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Landau damping of Alfvénic modes in stellarators

Ya.l. Kolesnichenko, A.V. Tykhyy
Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03028, Ukraine

Abstract. It is found that the presence of the so-called non-axisymmetric resonances
of wave-particle interaction in stellarators [which are associated with the lack of axial
symmetry of the magnetic configuration, Kolesnichenko et al., Phys. Plasmas 9
(2002) 517] may have a strong stabilizing influence through Landau mechanism on
the Toroidicity-induced Alfvén Eigenmodes (TAE) and isomon modes (Alfvénic modes
with equal poloidal and toroidal mode numbers and frequencies in the continuum
region) destabilized by the energetic ions. These resonances involve largest harmonics
of the equilibrium magnetic field of stellarators and lead to absorption of the mode
energy by thermal ions in medium pressure plasma, in which case the effect is large.
On the other hand, at the high pressure attributed to, e.g., a Helias reactor, thermal
ions can interact also with high frequency Alfvén gap modes [Helicity-induced Alfvén
Eigenmodes (HAE) and mirror-induced Alfvén Eigenmodes (MAE)], leading to a
considerable damping of these modes. Only resonances with passing particles are
considered. The developed theory is applied to various modes in the Wendelstein 7-X
stellarator, a Helias reactor, and a TAE mode in the LHD helical device.

PACS numbers:

Submitted to: Plasma Phys. Control. Fusion

1. Introduction

Effects of the energetic ions on plasma stability are determined by the competition of the
energy transfer from these ions to the waves and absorption of the wave energy by the
bulk plasma particles. Several damping mechanisms can lead to the absorption of the
wave energy. These mechanisms are Landau damping, continuum damping, radiative
damping, and collisional damping. A brief overview of them in stellarators can be found
in, e.g., [1], see also a more recent work [2]. The physics of the damping is rather
similar in both tokamaks and stellarators. However, there are important differences
associated with different structures of the magnetic field in the mentioned toroidal
systems: First, the presence of many Fourier harmonics in the magnetic field strength
and the variation of the plasma cross section shape along the large azimuth of the
torus in stellarators increase the number of gaps in Alfvén continuum, leading to more
types of eigenmodes [3-5], see also the overview [1]. Namely, in addition to Toroidicity-
induced Alfvén eigenmodes (TAE), Ellipticity-induced Alfvén Eigenmodes (EAE), and
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noncircular triangularity-induced Alfvén Eigenmodes (NAE) existing in tokamaks, in
stellarators there are Mirror-induced Afvén eigenmodes and various Helicity-induced
Afvén eigenmodes (HAE). Second, in stellarators there exist so-called non-axisymmetric
resonances which provide an additional wave-particle interaction [1,6]. Modes with
frequencies in the continuum region, known as Global Afvén eigenmodes (GAE) and
Non-conventional Global Afvén eigenmodes (NGAE) can also be excited [7-9]. The
presence of transitioning particles considerably affects the collisional damping of Alfvén
eigenmodes [10]. Recently it was found that low-shear stellarators with the rotation
transform close to unity, such as Wendelstein 7-X, are prone to Isomon Modes (IM),
which are Alfvénic modes affected by plasma compressibility and having equal poloidal
and toroidal mode numbers, m = n [11]. The radial width of the IM modes is
rather large, these modes extend over a large part of the plasma cross section. Their
destabilization in W7-X by passing energetic ions (with the maximum energy 55 - 60
keV) produced as a result of the Neutral Bream Injection (NBI) was considered in [11]. Tt
was concluded that the IM instability growth rate in the first planned NBI experiments
on W7-X can be rather large. However, the only wave-particle interaction taken into
account was the resonance interaction between the modes and NBI ions, the interaction
with the bulk plasma particles which may lead to absorption of the mode energy was
ignored. No other damping mechanisms was considered. Therefore, it was not clear
whether the NBI will really lead to the isomon instability.

The purpose of this work is to consider Landau damping of the IM modes and
Alfvén gap modes in stellarators, first of all, in Wendelstein 7-X. An important role of
this damping mechanism in stellarators was recognized in [1]: It was drawn attention
to the fact that, as shown in the earlier work [6], non-axisymmetric resonances can lead
to rather low resonance velocities and, therefore, thermal particles can absorb the wave
energy. Till now, however, there were no comprehensive studies of Landau damping in
stellarators, although some steps in this direction were already done [2,12].

The structure of the work is the following. Resonances of the wave-particle
interaction in stellarators are considered in section 2. In this section the analysis is based
on the equation describing resonances of passing particles and the waves [6], which was
applied to Alfvén gap modes and IM modes in Wendelstein 7-X. In section 3 general
expressions for the instability growth / damping rate of Alfvénic modes, including the
case of modes in compressible plasmas, are derived. They are applicable to study effects
of both electrons and ions (superthermal and thermal) on the modes. In section 4
the derived equations are used to calculate the damping rates and growth rates of the
IM modes and Alfvén gap modes, the calculations are carried out both in the local
approximation and with relations taking into account the radial structure of the modes.
All the specific examples are relevant to Wendelstein 7-X and a Helias reactor, except
for a one relevant to the LHD device. The obtained results are summarized in section 5.



Landau damping of Alfvénic modes in stellarators 3

2. Analysis of resonances between Alfvénic modes and passing particles

2.1. Resonance equation

Resonance interaction between Alfvénic modes and the particles can lead not only to
destabilization of these modes but it plays an important role in the mode damping,
in particular, due to Landau mechanism. This mechanism is especially important for
stellarators, as will be shown below.

We employ the following Fourier serious for the magnetic field (B), the field line
curvature (KC), and a perturbed quantity labeled by tilde [1,5,6]:

_ 1 , .
B=8B <1 +52 euye”“g”’N‘p> , (1)

j787

K=Y Ky ()t ive, 2)
TR

X — ZmenCr)eimﬂfimpfiwt’ (3)

where B is the average magnetic field at the magnetic axis, the radial coordinate 7 is
defined by ¢ = Br?/2, ¢ is the toroidal magnetic flux, ¥ and ¢ are the poloidal and
toroidal Boozer angles, respectively, IV is the number of periods of the equilibrium field.

