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A numerical investigation is carried out to understand the equilibrium β-limit in a classi-
cal stellarator. The SPEC code is used in order to assess whether or not magnetic islands
and stochastic field-lines can emerge at high β. Two modes of operation are considered: a
zero-net-current stellarator and a flux-conserving stellarator. Despite the fact that relax-
ation is allowed, the former is shown to maintain good flux surfaces up to the equilibrium
β-limit predicted by ideal-MHD, above which a separatrix forms. The latter, which has
no ideal equilibrium β-limit, is shown to develop regions of magnetic islands and chaos at
sufficiently high β, thereby providing a ”non-ideal β-limit”. Perhaps surprisingly, how-
ever, the value of β at which the Shafranov shift of the axis reaches a fraction of the
minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare
our results to the High-Beta-Stellarator theory of (Freidberg 2014) and derive a new
robust prediction for the non-ideal equilibrium β-limit above which chaos emerges.

1. Introduction

In stellarators, the maximum achievable β is most probably set by the equilibrium and
not by its stability (Helander et al. 2012). In fact, magnetic surfaces are not guaranteed to
exist in three-dimensional MHD equilibria without a continuous symmetry (Meiss 1992).
While stellarators can be designed to possess magnetic surfaces in vacuum (Hanson &
Cary 1984; Cary & Hanson 1986; Hudson & Dewar 1997; Pedersen et al. 2016), the nec-
essary existence of plasma currents that maintain force-balance at finite plasma pressure
engenders the potential destruction of magnetic surfaces at sufficiently high β and can
thus lead to the loss of confinement (Drevlak et al. 2005).

The equilibrium β-limit is not fully understood since it requires the accurate com-
putation of three-dimensional MHD equilibria, which generally consist of an intricate
combination of magnetic surfaces, magnetic islands, and magnetic field-line chaos. The
Stepped-Pressure Equilibrium Code (SPEC) was developed as one possible approach to
fulfil this highly non-trivial task (Hudson et al. 2012), although there are a few more on-
going complementary efforts (Suzuki et al. 2006; Hirshman et al. 2011). SPEC has been
rigorously verified in axisymmetry (Hudson et al. 2012), in slightly perturbed configura-
tions (Loizu et al. 2015b,a, 2016a), and more recently in stellarator geometries (Loizu
et al. 2016b).

With a view to progressing towards an understanding of the β-limit in advanced, fusion-
relevant stellarator experiments, we focus on a classical stellarator geometry with a simple
pressure pedestal and perform a basic numerical study of its equilibrium β-limit. The
simplified geometry allows us to use the High-Beta-Stellarator model (Freidberg 2014) to
guide our investigation. This paper leads to the distinction between ideal and non-ideal
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equilibrium β-limits, for which we derive analytical expressions that push our theoretical
understanding forward and validate the numerical calculations.

2. Model and control parameters

We consider the fixed-boundary problem of a finite β equilibrium in a classical l = 2
stellarator (Freidberg 2014). Namely, we must provide (i) the geometry of the boundary,
e.g. via the Fourier coefficients of the cylindrical coordinates defining the boundary sur-
face, {Rmn, Zmn}; (ii) the pressure profile as a function of the enclosed toroidal magnetic
flux, p(Ψ); and (ii) an additional profile, e.g. the rotational transform, ι-(Ψ), or the net
toroidal current, Iϕ(Ψ).

2.0.1. Boundary

The simplest boundary representation that can model an l = 2 stellarator is that of a
rotating ellipse with no toroidally averaged elongation. Namely,

R(θ, ϕ) = R00 +R10 cos θ +R11 cos (θ −Npϕ)

Z(θ, ϕ) = Z00 + Z10 sin θ + Z11 sin (θ −Npϕ) (2.1)

with Z00 = 0, Z10 = −R10, and Z11 = R11. For our β-limit study, the main parameters
of interest in Eq. (2.1) are the major radius, R00, and the number of field periods, Np.
In fact these can be used to vary independently the inverse aspect ratio, ε, and the
vacuum rotational transform, ι-v, which are predicted to determine the ideal equilibrium
β-limit. We therefore choose to fix the other parameters to R10 = 1 and R11 = 0.25. Two
examples of such boundaries with different values of Np are shown in Fig. 1.

The inverse aspect ratio is

ε =
reff

R00
, (2.2)

where the effective minor radius is reff =
√
rmaxrmin, with rmax = R10 +R11 = 1.25 and

rmin = R10 − R11 = 0.75, respectively the major and minor axis of the rotating ellipse.
The vacuum rotational transform can be estimated analytically (Helander 2014) as

ι-v =
Np
2

(rmax − rmin)2

r2
max + r2

min

. (2.3)

For example, for Np = 5 we get ι-v ≈ 0.3.

