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Landau damping of Alfvénic modes in stellarators

Ya.I. Kolesnichenko, A.V. Tykhyy

Institute for Nuclear Research, Prospekt Nauky 47, Kyiv 03028, Ukraine

Abstract. It is found that the presence of the so-called non-axisymmetric resonances

of wave-particle interaction in stellarators [which are associated with the lack of axial

symmetry of the magnetic configuration, Kolesnichenko et al., Phys. Plasmas 9

(2002) 517 ] may have a strong stabilizing influence through Landau mechanism on

the Toroidicity-induced Alfvén Eigenmodes (TAE) and isomon modes (Alfvénic modes

with equal poloidal and toroidal mode numbers and frequencies in the continuum

region) destabilized by the energetic ions. These resonances involve largest harmonics

of the equilibrium magnetic field of stellarators and lead to absorption of the mode

energy by thermal ions in medium pressure plasma, in which case the effect is large.

On the other hand, at the high pressure attributed to, e.g., a Helias reactor, thermal

ions can interact also with high frequency Alfvén gap modes [Helicity-induced Alfvén

Eigenmodes (HAE) and mirror-induced Alfvén Eigenmodes (MAE)], leading to a

considerable damping of these modes. Only resonances with passing particles are

considered. The developed theory is applied to various modes in the Wendelstein 7-X

stellarator, a Helias reactor, and a TAE mode in the LHD helical device.

PACS numbers:

Submitted to: Plasma Phys. Control. Fusion

1. Introduction

Effects of the energetic ions on plasma stability are determined by the competition of the

energy transfer from these ions to the waves and absorption of the wave energy by the

bulk plasma particles. Several damping mechanisms can lead to the absorption of the

wave energy. These mechanisms are Landau damping, continuum damping, radiative

damping, and collisional damping. A brief overview of them in stellarators can be found

in, e.g., [1], see also a more recent work [2]. The physics of the damping is rather

similar in both tokamaks and stellarators. However, there are important differences

associated with different structures of the magnetic field in the mentioned toroidal

systems: First, the presence of many Fourier harmonics in the magnetic field strength

and the variation of the plasma cross section shape along the large azimuth of the

torus in stellarators increase the number of gaps in Alfvén continuum, leading to more

types of eigenmodes [3–5], see also the overview [1]. Namely, in addition to Toroidicity-

induced Alfvén eigenmodes (TAE), Ellipticity-induced Alfvén Eigenmodes (EAE), and
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noncircular triangularity-induced Alfvén Eigenmodes (NAE) existing in tokamaks, in

stellarators there are Mirror-induced Afvén eigenmodes and various Helicity-induced

Afvén eigenmodes (HAE). Second, in stellarators there exist so-called non-axisymmetric

resonances which provide an additional wave-particle interaction [1, 6]. Modes with

frequencies in the continuum region, known as Global Afvén eigenmodes (GAE) and

Non-conventional Global Afvén eigenmodes (NGAE) can also be excited [7–9]. The

presence of transitioning particles considerably affects the collisional damping of Alfvén

eigenmodes [10]. Recently it was found that low-shear stellarators with the rotation

transform close to unity, such as Wendelstein 7-X, are prone to Isomon Modes (IM),

which are Alfvénic modes affected by plasma compressibility and having equal poloidal

and toroidal mode numbers, m = n [11]. The radial width of the IM modes is

rather large, these modes extend over a large part of the plasma cross section. Their

destabilization in W7-X by passing energetic ions (with the maximum energy 55 - 60

keV) produced as a result of the Neutral Bream Injection (NBI) was considered in [11]. It

was concluded that the IM instability growth rate in the first planned NBI experiments

on W7-X can be rather large. However, the only wave-particle interaction taken into

account was the resonance interaction between the modes and NBI ions, the interaction

with the bulk plasma particles which may lead to absorption of the mode energy was

ignored. No other damping mechanisms was considered. Therefore, it was not clear

whether the NBI will really lead to the isomon instability.

The purpose of this work is to consider Landau damping of the IM modes and

Alfvén gap modes in stellarators, first of all, in Wendelstein 7-X. An important role of

this damping mechanism in stellarators was recognized in [1]: It was drawn attention

to the fact that, as shown in the earlier work [6], non-axisymmetric resonances can lead

to rather low resonance velocities and, therefore, thermal particles can absorb the wave

energy. Till now, however, there were no comprehensive studies of Landau damping in

stellarators, although some steps in this direction were already done [2, 12].

The structure of the work is the following. Resonances of the wave-particle

interaction in stellarators are considered in section 2. In this section the analysis is based

on the equation describing resonances of passing particles and the waves [6], which was

applied to Alfvén gap modes and IM modes in Wendelstein 7-X. In section 3 general

expressions for the instability growth / damping rate of Alfvénic modes, including the

case of modes in compressible plasmas, are derived. They are applicable to study effects

of both electrons and ions (superthermal and thermal) on the modes. In section 4

the derived equations are used to calculate the damping rates and growth rates of the

IM modes and Alfvén gap modes, the calculations are carried out both in the local

approximation and with relations taking into account the radial structure of the modes.

All the specific examples are relevant to Wendelstein 7-X and a Helias reactor, except

for a one relevant to the LHD device. The obtained results are summarized in section 5.
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2. Analysis of resonances between Alfvénic modes and passing particles

2.1. Resonance equation

Resonance interaction between Alfvénic modes and the particles can lead not only to

destabilization of these modes but it plays an important role in the mode damping,

in particular, due to Landau mechanism. This mechanism is especially important for

stellarators, as will be shown below.

We employ the following Fourier serious for the magnetic field (B), the field line

curvature (K), and a perturbed quantity labeled by tilde [1, 5, 6]:

B = B̄

(
1 +

1

2

∑
µ,ν

εµνe
iµϑ−iνNϕ

)
, (1)

K =
∑
µ,ν

Kµ,ν(r)e
iµϑ−iNνϕ, (2)

X̃ =
∑
m,n

Xm,n(r)eimϑ−inϕ−iωt, (3)

where B̄ is the average magnetic field at the magnetic axis, the radial coordinate r is

defined by ψ = B̄r2/2, ψ is the toroidal magnetic flux, ϑ and ϕ are the poloidal and

toroidal Boozer angles, respectively, N is the number of periods of the equilibrium field.