Using these notations, the resonance between the waves and most passing particles
in stellarators can be described as follows [6]:

= ke, (4)

TeSs

where V| is the particle resonance velocity along the magnetic field, kyes = kpmypnion =
[((m 4+ p)t — (n+vN)|/R, ¢ is the rotational transform of the field lines, « = 1/q, ¢ is
the tokamak safety factor, and R is the major radius of the torus. Equation (4) was
obtained within a theory of destabilization of Alfvén eigenmodes by fast ions. It can
also be derived by proceeding from the equations

d& 5
o —evDe E, (5)
Y(t) = wot + 0o,  @(t) = wet + o, (6)

where vp is the particle drift velocity in the stellarator magnetic field, E =
B (r) exp(—iwt+imid —iny) is the electric field of a wave; wy and w,, are the frequencies
of the particle motion in the poloidal and toroidal directions, respectively [1]. Equation
(5) describes the energy exchange between a wave with the electric field E and a charged
particle moving across the magnetic field with the drift velocity vp. Equation (6)
describes the particle motion along the magnetic field.

For given mode frequency and mode numbers, equation (4) determines the infinite
number of the resonance velocities vﬁes for which particles can interact with the modes.
However, only several of them are important, depending on the number of considerable
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Fourier harmonics of the magnetic field. Note that the mirror harmonic of the magnetic
field has a minor influence on the damping, although it is the largest harmonic in the
plasma core in Wendelstein 7-X (especially, in the high mirror configuration). This
conclusion follows from the relations for the damping rate which will be derived in the
work.

2.2. Resonances between particles and Alfvén gap modes

In this subsection, we analyze resonances for eigenmodes with frequencies located inside
the gaps in Alfvén continuum (AC).

In the presence of a Fourier harmonic with the number (ug, 14) in the magnetic
field and / or in the metric tensor, a gap in the Alfvén continuum arises at the radius
r. where two cylindrical branches with the mode numbers m, n and m + pg, n + vy

(w1 = |kmn|va(r) and wo = |Kpspontvon|va(r), va is the Alfvén frequency] intersect.
This takes place at [5]
2 N
_ nt iV (7)
2m + po

The numbers py and 1 label Fourier harmonics relevant to Alfvén continum and Alfvén
eigenmodes, in contrast to the (u, v) numbers relevant the resonance. The frequency of
the considered branches at ¢ = ¢, can be written as

w= ’k:fmlvA* = 05|/{7w ‘UA*, (8)

povo
where ki, = —0.5k . ke = (me. —n) /Ry, k0 = (Hots — W)/ Ry, vax = valts),

(010]
and R, = R at the intersection point in the slf)ace (r,w). With this notations, the
resonance (4) at ¢ = ¢, takes the form: w = [—0.5k,u, + K |v], where &y, = kj;, with
R, = R. Note that equation (8) was obtained without involving any specific magnitude
of the major radius of the torus. Due to this, the radius R, can be considered as an
adjustable parameter allowing to describe by (8) not only the continuum frequency of
two cylindrical branches but also a mode frequency in realistic magnetic configurations.

The frequency of a mode which can reside in the gap, in general, does not equal
to w but is close to it when the gap is narrow. In stellarators, however, there are wide
gaps and, moreover, the gaps can be considerably shifted. In particular, the TAE gap
in the AC of the Wendelstein-line stellarators is shifted down because of the interaction
with other gaps (first of all, with the very wide gap associated with the ug/vy = 2/1
helical shaping of the plasma cross section see, e.g., figure 2 in [1]) located above. This
effect can be taken into account by assuming R, > R. On the other hand, the plasma
compressibility (which produces the low frequency fS-induced gap) tends to shift gaps
in the AC up. This effect seems weak in stellarators but can be very strong in spherical
tokamaks and in conventional tokamaks with hollow current when 3 > 12 (8 = 8wp/B?,
p is the plasma pressure) [13].

Combining equation (4) and equation (8) we obtain:

R s — VN -1
e = — kpp + 2——m————— . 9
o = g (st + 2500 ) o 0
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We observe that [vj| = va, and [v]| = va./3 for p = po, v = 1p and R = R, at
the radius where ¢+ = «,. This implies that the resonance velocities are the same for
all the gap modes, provided that corresponding Fourier harmonics of the magnetic field
are present (we remind that some gaps in the AC are produced by the plasma shaping
rather than by harmonics of the magnetic field). On the other hand, when p # g or
v # 1y, there are a variety of resonance velocities even for R = R,,,.

Let us consider specific examples.

First of all, we consider a plasma with high § (the ratio of the plasma pressure to
the magnetic field pressure) required for a good confinement of the energetic ions. In
particular, 3(0) = 13 — 14% is expected in a Helias reactor [14]. Taking for the bulk
plasma ions f3; = 8mn;T;/B* = 6.5% we obtain that the mentioned above resonance
velocity, v” = va /3, provides an efficient interaction of various Alfvén gap modes and
the bulk plasma ions because in this case the resonance velocity is close to the thermal
velocity of the ions, i Jop; = 1.3.

Below, however, we restrict ourselves to plasmas relevant to current experiments
and plasmas expected at the initial stage of operation with NBI on Wendelstein 7-X.
We assume that in the region of the mode location

1
Bi ~ 1IN
in which case vﬁes ~ vy, where vp; = \/2T;/M; is thermal velocity of the bulk plasma
ions. This estimate follows from (9) for a TAE mode interacting with the bulk plasma

(10)

ions through the helical resonance with p/v = 1/1 when N > 1. We refer to plasmas
satisfying (10) as a low-beta case.

In particular, in Wendelstein 7-X where N = 5 and ¢, ~ 0.9 (see figure 1), the
= v = 1 resonance at ¢ = ¢, leads to (R, /R)[v|*|/va* = 1/10.1 and 1/8.1. Hence,

/UT’ES R
o1 _ . (11)
VTi 10Rw ﬁl
As expected, this resonance velocity is close to thermal velocity of the bulk plasma
ions for #; = 0.01. On the other hand, the helical harmonic with 4 = v = 1 is rather

large. Therefore, one can expect that the helicity-induced resonance will have a strong
stabilizing influence on the TAE instability in Wendelstein 7-X.