2.0.2. Pressure profile

We model a pressure pedestal by assuming that all the pressure gradient is concentrated
on a single flux-surface, namely p(Ψ) = p0 for Ψ 6 Ψa and p(Ψ) = 0 for Ψ > Ψa.
This step in the pressure is naturally described by the SPEC code: two Taylor-relaxed
volumes (Taylor 1974) separated by an ideal-interface supporting a pressure step [[p]] =
p(Ψ+

a ) − p(Ψ−a ) = p0, in correspondence to which a jump in B must arise according

to [[p + B2

2µ0
]] = 0. This implies the presence of a surface current that is simply a weak

representation of the pressure-driven (diamagnetic and Pfirsch-Schlüter) current. For our
basic β-limit study, we choose to fix the value Ψa = 0.3Ψedge and use the freedom in p0

to control the value of β, which we define here as β = 2µ0p0/B
2
0 , where B0 = B(Ψ = 0).

2.0.3. Zero-net-current versus flux-conserving

The SPEC code calculates MHD equilibria as extrema of the Multiregion, Relaxed
MHD (MRxMHD) energy functional (Hole et al. 2007; Hudson et al. 2007). In essence, the
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Figure 1. Boundary of a classical l = 2 stellarator with Np = 5 (left) and Np = 10 (right)
field periods. The inverse aspect ratio is ε = 0.1 and the colour represents the amplitude of the
vacuum magnetic field on the boundary as computed from SPEC.

energy functional is the same as in conventional ideal MHD equilibrium theory (Kruskal
& Kulsrud 1958), but the constraints under which the function is extremized are different.
While in ideal-MHD the magnetic topology is continuously constrained, in MRxMHD
the topology is only discretely constrained, thus allowing for partial relaxation. More
precisely, the plasma is partitioned into a finite number, NV , of nested volumes, Vv, that
undergo Taylor relaxation. These volumes are separated by NV − 1 interfaces that are
constrained to remain magnetic surfaces during the energy minimization process. For the
β-limit study at hand, we have NV = 2 volumes separated by one ideal-interface. The
location and shape of this interface is unkown a priori and determined self-consistently
by a force-balance condition. MRxMHD equilibrium states satisfy

∇×B = µvB in the volumes (2.4)[[
p+

B2

2µ0

]]
= 0 on the interface (2.5)

for v = 1, 2. In addition to providing the enclosed toroidal fluxes in each volume (Ψa

and Ψedge), the solution to Eq. (2.4) requires one more parameter if the volume is a
topological torus (the innermost volume) and two more parameters if the volume is an
annulus (the outer volume). Hence we must provide a total of 3 parameters to determine
the equilibrium solution at a given value of β.

If we want to enforce a zero net-toroidal-current, Iϕ = 0, we can impose µ1 = µ2 = 0
and then iterate on the total enclosed poloidal flux, ψp, until the surface current has no
net toroidal component. At each iteration step, the net toroidal surface current can be
easily calculated as

ICS
ϕ =

∫ 2π

0

[[B]] · eθ dθ (2.6)

by virtue of Ampère’s law. The iterative procedure can be implemented via a Newton
method and brings ICSϕ down to machine precision in a few steps. We refer to this mode
of operation as zero-net-current.

If we want to constrain the rotational transform, ι-(Ψ), we can enforce it to remain
constant on both sides of the ideal-interface, ι-+a = ι-−a = ι-a, and at the edge, ι-edge. Once
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again, this can be achieved by iterating on the values of µ1,2 and ψp. We refer to this
mode of operation as flux-conserving.

We would like to remark that while the zero-net-current mode guarantees Iϕ = 0, it
does not guarantee that the rotational transform remains constant, and in particular we
expect ι-+a 6= ι-−a . Conversely, the flux-conserving mode guarantees that ι- remains constant
on certain surfaces (thus only locally flux-conserving) but in general we expect Iϕ 6= 0,
in particular at the location of the pressure-gradient.

3. High-β equilibria and Shafranov shift

Figure 2 shows Poincaré plots of the equilibirium magnetic field at different values of
β for both the zero-net-current stellarator and the flux-conserving stellarator. In both
cases there is a Shafranov shift that increases with β. However, the Shafranov shift of the
axis, ∆ax, increases with β much faster in the zero-net-current stellarator. It is useful to
define the quantity

β0.5 ≡ β(∆ax =
reff

2
) , (3.1)

namely, the value of β at which the Shafranov shift of the axis reaches half of the minor
radius. According to ideal-MHD equilibrium theory (Miyamoto 2005), β0.5 is predicted
to scale as

β0.5 ∼ ε ι-2v ∼
N2
p

R00
(3.2)

for large aspect ratios, ε � 1, and slowly varying ι-v, which is true for ι-v � 1. A
scan in both R00 and Np has been carried out in order to assess how β0.5 scales in the
numerical MHD calculations. Figure 3 shows the result of this scan. Despite the fact that
SPEC allows for plasma relaxation, the scaling law (3.2) is very well reproduced in both
modes of operation. However, the values of β0.5 are much higher in the flux-conserving
stellarator, by a factor of about 6. As we shall see now, this fundamental difference can
be explained in terms of the High-Beta-Stellarator (HBS) model developed in (Freidberg
2014).