Using these notations, the resonance between the waves and most passing particles

in stellarators can be described as follows [6]:

ω = kres v
res
‖ , (4)

where vres‖ is the particle resonance velocity along the magnetic field, kres ≡ km+µ,n+νN =

[(m + µ)ι − (n + νN)]/R, ι is the rotational transform of the field lines, ι = 1/q, q is

the tokamak safety factor, and R is the major radius of the torus. Equation (4) was

obtained within a theory of destabilization of Alfvén eigenmodes by fast ions. It can

also be derived by proceeding from the equations

dE
dt

= evD · Ẽ, (5)

ϑ(t) = ωϑt+ ϑ0, ϕ(t) = ωϕt+ ϕ0, (6)

where vD is the particle drift velocity in the stellarator magnetic field, Ẽ =

Ê⊥(r) exp(−iωt+imϑ−inϕ) is the electric field of a wave; ωϑ and ωϕ are the frequencies

of the particle motion in the poloidal and toroidal directions, respectively [1]. Equation

(5) describes the energy exchange between a wave with the electric field Ẽ and a charged

particle moving across the magnetic field with the drift velocity vD. Equation (6)

describes the particle motion along the magnetic field.

For given mode frequency and mode numbers, equation (4) determines the infinite

number of the resonance velocities vres‖ for which particles can interact with the modes.

However, only several of them are important, depending on the number of considerable
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Fourier harmonics of the magnetic field. Note that the mirror harmonic of the magnetic

field has a minor influence on the damping, although it is the largest harmonic in the

plasma core in Wendelstein 7-X (especially, in the high mirror configuration). This

conclusion follows from the relations for the damping rate which will be derived in the

work.

2.2. Resonances between particles and Alfvén gap modes

In this subsection, we analyze resonances for eigenmodes with frequencies located inside

the gaps in Alfvén continuum (AC).

In the presence of a Fourier harmonic with the number (µ0, ν0) in the magnetic

field and / or in the metric tensor, a gap in the Alfvén continuum arises at the radius

r∗ where two cylindrical branches with the mode numbers m, n and m + µ0, n + ν0
[ω1 = |kmn|vA(r) and ω2 = |km+µ0,n+ν0N |vA(r), vA is the Alfvén frequency] intersect.

This takes place at [5]

ι∗ =
2n+ ν0N

2m+ µ0

. (7)

The numbers µ0 and ν0 label Fourier harmonics relevant to Alfvén continum and Alfvén

eigenmodes, in contrast to the (µ, ν) numbers relevant the resonance. The frequency of

the considered branches at ι = ι∗ can be written as

ω̂ = |kωmn|vA∗ = 0.5|kωµ0ν0|vA∗, (8)

where kωmn = −0.5kωµ0ν0 , k
ω
mn = (mι∗ − n)/Rω, kωµ0ν0 = (µ0ι∗ − ν0N)/Rω, vA∗ = vA(ι∗),

and Rω = R at the intersection point in the space (r, ω). With this notations, the

resonance (4) at ι = ι∗ takes the form: ω = [−0.5kµ0ν0 + kµν ]v
res
‖ , where kµν = kωµν with

Rω = R. Note that equation (8) was obtained without involving any specific magnitude

of the major radius of the torus. Due to this, the radius Rω can be considered as an

adjustable parameter allowing to describe by (8) not only the continuum frequency of

two cylindrical branches but also a mode frequency in realistic magnetic configurations.

The frequency of a mode which can reside in the gap, in general, does not equal

to ω̂ but is close to it when the gap is narrow. In stellarators, however, there are wide

gaps and, moreover, the gaps can be considerably shifted. In particular, the TAE gap

in the AC of the Wendelstein-line stellarators is shifted down because of the interaction

with other gaps (first of all, with the very wide gap associated with the µ0/ν0 = 2/1

helical shaping of the plasma cross section see, e.g., figure 2 in [1]) located above. This

effect can be taken into account by assuming Rω > R. On the other hand, the plasma

compressibility (which produces the low frequency β-induced gap) tends to shift gaps

in the AC up. This effect seems weak in stellarators but can be very strong in spherical

tokamaks and in conventional tokamaks with hollow current when β > ι2 (β = 8πp/B2,

p is the plasma pressure) [13].

Combining equation (4) and equation (8) we obtain:

vres‖ =
R

Rω

(
sgn kmn + 2

µι∗ − νN
|µ0ι∗ − ν0N |

)−1
vA∗. (9)
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We observe that |vres‖ | = vA∗ and |vres‖ | = vA∗/3 for µ = µ0, ν = ν0 and R = Rω at

the radius where ι = ι∗. This implies that the resonance velocities are the same for

all the gap modes, provided that corresponding Fourier harmonics of the magnetic field

are present (we remind that some gaps in the AC are produced by the plasma shaping

rather than by harmonics of the magnetic field). On the other hand, when µ 6= µ0 or

ν 6= ν0, there are a variety of resonance velocities even for R = Rω.

Let us consider specific examples.

First of all, we consider a plasma with high β (the ratio of the plasma pressure to

the magnetic field pressure) required for a good confinement of the energetic ions. In

particular, β(0) = 13 − 14% is expected in a Helias reactor [14]. Taking for the bulk

plasma ions βi ≡ 8πniTi/B
2 = 6.5% we obtain that the mentioned above resonance

velocity, vres‖ = vA/3, provides an efficient interaction of various Alfvén gap modes and

the bulk plasma ions because in this case the resonance velocity is close to the thermal

velocity of the ions, vres‖ /vT i = 1.3.

Below, however, we restrict ourselves to plasmas relevant to current experiments

and plasmas expected at the initial stage of operation with NBI on Wendelstein 7-X.

We assume that in the region of the mode location

βi ∼
1

4N2
, (10)

in which case vres‖ ∼ vT i, where vT i =
√

2Ti/Mi is thermal velocity of the bulk plasma

ions. This estimate follows from (9) for a TAE mode interacting with the bulk plasma

ions through the helical resonance with µ/ν = 1/1 when N � 1. We refer to plasmas

satisfying (10) as a low-beta case.

In particular, in Wendelstein 7-X where N = 5 and ι∗ ≈ 0.9 (see figure 1), the

µ = ν = 1 resonance at ι = ι∗ leads to (Rω/R)|vres‖ |/vA∗ = 1/10.1 and 1/8.1. Hence,

|vres‖ |
vT i

=
R

10Rω

√
βi
. (11)

As expected, this resonance velocity is close to thermal velocity of the bulk plasma

ions for βi = 0.01. On the other hand, the helical harmonic with µ = ν = 1 is rather

large. Therefore, one can expect that the helicity-induced resonance will have a strong

stabilizing influence on the TAE instability in Wendelstein 7-X.