High frequency modes (HAE;;, HAEy; and MAE modes) can be damped due to the
tokamak sideband resonance, /v = 1/0. Using the same rotational transform, N =5,
and assuming R = R,,, we obtain [vj*’|/va, = 0.735 and 1.56 for MAE, [v]**[/v4. = 0.69
and 1.78 for HAEq, [v]®|/va. = 0.64 and 2.28 for HAE,;. All these magnitudes of the
resonance velocity well exceeds the ion thermal velocity, which implies that the ion
damping will be exponentially small. In contrast, because the electron thermal velocity,
vre, typically exceeds Alfvén velocity, the electron damping can be considerable:

|vﬁes] B |vﬁes| Menis 1 R
vre  Vas N Mine. VBe R’
where S, = 8mne.T../B>.

(12)
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In a hydrogen plasma, the magnitudes of the ratio Rw|vﬁes\ /(Rvre) are the following:
0.17 and 0.36 for MAE, 0.16 and 0.41 for HAE;;, 0.14 and 0.52 for HAEs;. We conclude
that the electron damping of these modes will be not so strong as the ion damping of
TAE modes caused by the (u/v = 1/1)-helical resonance. The matter is that, first, the
ratio [v[*/vre| for HAEs and MAEs is much less than unity (unless R > R,), whereas
for TAEs [v}*/vr;| ~ 1 and, second, the toroidal Fourier harmonic, €19, in W7-X is less
than the helical harmonic, €11, by a factor of two (as will be shown below, the damping
rate is proportional to efw).

Considered examples are relevant to a hydrogen plasma. In plasmas with more
heavy ions the ratio [vj**|/vre is smaller, as follows from equation (12). Therefore, the
electron damping is smaller, too.

Damping of the MAE mode in W7-X is affected also by the helical harmonic €;;.

2.3. Resonance between particles and isomon modes

It follows from equation (4) that due to a helical resonance, the IM modes interact with

the particles having the longitudinal velocity given by
Rw
res — 13
Yl —mAL+ ut —vN’ (13)

where Av = 1 — . Frequencies of the IM modes slightly exceed the frequency

w = m|Atlvan,/R (at least, for m > 1), with va,, the Alfvén velocity at the radius
where the mode amplitude is maximum. Hence, the ratio of the ion resonance velocity
to thermal velocity is

res

il Im|Ac

B | —mAL+ e — vN|VB;i
Taking and Ac = 0.1 and §; = 0.01 we obtain v[*/vr; < 1 from equation (14) for

(14)

Ui

m = 2 — 4. The frequency of the m = 1 mode exceeds the magnitude mAww,/R by
a factor of 2.4 (because of plasma compressibility) [11]. Due to this, vj** for the m=1
mode is also close to the ion thermal velocity. Therefore, one can expect that the ion
damping of isomon modes will be considerable.

3. Derivation of relations for the mode damping / growth rate

3.1. Relations for Alfvén modes

In this subsection we derive a general expression for the damping / growth rate of Alfvén
eigenmodes in a plasma containing energetic ions by using a perturbative approach.
We proceed from the following quasi-neutrality equation:

V-j=0, (15)

where j is the plasma current, tilde above a letter here and below labels perturbed
quantities. Multiplying equation (15) by a scalar potential of the electromagnetic field,
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Figure 1. The rotational transform of the field lines for 8(0) = 0.037 in the W7-X
high-mirror configuration.

®, and integrating the product over the plasma volume we obtain
/d%j VO =0 (16)

provided that @ satisfies the equation [ ds -jCT) = 0, where the integral is taken over at
the plasma boundary.

The current j in the integrand of (16) is convenient to write as j = j” + 1,
where the subscripts || and L label magnitudes along and across the magnetic field,
respectively. Let us determine the longitudinal current from Maxwell equations for
the electromagnetic field. Then the transverse current should be determined from the
plasma equations. Namely, for jH we will use the equations ¢V xB = 47rj and B = VxA,
with B a magnetic field, A is the vector potential of the electromagnetic field. The
transverse current in the presence of the energetic particles is j, = j]‘f i j’im + jﬁ,
where j]f HD is the plasma current in the framework of the ideal MHD, j’i’” is the kinetic
part of the bulk plasma current, jcj describes the fast ion current.

In Alfvén waves BII is small and, therefore, A | is small, too, and can be neglected.

Then
c

47 B,
where b = B/ By is the unit vector along the magnetic field, the subscript 70”7 labels
equilibrium quantities. On the other hand, ideal MHD equations with E = —V | ® and
® x exp(—iwt) yield

[V - Bo(VLA))]b, (17)

j =

2
sMHD . W€ i

~ V.. 18
L dmod (18)
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Only waves that are weakly damped in the absence of the energetic ions can
be destabilized by a small group of these ions, so that a problem of stability can be
treated perturbatively (the exception are energetic particle modes, EPM, which are not
considered here). This gives us grounds to use a perturbative approach in the analysis of
equation (16). Before doing it, we note that the transverse current, like the longitudinal
current, can be expressed in terms of the scalar potential ®. This can be done by means
of the relation wA” ck;HCID which follows from the ideal MHD equation EII =0 (k) is
defined by zk”(I) =b- V<I>) Then jH oc wt and hence d(w]H)/dw = 0. Takmg this
into account, we write wj = wJ( )+ wjt Wlthj = JH +JMHD andj = J’“” +J ,J(l)
being small compared to j©. In zero approximation, we obtain from (16) the following
equation which is satisfied for the ideal MHD eigenfrequencies (wp) and eigenmodes:

/ i (w) - VO = 0. (19)

In the first approximation, (wj)™® = [d(WQJL )/dwo] Aw + wejV, with Aw = w — wp.
Defining the mode growth / damping rate as v = Im Aw, we obtain in this approximation
from equation (16):
Ref PGy + i) -V, P

[ B0 ) 0]V B
where the subscript 7 0” at w is omitted, the denominator equals to 2W 4, with W4 the

o (20)

Alfvén mode energy,

2 ~
Wy = / R (21)

43

Note that equation (20) differs from the corresponding equation in reference [6]
(equation (7) in [6]): The denominator in (20) contains derivative d(wj}*P)/(dw)
instead of d(j™"P)/(dw); this form of the mode energy is preferable because it does
not involve the longitudinal current jﬁ‘/[ HD and V®. In addition, the numerator of (20)

contains the kinetic part of the bulk plasma current.

