors) and the success rates are quite 

high in both approaches. In the case of adaptive 

predictions, more research is necessary to reduce the 

false alarm rate. This was also observed in [5]. 
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