High frequency modes (HAE11, HAE21 and MAE modes) can be damped due to the

tokamak sideband resonance, µ/ν = 1/0. Using the same rotational transform, N = 5,

and assuming R = Rω, we obtain |vres‖ |/vA∗ = 0.735 and 1.56 for MAE, |vres‖ |/vA∗ = 0.69

and 1.78 for HAE11, |vres‖ |/vA∗ = 0.64 and 2.28 for HAE21. All these magnitudes of the

resonance velocity well exceeds the ion thermal velocity, which implies that the ion

damping will be exponentially small. In contrast, because the electron thermal velocity,

vTe, typically exceeds Alfvén velocity, the electron damping can be considerable:

|vres‖ |
vTe

=
|vres‖ |
vA∗

√
Meni∗
Mine∗

1√
βe

R

Rω

, (12)

where βe = 8πne∗Te∗/B
2.
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In a hydrogen plasma, the magnitudes of the ratio Rω|vres‖ |/(RvTe) are the following:

0.17 and 0.36 for MAE, 0.16 and 0.41 for HAE11, 0.14 and 0.52 for HAE21. We conclude

that the electron damping of these modes will be not so strong as the ion damping of

TAE modes caused by the (µ/ν = 1/1)-helical resonance. The matter is that, first, the

ratio |vres‖ /vTe| for HAEs and MAEs is much less than unity (unless R > Rω), whereas

for TAEs |vres‖ /vT i| ∼ 1 and, second, the toroidal Fourier harmonic, ε10, in W7-X is less

than the helical harmonic, ε11, by a factor of two (as will be shown below, the damping

rate is proportional to ε2µν).

Considered examples are relevant to a hydrogen plasma. In plasmas with more

heavy ions the ratio |vres‖ |/vTe is smaller, as follows from equation (12). Therefore, the

electron damping is smaller, too.

Damping of the MAE mode in W7-X is affected also by the helical harmonic ε11.

2.3. Resonance between particles and isomon modes

It follows from equation (4) that due to a helical resonance, the IM modes interact with

the particles having the longitudinal velocity given by

vres‖ =
Rω

−m∆ι+ µι− νN , (13)

where ∆ι = 1 − ι. Frequencies of the IM modes slightly exceed the frequency

ω = m|∆ι|vAm/R (at least, for m > 1), with vAm the Alfvén velocity at the radius

where the mode amplitude is maximum. Hence, the ratio of the ion resonance velocity

to thermal velocity is∣∣∣∣vres‖vT i
∣∣∣∣ =

|m|∆ι
| −m∆ι+ µι− νN |√βi

. (14)

Taking and ∆ι = 0.1 and βi = 0.01 we obtain vres‖ /vT i . 1 from equation (14) for

m = 2 − 4. The frequency of the m = 1 mode exceeds the magnitude m∆ιvA/R by

a factor of 2.4 (because of plasma compressibility) [11]. Due to this, vres‖ for the m=1

mode is also close to the ion thermal velocity.Therefore, one can expect that the ion

damping of isomon modes will be considerable.

3. Derivation of relations for the mode damping / growth rate

3.1. Relations for Alfvén modes

In this subsection we derive a general expression for the damping / growth rate of Alfvén

eigenmodes in a plasma containing energetic ions by using a perturbative approach.

We proceed from the following quasi-neutrality equation:

∇ · j̃ = 0, (15)

where j is the plasma current, tilde above a letter here and below labels perturbed

quantities. Multiplying equation (15) by a scalar potential of the electromagnetic field,
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Figure 1. The rotational transform of the field lines for β(0) = 0.037 in the W7-X

high-mirror configuration.

Φ̃, and integrating the product over the plasma volume we obtain∫
d3xj̃ · ∇Φ̃ = 0 (16)

provided that Φ̃ satisfies the equation
∫
ds · j̃Φ̃ = 0, where the integral is taken over at

the plasma boundary.

The current j̃ in the integrand of (16) is convenient to write as j̃ = j̃‖ + j̃⊥,

where the subscripts ‖ and ⊥ label magnitudes along and across the magnetic field,

respectively. Let us determine the longitudinal current from Maxwell equations for

the electromagnetic field. Then the transverse current should be determined from the

plasma equations. Namely, for j̃‖ we will use the equations c∇×B̃ = 4πj̃ and B̃ = ∇×Ã,

with B a magnetic field, A is the vector potential of the electromagnetic field. The

transverse current in the presence of the energetic particles is j̃⊥ = j̃MHD
⊥ + j̃kin⊥ + j̃α⊥,

where j̃MHD
⊥ is the plasma current in the framework of the ideal MHD, j̃kin⊥ is the kinetic

part of the bulk plasma current, j̃α⊥ describes the fast ion current.

In Alfvén waves B̃‖ is small and, therefore, Ã⊥ is small, too, and can be neglected.

Then

j̃‖ ≈ −
c

4πB0

[∇ ·B0(∇⊥Ã‖)]b, (17)

where b = B0/B0 is the unit vector along the magnetic field, the subscript ”0” labels

equilibrium quantities. On the other hand, ideal MHD equations with Ẽ = −∇⊥Φ̃ and

Φ ∝ exp(−iωt) yield

j̃MHD
⊥ ≈ iωc2

4πv2A
∇⊥Φ̃. (18)
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Only waves that are weakly damped in the absence of the energetic ions can

be destabilized by a small group of these ions, so that a problem of stability can be

treated perturbatively (the exception are energetic particle modes, EPM, which are not

considered here). This gives us grounds to use a perturbative approach in the analysis of

equation (16). Before doing it, we note that the transverse current, like the longitudinal

current, can be expressed in terms of the scalar potential Φ̃. This can be done by means

of the relation ωÃ‖ = ck‖Φ̃ which follows from the ideal MHD equation Ẽ‖ = 0 (k‖ is

defined by ik‖Φ̃ = b · ∇Φ̃). Then j̃‖ ∝ ω−1 and hence, d(ωj̃‖)/dω = 0. Taking this

into account, we write ωj̃ = ωj̃(0) + ωj̃(1), with j̃(0) = j̃‖ + j̃MHD
⊥ and j̃(1) = j̃kin⊥ + j̃α⊥, j̃(1)

being small compared to j̃(0). In zero approximation, we obtain from (16) the following

equation which is satisfied for the ideal MHD eigenfrequencies (ω0) and eigenmodes:∫
d3xj̃(0)(ω0) · ∇Φ̃ = 0. (19)

In the first approximation, (ωj̃)(1) = [d(ω0j̃
(0)
⊥ )/dω0]∆ω + ω0j̃

(1), with ∆ω = ω − ω0.

Defining the mode growth / damping rate as γ = Im ∆ω, we obtain in this approximation

from equation (16):

γ =
Re
∫
d3x(̃jα⊥ + j̃kin⊥ ) · ∇⊥Φ̃

(iω)−1
∫
d3x[∂(ωj̃MHD

⊥ )/∂ω] · ∇⊥Φ̃
, (20)

where the subscript ”0” at ω is omitted, the denominator equals to 2WA, with WA the

Alfvén mode energy,

WA =

∫
d3x

c2

4πv2A
Ẽ2. (21)

Note that equation (20) differs from the corresponding equation in reference [6]

(equation (7) in [6]): The denominator in (20) contains derivative d(ωj̃MHD
⊥ )/(dω)

instead of d(̃jMHD)/(dω); this form of the mode energy is preferable because it does

not involve the longitudinal current j̃MHD
‖ and ∇‖Φ̃. In addition, the numerator of (20)

contains the kinetic part of the bulk plasma current.