3.2. Relations for modes in compressible plasmas

The quasi-neutrality equation used in subsection 3.1 and the accuracy of equations
(17), (18) are not sufficient for the description of isomon modes in quasi-isodynamic
stellarators, in particular, in Wendelstein 7-X and a Helias reactor [14]. These modes
are determined by equations for potential ® and compressibility ¢ (5 = V - &, with
¢ the plasma displacement) coupled due to the field line curvature and finite plasma
temperature [11]. Therefore, in this subsection we derive a relation similar to (20) by
proceeding from the equation for isomode modes of [11] supplemented with a kinetic
term associated with the bulk plasma (to be able to calculate the mode damping /
growth rate).
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This equation has the form:
1d (w2 — w 12 ) AP p

rdr Vi mr ) dr
S () s B, ] 0
r vy r
4miw d joy  4miw Thi
— S —— = o m,mn» 22
CQ mndr B CQ [V (.] +.]J_ ] , ( )

where

c? w?
wg =05 > <k—2> : (23)
I=+1 m+,nCs

®,,., is a Fourier component of ®, ky, = kj(m,n) = (me —n)/R, cs = \/I'p/p is the

sound velocity (I' = 5/3 is the heat capacity ratio, p is the plasma pressure, and p is

the plasma mass density), dgp = 1 is determined by the plasma shaping (see Ref. [5]),
= €;/(6€?), & = —e19, € = r/R, prime denotes the radial derivative, jo is the

equilibrium plasma current.

Let us multiply equation (22) by @ = and integrate the product over the plasma

n
volume. Like in subsection 3.1, we apply a perturbative approach in order to obtain an

equation for the damping / growth rate. As a result, we will have:

c? dw m? dw?, r2e?
2 = d3 G q) 2 o 1 G Tt @2
SN 8 e T
=3 [ @ o+ 30 VB (24)

Here W differs from W, by the presence of the term produced by coupling of ® and
¢. When deriving this equation it was taken into account that the product wB! . (with
B! expressed through ®,,,,) does not depend on w. This equation agrees with equation
(20) but it takes into account the plasma compressibility.

The first term in the RHS of this equation describes the instability drive by the
energetic ions, 7,. The second one describes the damping, 74 (if plasma is equilibrium).
Relations for ~, and 7, can be written as follows:

1 Yo" *
Ya = M Z/d?’x (-]J_mn) ’ VJ-(I)mn (25)
and
Y=g Z/dS (35n) - VP, (26)

where W is defined by equation (24). The instability growth rate is v, + 4, with v, > 0
and 4 < 0.
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3.3. Mode damping / growth rate in a Mazwellian plasma with a beam

Following the procedure described in [11] but taking into account various harmonics in
the field line curvature and assuming Maxwellian the velocity distribution of the bulk
plasma we obtain:

iMc> 5 9 w? ;
‘r mn) = ——=—— P’ — ! z/q)m n /d3 HF’ 21
Jr(mn) 43212 ;(H EW m,n MmEWEM s ) Uw — km+u,n+uNUH ( )
M2 , w! i
. I l/®/ _ / (I)mn /d3 HF, 28
J9(mn) 1B ; EMV(NEM mmn T TEL , ) Uw _ km+y,n+l/NU|| ( )

where w? = (0.5v1 + vﬁ), IT in the (r,v) variables (r is approximately a constant of
motion for well-passing particles) is
~ 2 w 1 10
I=-—+ (——i—n) -, (29)
v7 wwg T or

where w, = v|/R. Note that these equations are valid for both ions and electrons.

We assume that the second term in equation (29) is small and neglect it, which is
justified when

Ty - L
“lm 4 p—vNoY < (30)
2wr Po

where L = |dInF/dr|™' is a characteristic length of the plasma inhomogeneity,

Po = U1y /Was, 0 labels particle species (electrons and ions). When obtaining equation
(30) we used the resonance condition (4).

In the case, when the second term in equation (29) exceeds the first one, the
instabilities driven by the spatial inhomogeneity of the bulk plasma can arise in
stellarators, i.e., thermal particles can lead to instabilities in the same way as energetic
ions do it. This was shown for a TAE instability in W7-X in reference [12]. One can see,
for instance, that the helicity-induced resonance (= 1, v = 1) leads to (L/p;)er = 21
for a TAE mode with m = 5 localized around the radius r/a ~ 0.5 in a plasma with
B; = 0.01 and ¢ = 0.9. Therefore, this mode can be destabilized provided that L/p; < 21.
Of course, whether the mode will be destabilized or not depends on the power balance in
the region where L/p; < (L/p;)er and the region where L/p; > (L/p;)e within the mode
width. Note that L is strongly enhanced in Maxwellian plasmas due to the temperature
inhomogeneity when v,..; > v [15].

We are interested only in the imaginary parts of the integral in these equations,
which arise due to resonance (4). Replacing 1/ with —iwd(2) we obtain for a plasma
with Maxwellian distribution (c.f. references [6,16,17] where Maxwellian distribution
for hot ions was used to study the destabilization of TAE modes in tokamaks):

4
Im/d% - IIF = ﬁ:UWQ(U), (31)
w — kar,u,nJruNUH k

Tes

where

Q) = %(2u4 b2 4 e — Q. (32)
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1 \? 1
2(1+ )u4+2(1+ >u2—|—1
266]6 2€ef

kres = kmtpntvn, Mo is the particle (ion or electron) density, u

1 —1Y,,2
Qe [ e—(l-i—sef )u 7 (33)
u

= [vj/vr, eep =

> l€w| (= v # 0) is an effective Fourier harmonic of the magnetic field which
determines the boundary for the well passing particles in the velocity space region. In
particular, in the W7-X high-mirror configuration, €.y varies from 0.08 at the magnetic
axis to 0.24 near the plasma edge. In calculation, we assumed that passing particles
have transverse velocities determined by 0 < v, < |vj|/,/€;. The term Q. decreases the
damping, but it is considerable only when u S \/éc;. The function Q(u) is rather flat
in the region 0.5 < u < 1, which facilitates making estimates in the case when the ratio
w/kyes|vr lies in this interval but exact magnitude of the mode frequency is not known.
On the other hand, when the frequency is known one can use the function u?@(u) which

TES

arises when k2, in the RHS of (33) is eliminated by means of relation k,..s = w /v

n

Knowing components of the current j*" and using equations (26), (24) with

= 0, %1, we can write the following equation for the damping rate:

%20) _ VT M, Zmn Jo drrna(r) 3, €72 e @ —me;ﬁmnf@(ua)k;}s
w 8% M > fo drr=1n;(r) (2|92 + g2m?| P |?)

where € = r/R, ny, is the particle density, ¢ = e, ¢ labels electrons and ions,
kres = kresR = (m + )t — (n + vN), u = Rw/(|kreslvr), g1 = 1 — dw/dw?,
go = 1—(dw? /dw?)(r*¢}?/€?). The function Q(u,) is shown in figure 2. Fourier harmonic

, (34)

€; is approximately proportional to r; therefore, g; &~ g and g; can be written as

— 14 kgwl nCs 35
gr=1+4¢€ Z R2(w?— k2, 2)2 (35)
1=+1 m+Iln Cs

The same relation for g; can be obtained from equation (22) by keeping only the term

‘kin

. (which contributes

proportional to ®” —after calculation of the imaginary part of j
to this term). We assume that w® # k2, 7 ie., we do not consider Alfvén-
sound resonances and concomitant gaps in Alfvén continuum (the case of Alfvén-sound
resonances deserves a special study, our analysis is not valid for it).

Because ¢2/v4 < 1 and €2 = €7/(dpe) < 1, it is sufficient to use an approximate
equation for g;. For instance, approximating the mode frequency by equation (8), we
can write equation (35) in the case of TAE modes as follows:
cs* R? (1+ 21)?

B R 2 T (14 208 R,

g =1+ 4~2 (36)

“*7 labels magmtudes at the radius where the rotational transform

where the subscript
is defined by equation (7). One can see that typically this g; is close to unity.

We observe in equation (34) that the damping rate is proportional to M, /M;, which
may produce an illusion that the electron damping is always small. Therefore, we have
to make some comments on his issue.

Tes

Let us assume first that |vj®| = vf. Then we obtain from the resonance condition

that k2, = w?R?/v3, < M, for a given mode frequency and, hence, the damping
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10°

1072
101! 10°

u

Figure 2. @ versus u for various €.y, with u = |Uﬁes|/UT. In the W7-X high mirror
configuration, €.y varies from 0.08 at the magnetic axis to 0.24 near the plasma edge;
in the standard configuration 0.03 Se.¢ S 0.18.

does not depend on M,. This is a consequence of the fact that the drift velocity vp
is determined by the particle energy, but not velocity. In reality, however, the fixed

magnitudes are the mode frequency and mode numbers, rather then vﬁes. Therefore,

assuming that w and k,.s are given, we eliminate M, in the expression for 76(10) by means
of the relation k. 2M,/M; = uc?/(R*w?), with ¢2 = 2T, /M;. Now it is clear that the

Tes

electron damping rate depends on the ratio vﬁes Jvr, like the ion damping rate, there is

no additional mass dependence.

Note that an expression similar to (34) can be obtained for the instability drive by
integrating (31) with the distribution function of fast particles, F,,. For the beam ions,
F,, can be approximated as [11]

o 2m(r)

(14 xR)d
where subscript ”b” labels beam particles, n(vy — v) is the Heaviside step function,
X = vj/v, the particle density is defined by n, = py/Eo, €& = 0.5Myvg, py is the

o(x = x0)n(vo — v), (37)

[e7

energetic ion pressure defined by p, = 0.5(pj+p1), pj = [ d%vﬁFa, pL =05 [Pt F,,
and we take M, = M;. Equation (37) implies that the ion energy is sufficiently high,
E > (M;/M.)'*T,, so that Coulomb collisions mainly slow down the fast ions without
much pitch-angle scattering. In this case, an equation for 7, has the form of (34) where
the subsript o should be replaced by b, ¢ = 2E/M,, and Q(u) replaced by

VT wwe (1 2 32
m 7 F‘Fl ug—l-?—?—5 , (38)
0 0 0 0

with w., = n[l + ouw R/ (nvouy)[vg (wwper) =10 ny /Or, wy = V7| /vo, 0, = sgn o]

Qb (Ub) = -
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3.4. Local approzimation for damping rate and growth rate caused by the beam

In order to calculate the damping rate by means of (34) one has to know the radial

profile of the mode amplitude, ®(r). However, simple estimates for ’yéo) can be made

by using a local approach. To construct local 76(;’) one has to assume, for instance, that

terms in equation (34) containing the radial derivatives of ®,,,, dominates and the mode

width is very narrow. Then equation (34) reduces to
(o) loc

Y _ VT Myn, Z (Me,“,)? F20(uy), (39)

w 830g? M;n; € res

where all the magnitudes are taken at the radius where the mode amplitude is maximum.
Following [11], let us introduce the mode dimensionless frequency, @ = wR/cy,
with ¢y = ¢5(0). Then u = Gego/ (|kresvr|), which reduces to u = @vT/(|kres|v/O) with
© =T(r)/To for a plasma with 7; = T,, and
0%k2
— 14+ ~2 m~+Iln ‘
n=1+E S ey

I=%+1

(40)

It follows from (35) and (40) that the plasma compressibility increases the mode
energy (g1 > O) and, thus, decreases v4. However, the effect is small, g =~ 1, when
w? > k2

The damping rate (39) depends on the mode numbers. It may be preferable to

m+ln s*

have an expression for 7, containing the mode frequency instead of mode numbers.
Eliminating kyes, we obtain:

(o) loc
Vd T &Z (M@w)z

W _89%50 n; < €

— 7 U5 Q). (41)

This equation and (39) are valid for both electrons and ions. When T, = T;, the electron
damping equals the ion damping for u?Q(u.) = ufQ(u;). In particular, ¢ = ¢ for
ue ~ 0.1 and u; ~ 4 in a hydrogen plasma and u, =~ 0.07 and u; ~ 4.2 in a deuterium
plasma.

A similar equation is valid for the fast ions. Due to this we can write a simple
estimate for the threshold density of fast ions (for which the system is on the margin of
stability). Assuming that there is only one dominant harmonic of the magnetic field in

the damping rate and another one in the growth rate (v,), we obtain:

nb T ugefg,) i Zj uz Q(ugy)
) Zj qub(Ub)'

Ny g(] Jxany,
Here 0 = e, i; j = £, sign u = sign v.