3.2. Relations for modes in compressible plasmas

The quasi-neutrality equation used in subsection 3.1 and the accuracy of equations

(17), (18) are not sufficient for the description of isomon modes in quasi-isodynamic

stellarators, in particular, in Wendelstein 7-X and a Helias reactor [14]. These modes

are determined by equations for potential Φ̃ and compressibility ζ̃ (ζ̃ = ∇ · ξ, with

ξ the plasma displacement) coupled due to the field line curvature and finite plasma

temperature [11]. Therefore, in this subsection we derive a relation similar to (20) by

proceeding from the equation for isomode modes of [11] supplemented with a kinetic

term associated with the bulk plasma (to be able to calculate the mode damping /

growth rate).
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This equation has the form:

1

r

d

dr
rδ0

(
ω2 − ω2

G

v2A
− k2mn

)
dΦm,n

dr

−
[
m2δ0
r2

(
ω2 − ω2

Gr
2ε′2t /ε

2
t

v2A
− k2mn

)
+
kmn
r

(rδ0k
′
mn)′

]
Φm,n

−4πiω

c2
Br
mn

d

dr

j0‖
B

=
4πiω

c2
[∇ · (̃jα⊥ + j̃kin⊥ ]m,n, (22)

where

ω2
G = ε̃2

c2s
R2

∑
l=±1

(
ω2

ω2 − k2m+l,nc
2
s

)
, (23)

Φm,n is a Fourier component of Φ̃, kmn ≡ k‖(m,n) = (mι − n)/R, cs =
√

Γp/ρ is the

sound velocity (Γ = 5/3 is the heat capacity ratio, p is the plasma pressure, and ρ is

the plasma mass density), δ0 & 1 is determined by the plasma shaping (see Ref. [5]),

ε̃2 = ε2t/(δ0ε
2), εt = −ε1,0, ε = r/R, prime denotes the radial derivative, j0‖ is the

equilibrium plasma current.

Let us multiply equation (22) by Φ∗mn and integrate the product over the plasma

volume. Like in subsection 3.1, we apply a perturbative approach in order to obtain an

equation for the damping / growth rate. As a result, we will have:

2γW ≡
∑
mn

γ

∫
d3x

c2

2πv2A

{(
1− dω2

G

dω2

)
|Φ′mn|2 +

m2

r2

(
1− dω2

G

dω2

r2ε′2t
ε2t

)
|Φ2

mn|
}

=
∑
mn

∫
d3x

(
jα⊥mn + jkin⊥mn

)
· ∇⊥Φ∗mn. (24)

Here W differs from WA by the presence of the term produced by coupling of Φ̃ and

ζ̃. When deriving this equation it was taken into account that the product ωBr
mn (with

Br
mn expressed through Φmn) does not depend on ω. This equation agrees with equation

(20) but it takes into account the plasma compressibility.

The first term in the RHS of this equation describes the instability drive by the

energetic ions, γα. The second one describes the damping, γd (if plasma is equilibrium).

Relations for γα and γd can be written as follows:

γα =
1

2W
∑
mn

∫
d3x (jα⊥mn) · ∇⊥Φ∗mn (25)

and

γd =
1

2W
∑
mn

∫
d3x

(
jkin⊥mn

)
· ∇⊥Φ∗mn, (26)

whereW is defined by equation (24). The instability growth rate is γα+γd, with γα > 0

and γd < 0.
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3.3. Mode damping / growth rate in a Maxwellian plasma with a beam

Following the procedure described in [11] but taking into account various harmonics in

the field line curvature and assuming Maxwellian the velocity distribution of the bulk

plasma we obtain:

jr(mn) =
iMc2

4B̄2r2

∑
µν

(µ2ε2µνΦ
′
m,n − µmε′µνεµνΦm,n)

∫
d3v

w4

ω − km+µ,n+νNv‖
Π̂F, (27)

jϑ(mn) =
Mc2

4B̄2r

∑
µν

ε′µν(µεµνΦ
′
m,n −mε′µνΦm,n)

∫
d3v

w4

ω − km+µ,n+νNv‖
Π̂F, (28)

where w2 = (0.5v2⊥ + v2‖), Π̂ in the (r, v) variables (r is approximately a constant of

motion for well-passing particles) is

Π̂ = − 2

v2T
+

(
ω

ωϕ
+ n

)
1

ιωωB

1

r

∂

∂r
, (29)

where ωϕ = v‖/R. Note that these equations are valid for both ions and electrons.

We assume that the second term in equation (29) is small and neglect it, which is

justified when

vTσ
2ωr
|m+ µ− νNι−1| � L

ρσ
, (30)

where L = |d lnF/dr|−1 is a characteristic length of the plasma inhomogeneity,

ρσ = vTσ/ωBσ, σ labels particle species (electrons and ions). When obtaining equation

(30) we used the resonance condition (4).

In the case, when the second term in equation (29) exceeds the first one, the

instabilities driven by the spatial inhomogeneity of the bulk plasma can arise in

stellarators, i.e., thermal particles can lead to instabilities in the same way as energetic

ions do it. This was shown for a TAE instability in W7-X in reference [12]. One can see,

for instance, that the helicity-induced resonance (µ = 1, ν = 1) leads to (L/ρi)cr = 21

for a TAE mode with m = 5 localized around the radius r/a ∼ 0.5 in a plasma with

βi = 0.01 and ι = 0.9. Therefore, this mode can be destabilized provided that L/ρi < 21.

Of course, whether the mode will be destabilized or not depends on the power balance in

the region where L/ρi < (L/ρi)cr and the region where L/ρi > (L/ρi)cr within the mode

width. Note that L is strongly enhanced in Maxwellian plasmas due to the temperature

inhomogeneity when vres > vT [15].

We are interested only in the imaginary parts of the integral in these equations,

which arise due to resonance (4). Replacing 1/Ω with −iπδ(Ω) we obtain for a plasma

with Maxwellian distribution (c.f. references [6, 16, 17] where Maxwellian distribution

for hot ions was used to study the destabilization of TAE modes in tokamaks):

Im

∫
d3v

w4

ω − km+µ,n+νNv‖
Π̂F =

√
πnσω

k2res
Q(u), (31)

where

Q(u) =
1

u
(2u4 + 2u2 + 1)e−u

2 −Qε, (32)
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Qε =
1

u

[
2

(
1 +

1

2εef

)2

u4 + 2

(
1 +

1

2εef

)
u2 + 1

]
e−(1+ε−1

ef )u2 , (33)

kres ≡ km+µ,n+νN , nσ is the particle (ion or electron) density, u = |vres‖ |/vT , εef =∑
µν |εµν | (µ = ν 6= 0) is an effective Fourier harmonic of the magnetic field which

determines the boundary for the well passing particles in the velocity space region. In

particular, in the W7-X high-mirror configuration, εef varies from 0.08 at the magnetic

axis to 0.24 near the plasma edge. In calculation, we assumed that passing particles

have transverse velocities determined by 0 < v⊥ < |v‖|/√εef . The term Qε decreases the

damping, but it is considerable only when u .
√
εef . The function Q(u) is rather flat

in the region 0.5 . u . 1, which facilitates making estimates in the case when the ratio

ω/kres|vT lies in this interval but exact magnitude of the mode frequency is not known.