(42)

Equations obtained above in the local approximation do not include a contribution
of the mirror harmonic, €y, because the term containing ®/  in (34) is proportional p.
The effect of the mirror harmonic can be evaluated by taking ®,,,(r) o exp(ik,r) and
neglecting the radial dependence in other magnitudes, which leads to

o) loc
v VT Mon, ke (r€61)2k—2

Jd " 43
w 8(5091 Mn; k2 € resQ(lo), (43)
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where k% = k2 + k2. For pu # 0, this procedure leads to equation (39) due to the relation
2 2

2,2 /2 : - L
2 w* = uivi,/c, we obtain an expression similar to

r€,, = €u. Using the relation k

/
n2
(41), but for mirror harmonic. Comparing it with (41) we conclude that due to the

mirror harmonic the damping /growth rate increases by the factor

2 / 2
f=1+@<”01) . (44)

k2 \ peuw
To evaluate this magnitude, we take 4 = v = 1 and €y; = €01(0)(1 + (r?/a?), where
€01(0) = 0.09 and ¢ = 0.33 for the considered W7-X high mirror configuration with
$(0) = 0.037. Then F =1+ 0.55(kyr)?/ (ki a)? < 1.55. Therefore, the mirror harmonic
weakly contributes to the damping /growth rate.

4. Specific examples

4.1. Damping and growth rates of isomon modes in Wendelstein 7-X

This subsection is devoted to the study of damping rates of isomon modes in the
first planning NBI experiments on W7-X. General relations derived above and the
eigenmodes found in the work [11] will be used in our calculations. Note that because the
mirror harmonic weakly contributes to 7, whereas other harmonics are approximately
the same in the high mirror configuration and standard configuration, the damping rate
and growth rate are roughly equal in these configurations.

Let us begin with the local approach. Assuming that the temperature profile is
given by figure 3 of [11] we take © = T'(r)/Ty = 0.77, which corresponds to r/a ~ 0.7
where the mode amplitudes are close to their maxima. Then, using equation (13), we
obtain for the p/v = 1/1 helical resonance:

B 1.47w

mALE (50|
For instance, for m = 3, ¢+ = 0.9, and w = 1.98 this yields u; = 0.65 and 0.76. For
m=4,:=0.9, and w = 2.56 this yields u; = 0.83 and 1.02. Then Q(u;) ~ 2, as follows
from figure 2. In addition, we obtain k,.; = 4.4 and 3.8 for m = 3; k,es = 4.5 and 3.7
for m = 4. Using these magnitudes and taking €}, /¢* = 0.8%, §y = 1.5, we obtain from
equation (39) that the ion damping is [7}¢|/w & 0.02 for both the m = 3 and m = 4

u; = v /vl (45)

modes.

On the other hand, more realistic calculations based on equation (34) and figure 3
for the modes with m = 1 — 4 are shown in Table 1. We observe that the damping rates
in this Table and the results of the local approach are in good agreeement. In addition,
we observe that the damping rates of all the considered modes are roughly equal.

The electron damping is small or, at least, it cannot be described by our relations
because u, < 1 and, thus, trapped particles can be responsible for the electron damping.

Now we proceed to consideration of the instability drive, 7,, by using equation (34)
with @, given by (38). Energetic ions at the initial stage of operation with NBI are
described in Appendix A of work [11]. As shown in figure A2 of the mentioned work,
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— |m|=|n|=1, @®=1.821
— |m|=|n|=2, @=1.384
Im|=|n|=2, ®=1.292
|m|=|n|=3, ©=1.980
—  |m|=|n|=4, ®=2.562
\ \ \ \
0 0.2 0.4 0.6 0.8 1

Figure 3. Isomon modes in Wendelstein 7-X [11].

Table 1. Damping rates calculated by means of equation (34) with §y = 1.5 for the
IM modes shown in figure 3.

m=n| & | |l
1 1.821 | 0.0133
2 1.384 | 0.0239
2 1.292 | 0.0263
3 1.980 | 0.0199
4 2.562 | 0.0192

at each radius there are two sharp maxima in the A distribution of injected particles
(A = p,B/E is the particle pitch parameter, j, is the particle magnetic moment), but
only one of them is relevant to passing particles; almost no passing ions were produced
at r/a > 0.8. Moreover, well passing particles were produced only in the plasma core,
mainly at r/a < 0.4 where A =~ 0.75 (xo ~ 0.5). This means that only a core region
contributes to the nominator of (34). This considerably reduces the growth rate of
isomon modes because their maximum amplitudes lies at r/a > 0.5.

Taking this into account and assuming that the radial distribution of the energetic
ions coincides with the energy deposition profile of these ions (shown in figure 4), we
calculated ~,. We found that v,/w ~ 1072 when the upper limit in the nominator of
(34) is 0.4a, see figure 5. This implies that the drive produced by well passing NBI
ions is not sufficient to overcome the damping. The role of the NBI ions in the region
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Figure 4. Radial distribution of NBI ions, which was used in calculation of the growth
rate of the IM instability.

107
1072 ¢ -
3 § §
£ 107
—5 | ®=1.821 |
10 B ©=1.384 |
B ©=1.292 |
1070 ¢ ©=1.980
i 0=2.562 |

-7 | | | |
10 0 0.2 0.4 0.6 0.8 1

T'maz/0

Figure 5. Dependence of the IM instability drive produced by NBI ions in W7-X
on the maximum radius, 7,4z, restricting the region where well passing NBI ions are
located. Calculations were carried out for protons with & = 55 keV and |xo| = 0.5.
Because most well passing injected ions are located in the region r/a < 0.4 [11], we
conclude that 7, /w ~ 1073,

r/a > 0.4 is not clear because they are mainly marginally passing and transitioning,
which are not described by our theory.

Note that although the mode amplitude is maximum in the region where the number
of well passing NBI ions is very small, it is possible to evaluate 7, by modifying local
equation (39) as follows:

(loc)
o T Myny /€2 Z -
’YT B _83€;% Mbnb (f) Kk bresQ@u(w), (46)

p==1
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where I = 0.5 is the fraction of NBI ions from those injectors which produce mainly
passing ions, Ko = |®03|%/|Pmac|?, Pos and ®,,4, is the mode amplitude at r/a = 0.3
and at the radius where it is maximum, respectively; Ky can be obtained from figures 4
and 6 of of reference [11]: Ky = 0.02 for the mode with m = n = 2, Ky = 0.04 for the
modes with m = n = 3 and m = n = 4. Equation (46) yields growth rates which are in
qualitative agreement with those shown in figure 5 for r,,,,/a = 0.4.

4.2. Damping of TAE modes in Wendelstein 7-X

According to section 2.2, the ratio of the /v = 1/1 resonance velocity to the ion thermal
velocity during TAE instabilities in the first NBI experiments on W7-X can be about
unity. Therefore, one can expect that TAE damping will be strong, like in the case of
isomon modes.

Let us first make a simple estimate by using equation (39) for a plasma with the
same parameters as in the previous section. For ¢, = 0.9 we obtain k,.; = 4.55 and 3.65,
which leads to v = 1 and 1.23, see figure 2. Using equation (39) we obtain then that
Ve Jw ~ —0.02.

As an example, we consider the TAE mode with m = 14, 15 and n = 13, see
figure 6, with the mode frequency 42.48 kHz [18]. Using equation (34) we find that
the damping rate is 74/w = 0.0244. The damping rate weakly depends on the particle
density and temperature profiles because the mode width is rather small: it does not
change appreciably if we take n. = const or T; = T;(r,) = const. Artificially setting the
mode frequency to values as high as 70 kHz gives the damping rates shown in Table (2).
All these magnitudes are in qualitaive agreement with the local estimate above.

Table 2. Damping rates of a TAE mode with the realistic frequency (42.48 kHz) and
artificially increased frequencies in W7-X. Calculations were made by using equation
(34) with dg = 1.5 for the mode structure shown in figure 6.

fakHZ h/d|/w
70 0.0152

60 0.0192
50 0.0225
42.48 | 0.0244

4.8. Damping of TAE modes in an LHD experiment

Our analysis above predicts a rather large Landau damping of isomon modes and TAE
modes in the Wendelstein 7-X. On the other hand, TAE instabilities were already
observed in helical systems, in particular, in the LHD device, in the discharge #24512
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-3 m=14, n=13 _|
—— m=15, n=13
| | | |
0 0.2 0.4 0.6 0.8 1
Tmaz/a

Figure 6. A TAE mode in Wendelstein 7-X. The mode frequency equals 42.48 kHz,
dominant mode numbers are m = 14, 15 and n = 13 [18].

[19,20]. Below we evaluate Landau damping for this LHD discharge in order to see
whether our theory is consistent with the experiment.

In the mentioned discharge an Alfvénic activity with n = 1 and n = 2 was observed
with the frequencies in the range of 50-80 kHz during tangential NBI with the particle
(protons) energy & up to 150 keV injected into a helium plasma [20]. The eigenmode
calculations carried out with the BOA code [5] have found two discrete TAE modes with
n = 1 [21]. One of them was "even” TAE mode with the 50 kHz frequency, another
one with 60 kHz was "odd” TAE. Both modes were localized around the r/a ~ 1/3
flux surface, v,/w = 0.3 for the even mode and ~,/w = 0.03 for the odd mode were
calculated [21].

In the core region, the beam beta well exceeded the plasma beta: 3,(0) = 1.7% |,
B(0) ~ 0.45%. The electron density at the magnetic axis was n.(0) = 10 m™3. Thus,
beam-plasma parameters in LHD were very different from those which are expected
in the first NBI experiments on Wendelstein 7-X. Key differences are a bigger fast-ion
population and a lower plasma beta. In addition, in LHD the number of the field periods
is larger by a factor of two (Npyp = 10) but the rotational transform in the core region
smaller (tzgp = 0.4 — 0.5). Because of this, the largest u/v = 2/1 gap in the AC was
very far from the TAE gap (the ratio wi 21/w.10 = 23, which is much larger than in
W7-X). Due to this, the effect of this helical gap on the shift of the TAE gap was small
in the core region (r/a < 0.4), see figure 7a in [21]. In spite of these differences, 5; was
about that given by equation (10), like in W7-X. For this reason, Landau damping was
not small.

We restrict ourselves with a local relation to calculate the damping rate. As shown
in previous subsections, this approximation gives the results which are in qualitative
agreement with those obtained by using a more rigorous equation for v,;. Because in
the region of location of the modes (r/a ~ 0.3) the observed frequency w lay inside
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the TAE gap (see figure 7a in [21]), we can take R, = R. In addition, the helical
harmonics €;; and €1 in LHD were approximately equal (see figure 6 in [21]). Therefore,
we have to take into account both of them. They lead to vj*/va. = (1 + 36)~! and

,Uill‘ES

Jva. = (14 38)71 respectively, at ¢+ = 0.5, and to smaller magnitudes at t = 0.4
(because the magnetic shear in LHD is not small, the iota varies considerably within the
mode location). This leads to u = 0.55—0.61 for 8; = 8, = 2.14x1073. At r/a = 0.3 we
take © = T;(r)/To = 0.9 and €.5 = 0.08, for which Q(u) ~ 2. The normalized frequency
is w = 2.7 for the even mode and 3.24 for the odd mode. The ratio €,, /€ for €11 and ey
can be evaluated as 0.5. Then equation (39) yields |y4|/w = 0.01 for the even mode and
7.6 x 1073 for the odd mode, which is much less than ~, /w due to a very large pressure
gradient of the beam particles in the region where TAEs are located.

The estimates made are rather rough because the fraction hydrogen in the helium
plasma was considerable but not known exactly. Nevertheless, they are sufficient to
conclude that in the considered LHD experiment the damping was weaker but the drive

was much stronger than those expected in the first W7-X NBI experiments.

4.4. Damping of high frequency modes in Wendelstein 7-X

As shown in section 2.2, v Jup; > 1 for HAEs and MAE modes, which implies that
the ion Landau damping of these modes is exponentially small (unless §; is large).
Therefore, below we consider the electron damping at small beta and ion damping at
large beta.

In order to evaluate electron damping rates of high frequency gap modes we
approximate their frequencies by equation (8). Then equation (41) will take the form:

(e) loc
R S AR ) (47)

w 29200 (pots — voN)? €

%
where
neM, 1/2 ity — VN
— 1+2———|. 48
! (niMiﬁe*) * pLg — voN (48)

Let us see the influence on the damping of the toroidal harmonic of the magnetic
field (@ = £1, v = 0). The analysis will be carried out for a hydrogen plasma with
Bex = 0.01 and 6y = 1.5 in W7-X. Assuming R, = R, we obtain: u, = 0.41 and 0.16 for
HAE;; ue = 0.525 and 0.15 for HAE,;. Because these magnitudes of u., Q(u,.) strongly
depends on €.¢, as follows from figure 2. This means that the damping is very sensitive
the mode spatial location and the location of the mode frequency in the AC gap. In
the high mirror case the damping is minimum, |’y§e)loc|/w ~ 5 x 1075 for HAE;; and
2 x 107° for HAEy;. For the modes with higher frequencies (R, < R), the damping rate
is larger.