On the other hand, when the frequency is known one can use the function u2Q(u) which

arises when k2res in the RHS of (33) is eliminated by means of relation kres = ω/vres‖ .

Knowing components of the current jkinmn and using equations (26), (24) with

µ = 0,±1, we can write the following equation for the damping rate:

γ
(σ)
d

ω
= −
√
π

8δ0

Mσ

Mi

∑
mn

∫ a
0
drrnσ(r)

∑
µν ε

−2
∣∣µεµνΦ′mn −mε′µνΦmn

∣∣2Q(uσ)k̄−2res∑
mn

∫ a
0
drr−1ni(r) (g1r2|Φ′mn|2 + g2m2|Φmn|2)

, (34)

where ε = r/R, nσ is the particle density, σ = e, i labels electrons and ions,

k̄res ≡ kresR = (m + µ)ι − (n + νN), u = Rω/(|k̄res|vT ), g1 = 1 − dω2
G/dω

2,

g2 = 1−(dω2
G/dω

2)(r2ε′2t /ε
2
t ). The function Q(uσ) is shown in figure 2. Fourier harmonic

εt is approximately proportional to r; therefore, g1 ≈ g2 and g1 can be written as

g1 = 1 + ε̃2
∑
l=±1

k2m+l,nc
4
s

R2(ω2 − k2m+l,nc
2
s)

2
. (35)

The same relation for g1 can be obtained from equation (22) by keeping only the term

proportional to Φ′′mn after calculation of the imaginary part of jkinr,mn (which contributes

to this term). We assume that ω2 6= k2m+l,nc
2
s, i.e., we do not consider Alfvén-

sound resonances and concomitant gaps in Alfvén continuum (the case of Alfvén-sound

resonances deserves a special study, our analysis is not valid for it).

Because c2s/v
2
A � 1 and ε̃2 ≡ ε2t/(δ0ε) � 1, it is sufficient to use an approximate

equation for g1. For instance, approximating the mode frequency by equation (8), we

can write equation (35) in the case of TAE modes as follows:

g1 = 1 + 4ε̃2
c4s∗
ι2v4A∗

R2
ω

R2

∑
l=±1

(1 + 2l)2

1− (1 + 2l)2c2s∗/v
2
A∗
, (36)

where the subscript “*” labels magnitudes at the radius where the rotational transform

is defined by equation (7). One can see that typically this g1 is close to unity.

We observe in equation (34) that the damping rate is proportional to Mσ/Mi, which

may produce an illusion that the electron damping is always small. Therefore, we have

to make some comments on his issue.

Let us assume first that |vres‖ | = vσT . Then we obtain from the resonance condition

that k̄2res = ω2R2/v2Tσ ∝ Mσ for a given mode frequency and, hence, the damping
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Figure 2. Q versus u for various εef , with u = |vres‖ |/vT . In the W7-X high mirror

configuration, εef varies from 0.08 at the magnetic axis to 0.24 near the plasma edge;

in the standard configuration 0.03 . εef . 0.18.

does not depend on Mσ. This is a consequence of the fact that the drift velocity vD
is determined by the particle energy, but not velocity. In reality, however, the fixed

magnitudes are the mode frequency and mode numbers, rather then vres‖ . Therefore,

assuming that ω and k̄res are given, we eliminate Mσ in the expression for γ
(σ)
d by means

of the relation k̄−2resMσ/Mi = u2σc
2
σ/(R

2ω2), with c2σ = 2Tσ/Mi. Now it is clear that the

electron damping rate depends on the ratio vres‖ /vT , like the ion damping rate, there is

no additional mass dependence.

Note that an expression similar to (34) can be obtained for the instability drive by

integrating (31) with the distribution function of fast particles, Fα. For the beam ions,

Fα can be approximated as [11]

Fα =
2nb(r)

π(1 + χ2
0)v

3
δ(χ− χ0)η(v0 − v), (37)

where subscript ”b” labels beam particles, η(v0 − v) is the Heaviside step function,

χ = v‖/v, the particle density is defined by nb = pb/E0, E0 = 0.5Mbv
2
0, pb is the

energetic ion pressure defined by pb = 0.5(p‖+p⊥), p‖ =
∫
d3vv2‖Fα, p⊥ = 0.5

∫
d3vv2⊥Fα,

and we take Mb = Mi. Equation (37) implies that the ion energy is sufficiently high,

E � (Mi/Me)
1/3Te, so that Coulomb collisions mainly slow down the fast ions without

much pitch-angle scattering. In this case, an equation for γα has the form of (34) where

the subsript σ should be replaced by b, c2b = 2E/Mb, and Q(u) replaced by

Qb(ub) = −
√
π

(1 + χ2
0)

[
ω∗b
ω

(
1

χ2
0

+ 1

)2

u2b +
3

χ4
0

− 2

χ2
0

− 5

]
, (38)

with ω∗b = n[1 + σvωR/(nv0ub)]v
2
0(ιωBbr)

−1∂lnnb/∂r, ub = |vres‖ |/v0, σv = sgn vres‖ .
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3.4. Local approximation for damping rate and growth rate caused by the beam

In order to calculate the damping rate by means of (34) one has to know the radial

profile of the mode amplitude, Φ(r). However, simple estimates for γ
(σ)
d can be made

by using a local approach. To construct local γ
(σ)
d one has to assume, for instance, that

terms in equation (34) containing the radial derivatives of Φmn dominates and the mode

width is very narrow. Then equation (34) reduces to

γ
(σ) loc
d

ω
= −

√
π

8δ0g21

Mσnσ
Mini

∑
µν

(µεµν
ε

)2
k̄−2resQ(uσ), (39)

where all the magnitudes are taken at the radius where the mode amplitude is maximum.

Following [11], let us introduce the mode dimensionless frequency, ω̄ = ωR/cs0,

with cs0 = cs(0). Then u = ω̄cs0/(|k̄resvT |), which reduces to u = ω̄
√

Γ/(|k̄res|
√

Θ) with

Θ = T (r)/T0 for a plasma with Ti = Te, and

g1 = 1 + ε̃2
∑
l=±1

Θ2k̄2m+l,n

ω̄4(1− k̄2m+l,nΘ/ω̄2)2
. (40)

It follows from (35) and (40) that the plasma compressibility increases the mode

energy (g1 > 0) and, thus, decreases γd. However, the effect is small, g1 ≈ 1, when

ω2 � k2m+l,nc
2
s.