We conclude from here that the effect Landau damping associated with the
/v = 1/0 resonance on high frequency gap modes is smaller than that for TAEs and
isomon modes. This is not surprising: in Wendelstein 7-X the toroidal harmonic is less
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by a factor of two than the helical harmonic (which yields the difference by a factor of
four); in addition, ul ¥ < uf{AE’MAE < 1, which leads to a decrease of Q.

Let us consider now the ion damping of MAE modes due to the helical resonance
(0 = v =1). One can see that kyes = 6.6 and 1.6. Assuming that the mode is core
localized where the pressure is high, 5; = 4%, we obtain u; = 1.9 and 7.8 for the larger
and smaller k,., respectively. Then equation (39) yields v4/w = 1073,

4.5. Damping of Alfvén gap modes in a Helias reactor

As shown in subsection 2.2, resonances with u = py, v = vy lead to vﬁes = va./3

that provides interaction of gap modes with thermal ions in high beta plasmas. In the
Helias reactor dominant Fourier harmonics of the magnetic field are the same as in the
Wendelstein 7-X high mirror configuration. Therefore, the resonance with 0 = Vax /3
can play an important role in damping of TAE modes and HAE{; modes. One can see
that |kes|] = 1.5|u — vN| for these resonances, and vj® = va./3 when |kes| = 1.35
for TAEs and |k,.s| = 6.15 for HAE;; modes at ¢, = 0.9. We assume that §; = 6.5%
in the plasma core, which agrees with the parameters of the Helias reactor shown in
reference [14]. Then v = 1.3 and Q(u) = 1.5. Now, using equation (39) we obtain
74 Jw = 0.02 for TAE modes and v¥¢/w = 3.7 x 1073 for HAE;; modes.

Note that because N > 1, the frequency of MAE modes only slightly exceeds
and HAEy; frequency. Therefore, resonance velocity v produced by the p/v =1/1
resonance in the case of MAE modes relatively weakly differs from v4/3, namely, it is

v = v4/2.6 for « = 0.9. Therefore, the damping increases at high beta. In the Helias
it can be evaluated as vg/w = 2.4 x 1073,

5. Summary and conclusions

The results of the work can be summarized as follows.

General relations for the growth / damping rate associated with Landau mechanism
are derived. These relations generalize the known ones [6,21] by taking into account
kinetic effects in the bulk plasma and the compressibility. The latter is important for
the existence of the IM modes but plays a minor role in their damping, as shown in this
work.

It is found that Landau damping of Alfvénic modes in stellarators plays an
important role. At low ( [defined by equation (10)], it represents a strong stabilizing
mechanism of the TAE and IM modes. At high beta, which is expected in a Helias
reactor [14], the ion damping is rather large not only for TAEs but although for HAE
modes and MAE modes. The enhanced damping is a consequence of the lack of the
axial symmetry in stellarators, which leads to the resonances associated with helical
harmonics of the magnetic field (e, = €, with p # 0, v # 0). The exception is the TAE
damping in a high-£ plasma, which is due to a tokamak sideband resonance.

Strong influence of non-axisymmetric resonances on TAE and IM modes in the low-
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[ case is explained as follows. The damping rate is proportional to the square of the
helical Fourier harmonics of the magnetic field, which belong to the largest harmonics
in stellarators (in W7-X the largest helical harmonic is €1;). In contrast to this, the
instability drive is proportional to the square of the toroidal harmonic, 7, o € < €. In
addition, the helicity-induced resonances provide the interaction of TAE and IM modes
with a great number of particles, by involving the bulk plasma thermal ions, provided
that f; satisfies a certain requirements.

Damping of high frequency gap modes in low-/ plasmas is realized through tokamak
sideband resonance. However, its role in high frequency instabilities is rather small.
First, the drive of these instabilities is stronger, v, o €7, whereas their damping 4 o €2.
In addition, a relatively small number of the resonant particles (electrons) is ivolved.
Therefore, high frequency gap modes in low-£ plasmas can be destabilized more easily,
unless other damping mechanisms dominate.

When (3 is higher, the ion damping of MAE modes can be rather large due to the
HAE resonance.

A remarkable feature of non-axisymmetric resonances is that they lead to the same
characteristic resonance velocities as those caused by the tokamak sideband resonance
for TAE modes (v = v4 and v4/3) when p = pg and v = vg [6]. The resonance velocity
vUj® = va/3 is connected to the plasma ion pressure by the relation 3; = 1/ (9u?). Tt
follows from here that the resonance velocity exactly equals the ion thermal velocity
(u; = 1) when 8; = 1/9, which can hardly take place in stellarators. According to [14],
[ at the magnetic axis in a Helias reactor does not exceed 13.55%. Assuming that
B; = 0.53, we can take 5; = 6.5%. Then we obtain u; = 1.3, for which @) is rather close
to Q(u; = 1), see figure 2. This explains why the damping of core-localized gap modes,
including high frequency modes, can be considerable in the Helias reactor.

A detailed analysis was carried out for the IM modes and TAE modes in the
planned first NBI experiments on W7-X. It was found that the damping may exceed
the drive of the IM modes caused by the NBI passing ions. Therefore, it may prevent
the destabilization of these modes. In order to make a more definite conclusion, the
calculation of the growth rate should be carried out with a more realistic distribution
function of NBI ions, and a contribution of trapped energetic ions should be taken into
account.

It is found that our theory is consistent with an LHD experiment where two TAE
modes were observed: In this experiment the plasma § was low and the beam 3 was
high, and there was a large pressure gradient of the beam particles in the region where
TAEs were located. This explained why the damping rate was not sufficient to stabilize
the instability.

The conclusions drawn in this work are based on the consideration of passing
particles only. The role of trapped particles is not investigated yet. One can expect
that the effect of trapped electrons on the damping of high frequency modes will be not
negligible. On the other hand, the instability drive may be enhanced by the trapped
energetic ions.
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