The damping rate (39) depends on the mode numbers. It may be preferable to

have an expression for γd containing the mode frequency instead of mode numbers.

Eliminating k̄res, we obtain:

γ
(σ) loc
d

ω
= −

√
π

8g21δ0

nσ
ni

∑
µν

(µεµν
ε

)2 c2σ
ω̄2c2s0

u2σQ(uσ). (41)

This equation and (39) are valid for both electrons and ions. When Te = Ti, the electron

damping equals the ion damping for u2eQ(ue) = u2iQ(ui). In particular, γlocd,e = γlocd,i for

ue ≈ 0.1 and ui ≈ 4 in a hydrogen plasma and ue ≈ 0.07 and ui ≈ 4.2 in a deuterium

plasma.

A similar equation is valid for the fast ions. Due to this we can write a simple

estimate for the threshold density of fast ions (for which the system is on the margin of

stability). Assuming that there is only one dominant harmonic of the magnetic field in

the damping rate and another one in the growth rate (γα), we obtain:

ncrb
nσ

=
Tσ
E0

(
µσε

(σ)
µν

µbε
(b)
µν

)2 ∑
j u

2
σQ(uσ)∑

j u
2
bQb(ub)

. (42)

Here σ = e, i; j = ±µ, signµ = sign ν.

Equations obtained above in the local approximation do not include a contribution

of the mirror harmonic, ε01, because the term containing Φ′mn in (34) is proportional µ.

The effect of the mirror harmonic can be evaluated by taking Φmn(r) ∝ exp(ikrr) and

neglecting the radial dependence in other magnitudes, which leads to

γ
(σ) loc
d

ω

∣∣∣∣∣
µ=0

= −
√
π

8δ0g21

Mσnσ
Mini

k2θ
k2⊥

(
rε′01
ε

)2

k̄−2resQ(uσ), (43)
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where k2⊥ = k2r +k2ϑ. For µ 6= 0, this procedure leads to equation (39) due to the relation

rε′µν = εµν . Using the relation k̄2resω̄
2 = u2σv

2
Tσ/c

2
s0 we obtain an expression similar to

(41), but for mirror harmonic. Comparing it with (41) we conclude that due to the

mirror harmonic the damping /growth rate increases by the factor

F = 1 +
k2ϑ
k2⊥

(
rε′01
µεµν

)2

. (44)

To evaluate this magnitude, we take µ = ν = 1 and ε01 = ε01(0)(1 + ζr2/a2), where

ε01(0) = 0.09 and ζ = 0.33 for the considered W7-X high mirror configuration with

β(0) = 0.037. Then F = 1 + 0.55(kϑr)
2/(k⊥a)2 < 1.55. Therefore, the mirror harmonic

weakly contributes to the damping /growth rate.

4. Specific examples

4.1. Damping and growth rates of isomon modes in Wendelstein 7-X

This subsection is devoted to the study of damping rates of isomon modes in the

first planning NBI experiments on W7-X. General relations derived above and the

eigenmodes found in the work [11] will be used in our calculations. Note that because the

mirror harmonic weakly contributes to γ, whereas other harmonics are approximately

the same in the high mirror configuration and standard configuration, the damping rate

and growth rate are roughly equal in these configurations.

Let us begin with the local approach. Assuming that the temperature profile is

given by figure 3 of [11] we take Θ ≡ T (r)/T0 = 0.77, which corresponds to r/a ∼ 0.7

where the mode amplitudes are close to their maxima. Then, using equation (13), we

obtain for the µ/ν = 1/1 helical resonance:

ui ≡ |vres‖ /vT i| =
1.47ω̄

|m∆ι± (5− ι)| . (45)

For instance, for m = 3, ι = 0.9, and ω̄ = 1.98 this yields ui = 0.65 and 0.76. For

m = 4, ι = 0.9, and ω̄ = 2.56 this yields ui = 0.83 and 1.02. Then Q(ui) ≈ 2, as follows

from figure 2. In addition, we obtain k̄res = 4.4 and 3.8 for m = 3; k̄res = 4.5 and 3.7

for m = 4. Using these magnitudes and taking ε211/ε
2 = 0.82, δ0 = 1.5, we obtain from

equation (39) that the ion damping is |γlocd,i |/ω ≈ 0.02 for both the m = 3 and m = 4

modes.

On the other hand, more realistic calculations based on equation (34) and figure 3

for the modes with m = 1− 4 are shown in Table 1. We observe that the damping rates

in this Table and the results of the local approach are in good agreeement. In addition,

we observe that the damping rates of all the considered modes are roughly equal.

The electron damping is small or, at least, it cannot be described by our relations

because ue � 1 and, thus, trapped particles can be responsible for the electron damping.

Now we proceed to consideration of the instability drive, γα, by using equation (34)

with Qb given by (38). Energetic ions at the initial stage of operation with NBI are

described in Appendix A of work [11]. As shown in figure A2 of the mentioned work,
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Figure 3. Isomon modes in Wendelstein 7-X [11].

Table 1. Damping rates calculated by means of equation (34) with δ0 = 1.5 for the

IM modes shown in figure 3.

m=n ω̄ |γd|/ω
1 1.821 0.0133

2 1.384 0.0239

2 1.292 0.0263

3 1.980 0.0199

4 2.562 0.0192

at each radius there are two sharp maxima in the λ distribution of injected particles

(λ = µpB̄/E is the particle pitch parameter, µp is the particle magnetic moment), but

only one of them is relevant to passing particles; almost no passing ions were produced

at r/a > 0.8. Moreover, well passing particles were produced only in the plasma core,

mainly at r/a < 0.4 where λ ≈ 0.75 (χ0 ≈ 0.5). This means that only a core region

contributes to the nominator of (34). This considerably reduces the growth rate of

isomon modes because their maximum amplitudes lies at r/a > 0.5.

Taking this into account and assuming that the radial distribution of the energetic

ions coincides with the energy deposition profile of these ions (shown in figure 4), we

calculated γα. We found that γα/ω ∼ 10−3 when the upper limit in the nominator of

(34) is 0.4a, see figure 5. This implies that the drive produced by well passing NBI

ions is not sufficient to overcome the damping. The role of the NBI ions in the region
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Figure 4. Radial distribution of NBI ions, which was used in calculation of the growth

rate of the IM instability.
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Figure 5. Dependence of the IM instability drive produced by NBI ions in W7-X

on the maximum radius, rmax, restricting the region where well passing NBI ions are

located. Calculations were carried out for protons with E = 55 keV and |χ0| = 0.5.

Because most well passing injected ions are located in the region r/a < 0.4 [11], we

conclude that γα/ω ∼ 10−3.

r/a > 0.4 is not clear because they are mainly marginally passing and transitioning,

which are not described by our theory.

Note that although the mode amplitude is maximum in the region where the number

of well passing NBI ions is very small, it is possible to evaluate γα by modifying local

equation (39) as follows:

γ
(loc)
α

ω
= −

√
π

8δ0g21

Mbnb
Mini

(εt
ε

)2
K1K2

∑
µ=±1

k̄−2resQb(ub), (46)
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where K1 ≈ 0.5 is the fraction of NBI ions from those injectors which produce mainly

passing ions, K2 = |Φ0.3|2/|Φmax|2, Φ0.3 and Φmax is the mode amplitude at r/a = 0.3

and at the radius where it is maximum, respectively; K2 can be obtained from figures 4

and 6 of of reference [11]: K2 = 0.02 for the mode with m = n = 2, K2 = 0.04 for the

modes with m = n = 3 and m = n = 4. Equation (46) yields growth rates which are in

qualitative agreement with those shown in figure 5 for rmax/a = 0.4.

4.2. Damping of TAE modes in Wendelstein 7-X

According to section 2.2, the ratio of the µ/ν = 1/1 resonance velocity to the ion thermal

velocity during TAE instabilities in the first NBI experiments on W7-X can be about

unity. Therefore, one can expect that TAE damping will be strong, like in the case of

isomon modes.

Let us first make a simple estimate by using equation (39) for a plasma with the

same parameters as in the previous section. For ι∗ = 0.9 we obtain k̄res = 4.55 and 3.65,

which leads to u = 1 and 1.23, see figure 2. Using equation (39) we obtain then that

γlocd /ω ∼ −0.02.

As an example, we consider the TAE mode with m = 14, 15 and n = 13, see

figure 6, with the mode frequency 42.48 kHz [18]. Using equation (34) we find that

the damping rate is γd/ω = 0.0244. The damping rate weakly depends on the particle

density and temperature profiles because the mode width is rather small: it does not

change appreciably if we take ne = const or Ti = Ti(r∗) = const. Artificially setting the

mode frequency to values as high as 70 kHz gives the damping rates shown in Table (2).

All these magnitudes are in qualitaive agreement with the local estimate above.

Table 2. Damping rates of a TAE mode with the realistic frequency (42.48 kHz) and

artificially increased frequencies in W7-X. Calculations were made by using equation

(34) with δ0 = 1.5 for the mode structure shown in figure 6.

f ,kHz |γd|/ω
70 0.0152

60 0.0192

50 0.0225

42.48 0.0244

4.3. Damping of TAE modes in an LHD experiment

Our analysis above predicts a rather large Landau damping of isomon modes and TAE

modes in the Wendelstein 7-X. On the other hand, TAE instabilities were already

observed in helical systems, in particular, in the LHD device, in the discharge #24512
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Figure 6. A TAE mode in Wendelstein 7-X. The mode frequency equals 42.48 kHz,

dominant mode numbers are m = 14, 15 and n = 13 [18].

[19, 20]. Below we evaluate Landau damping for this LHD discharge in order to see

whether our theory is consistent with the experiment.

In the mentioned discharge an Alfvénic activity with n = 1 and n = 2 was observed

with the frequencies in the range of 50-80 kHz during tangential NBI with the particle

(protons) energy E0 up to 150 keV injected into a helium plasma [20]. The eigenmode

calculations carried out with the BOA code [5] have found two discrete TAE modes with

n = 1 [21]. One of them was ”even” TAE mode with the 50 kHz frequency, another

one with 60 kHz was ”odd” TAE. Both modes were localized around the r/a ∼ 1/3

flux surface, γα/ω ≈ 0.3 for the even mode and γα/ω ≈ 0.03 for the odd mode were

calculated [21].

In the core region, the beam beta well exceeded the plasma beta: βb(0) = 1.7% ,

β(0) ≈ 0.45%. The electron density at the magnetic axis was ne(0) = 1019 m−3. Thus,

beam-plasma parameters in LHD were very different from those which are expected

in the first NBI experiments on Wendelstein 7-X. Key differences are a bigger fast-ion

population and a lower plasma beta. In addition, in LHD the number of the field periods

is larger by a factor of two (NLHD = 10) but the rotational transform in the core region

smaller (ιLHD = 0.4 − 0.5). Because of this, the largest µ/ν = 2/1 gap in the AC was

very far from the TAE gap (the ratio ω∗,21/ω∗,10 = 23, which is much larger than in

W7-X). Due to this, the effect of this helical gap on the shift of the TAE gap was small

in the core region (r/a < 0.4), see figure 7a in [21]. In spite of these differences, βi was

about that given by equation (10), like in W7-X. For this reason, Landau damping was

not small.

We restrict ourselves with a local relation to calculate the damping rate. As shown

in previous subsections, this approximation gives the results which are in qualitative

agreement with those obtained by using a more rigorous equation for γd. Because in

the region of location of the modes (r/a ∼ 0.3) the observed frequency ω̂ lay inside
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the TAE gap (see figure 7a in [21]), we can take Rω = R. In addition, the helical

harmonics ε11 and ε21 in LHD were approximately equal (see figure 6 in [21]). Therefore,

we have to take into account both of them. They lead to vres‖ /vA∗ = (1 ± 36)−1 and

vres‖ /vA∗ = (1 ± 38)−1, respectively, at ι = 0.5, and to smaller magnitudes at ι = 0.4

(because the magnetic shear in LHD is not small, the iota varies considerably within the

mode location). This leads to u = 0.55−0.61 for βi = βe = 2.14×10−3. At r/a = 0.3 we

take Θ ≡ Ti(r)/T0 = 0.9 and εef = 0.08, for which Q(u) ≈ 2. The normalized frequency

is ω̄ = 2.7 for the even mode and 3.24 for the odd mode. The ratio εµν/ε for ε11 and ε21
can be evaluated as 0.5. Then equation (39) yields |γd|/ω = 0.01 for the even mode and

7.6× 10−3 for the odd mode, which is much less than γα/ω due to a very large pressure

gradient of the beam particles in the region where TAEs are located.

The estimates made are rather rough because the fraction hydrogen in the helium

plasma was considerable but not known exactly. Nevertheless, they are sufficient to

conclude that in the considered LHD experiment the damping was weaker but the drive

was much stronger than those expected in the first W7-X NBI experiments.

4.4. Damping of high frequency modes in Wendelstein 7-X

As shown in section 2.2, vresi‖ /vT i � 1 for HAEs and MAE modes, which implies that

the ion Landau damping of these modes is exponentially small (unless βi is large).

Therefore, below we consider the electron damping at small beta and ion damping at

large beta.

In order to evaluate electron damping rates of high frequency gap modes we

approximate their frequencies by equation (8). Then equation (41) will take the form:

γ
(e) loc
d

ω
= −
√
πβe∗

2g21δ0

1

(µ0ι∗ − ν0N)2

∑
µν

(µεµν
ε

)2
u2eQ(ue), (47)

where

ue =

(
neMe

niMiβe∗

)1/2 ∣∣∣∣1 + 2
µι∗ − νN
µι0 − ν0N

∣∣∣∣ . (48)

Let us see the influence on the damping of the toroidal harmonic of the magnetic

field (µ = ±1, ν = 0). The analysis will be carried out for a hydrogen plasma with

βe∗ = 0.01 and δ0 = 1.5 in W7-X. Assuming Rω = R, we obtain: ue = 0.41 and 0.16 for

HAE11; ue = 0.525 and 0.15 for HAE21. Because these magnitudes of ue, Q(ue) strongly

depends on εef , as follows from figure 2. This means that the damping is very sensitive

the mode spatial location and the location of the mode frequency in the AC gap. In

the high mirror case the damping is minimum, |γ(e)locd |/ω ∼ 5 × 10−6 for HAE11 and

2×10−5 for HAE21. For the modes with higher frequencies (Rω < R), the damping rate

is larger.

We conclude from here that the effect Landau damping associated with the

µ/ν = 1/0 resonance on high frequency gap modes is smaller than that for TAEs and

isomon modes. This is not surprising: in Wendelstein 7-X the toroidal harmonic is less
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by a factor of two than the helical harmonic (which yields the difference by a factor of

four); in addition, uTAEe � uHAE,MAE
i . 1, which leads to a decrease of Q.

Let us consider now the ion damping of MAE modes due to the helical resonance

(µ = ν = 1). One can see that k̄res = 6.6 and 1.6. Assuming that the mode is core

localized where the pressure is high, βi = 4%, we obtain ui = 1.9 and 7.8 for the larger

and smaller k̄res, respectively. Then equation (39) yields γd/ω = 10−3.

4.5. Damping of Alfvén gap modes in a Helias reactor

As shown in subsection 2.2, resonances with µ = µ0, ν = ν0 lead to vres‖ = vA∗/3

that provides interaction of gap modes with thermal ions in high beta plasmas. In the

Helias reactor dominant Fourier harmonics of the magnetic field are the same as in the

Wendelstein 7-X high mirror configuration. Therefore, the resonance with vres‖ = vA∗/3

can play an important role in damping of TAE modes and HAE11 modes. One can see

that |k̄res| = 1.5|µ − νN | for these resonances, and vres‖ = vA∗/3 when |kres| = 1.35

for TAEs and |k̄res| = 6.15 for HAE11 modes at ι∗ = 0.9. We assume that βi = 6.5%

in the plasma core, which agrees with the parameters of the Helias reactor shown in

reference [14]. Then u = 1.3 and Q(u) = 1.5. Now, using equation (39) we obtain

γlocd /ω = 0.02 for TAE modes and γlocd /ω = 3.7× 10−3 for HAE11 modes.

Note that because N � 1, the frequency of MAE modes only slightly exceeds

and HAE11 frequency. Therefore, resonance velocity vres‖ produced by the µ/ν = 1/1

resonance in the case of MAE modes relatively weakly differs from vA/3, namely, it is

vres‖ = vA/2.6 for ι = 0.9. Therefore, the damping increases at high beta. In the Helias

it can be evaluated as γd/ω = 2.4× 10−3.

5. Summary and conclusions

The results of the work can be summarized as follows.

General relations for the growth / damping rate associated with Landau mechanism

are derived. These relations generalize the known ones [6, 21] by taking into account

kinetic effects in the bulk plasma and the compressibility. The latter is important for

the existence of the IM modes but plays a minor role in their damping, as shown in this

work.

It is found that Landau damping of Alfvénic modes in stellarators plays an

important role. At low β [defined by equation (10)], it represents a strong stabilizing

mechanism of the TAE and IM modes. At high beta, which is expected in a Helias

reactor [14], the ion damping is rather large not only for TAEs but although for HAE

modes and MAE modes. The enhanced damping is a consequence of the lack of the

axial symmetry in stellarators, which leads to the resonances associated with helical

harmonics of the magnetic field (εh ≡ εµν with µ 6= 0, ν 6= 0). The exception is the TAE

damping in a high-β plasma, which is due to a tokamak sideband resonance.

Strong influence of non-axisymmetric resonances on TAE and IM modes in the low-
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β case is explained as follows. The damping rate is proportional to the square of the

helical Fourier harmonics of the magnetic field, which belong to the largest harmonics

in stellarators (in W7-X the largest helical harmonic is ε11). In contrast to this, the

instability drive is proportional to the square of the toroidal harmonic, γα ∝ ε2t � ε2h. In

addition, the helicity-induced resonances provide the interaction of TAE and IM modes

with a great number of particles, by involving the bulk plasma thermal ions, provided

that βi satisfies a certain requirements.

Damping of high frequency gap modes in low-β plasmas is realized through tokamak

sideband resonance. However, its role in high frequency instabilities is rather small.

First, the drive of these instabilities is stronger, γα ∝ ε2h, whereas their damping γd ∝ ε2t .

In addition, a relatively small number of the resonant particles (electrons) is ivolved.

Therefore, high frequency gap modes in low-β plasmas can be destabilized more easily,

unless other damping mechanisms dominate.

When β is higher, the ion damping of MAE modes can be rather large due to the

HAE resonance.

A remarkable feature of non-axisymmetric resonances is that they lead to the same

characteristic resonance velocities as those caused by the tokamak sideband resonance

for TAE modes (vres‖ = vA and vA/3) when µ = µ0 and ν = ν0 [6]. The resonance velocity

vres‖ = vA/3 is connected to the plasma ion pressure by the relation βi = 1/(9u2i ). It

follows from here that the resonance velocity exactly equals the ion thermal velocity

(ui = 1) when βi = 1/9, which can hardly take place in stellarators. According to [14],

β at the magnetic axis in a Helias reactor does not exceed 13.55%. Assuming that

βi = 0.5β, we can take βi = 6.5%. Then we obtain ui = 1.3, for which Q is rather close

to Q(ui = 1), see figure 2. This explains why the damping of core-localized gap modes,

including high frequency modes, can be considerable in the Helias reactor.

A detailed analysis was carried out for the IM modes and TAE modes in the

planned first NBI experiments on W7-X. It was found that the damping may exceed

the drive of the IM modes caused by the NBI passing ions. Therefore, it may prevent

the destabilization of these modes. In order to make a more definite conclusion, the

calculation of the growth rate should be carried out with a more realistic distribution

function of NBI ions, and a contribution of trapped energetic ions should be taken into

account.

It is found that our theory is consistent with an LHD experiment where two TAE

modes were observed: In this experiment the plasma β was low and the beam β was

high, and there was a large pressure gradient of the beam particles in the region where

TAEs were located. This explained why the damping rate was not sufficient to stabilize

the instability.

The conclusions drawn in this work are based on the consideration of passing

particles only. The role of trapped particles is not investigated yet. One can expect

that the effect of trapped electrons on the damping of high frequency modes will be not

negligible. On the other hand, the instability drive may be enhanced by the trapped

energetic ions.
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