4. Ideal β-limit and the HBS theory

The HBS model for a classical stellarator developed in (Freidberg 2014) predicts that
the rotational transform at the plasma edge, ι-a, evolves with β and plasma current as

ι-a = (ι-v + ι-I)
(
1− ν2

)1/2
(4.1)

where ι-I is the transform produced by the net toroidal current,

ι-I =
µ0IϕR0

2πa2B0
, (4.2)

and

ν =
β

εa(ι-v + ι-I)2
, (4.3)

where a is the effective minor radius of the plasma edge and εa = a/R. For our system,
we have a =

√
Ψa/Ψedgereff and thus εa =

√
Ψa/Ψedgeε.

In the context of the HBS theory, the zero-net-current stellarator can be analyzed
by taking ι-I = 0. Equation (4.1) then implies that ι-a decreases with increasing β.
This is visible in Figure 4, where the profile ι-(Ψ) obtained from SPEC at finite β is
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Figure 2. Poincaré section (ϕ = 0◦) of the equilibrium magnetic field at different values of β.
Left: zero-net-current stellarator. Right: flux-conserving stellarator. Here Np = 5 and ε = 0.1.
Indicated in red are the boundary surface and inner interface supporting the pressure pedestal.

shown and compared to the vacuum transform. A jump in the rotational transform self-
consistently develops on the ideal interface supporting the pressure gradient, namely at
Ψa = 0.3Ψedge. The ideal MHD equilibrium code VMEC (Hirshman & Whitson 1983)
was also run for this case with a pressure pedestal of small but finite width (the calcula-
tion requires a rather hight radial resolution, with about 3000 flux surfaces) and shown
to produce essentially the same transform profile.

In Fig. 5, the value of ι-a is shown as a function of β and compared to the HBS predic-
tion, Eq. (4.1), showing fairly good agreement (notice that there are no free parameters).



6 J. Loizu et al

−1.6 −1.4 −1.2 −1 −0.8
−1

−0.5

0

0.5

1

1.5

lo
g(

 β
0.

5  )

log( 1/R00 )
0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

1.5

log( Np )

flux−conserving

zero−net−current

flux−conserving

zero−net−current

Figure 3. Scaling of β0.5 with the inverse aspect ratio, ε ∼ 1/R00 (left), and with the vacuum
iota, ι-v ∼ Np (right). Black stars are for the flux-conserving stellarator. Magenta pentagrams
are for the zero-net-current stellarator. The dashed lines have slope 1 (left) and 2 (right).
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Figure 4. Rotational transform as a function of toroidal magnetic flux from both SPEC (black
stars) and VMEC (solid blue line) at β = 0.15%. For comparison, the vacuum transform is also
shown (dashed magenta line). Here Np = 5, ε = 0.1, and the vertical dashed line indicates the
location of the pressure pedestal.

The point where ι-a = 0, which from Eq. (4.1) happens when ν = 1, corresponds to the
emergence of a separatrix (see, e.g., Fig. 2) and this defines the ideal β-limit, namely

βlim = εaι-
2
v . (4.4)
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Figure 6. Net toroidal plasma current as a function of β, from SPEC calculations (black
stars) and from Eq. (4.5) (dashed red line). Here Np = 5 and ε = 0.1.

For example, for the case depicted in Fig. 5 we have εa ≈ 0.05 and ι-v ≈ 0.27, thus
Eq. (4.4) gives βlim ≈ 0.4%, in good agreement with the SPEC calculations.

For the flux-conserving stellarator, we can impose ι-a = ι-v in the HBS model. This
leads to an expression for the value of the plasma current that is necessary to maintain
ι-a constant. One obtains (Freidberg 2014)

ι-I = ι-v

(√1

2

(
1 +

√
1 + 4H2

)
− 1
)
, (4.5)

where

H =
β

εaι-2v
. (4.6)

Figure 6 shows the net toroidal surface-current, Iϕ, self-consistently generated in SPEC
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equilibria as a function of β and compares it to the HBS prediction, Eq. (4.5), showing
good agreement (again, there are no free parameters). For large H � 1, one has Iϕ ∼

√
β,

and the HBS model predicts that no β-limit is reached because the plasma current keeps
rising and preventing the separatrix to form. From SPEC equilibrium calculations, how-
ever, where plasma relaxation is allowed, we observe that magnetic islands and chaotic
field-lines emerge at sufficiently high β, thereby providing a ”non-ideal β-limit”.

5. Non-ideal β-limit and emergence of chaos

We can quantify the emergence of chaos by calculating the fractal dimension of the
field-lines on the Poincaré section as a function of β (Meiss 1992). More precisely, we can
evaluate the so-called box-counting dimension, or Hausdorff dimension,

D = lim
L→0

∣∣∣ log(N)

log(L)

∣∣∣ (5.1)

where L is the size of the boxes and N is the number of boxes containing at least
one point of the magnetic field-line on the Poincaré section. If the field-line traces a
magnetic surface, or even a magnetic island, one expects D = 1. If the magnetic field-
line trajectory is chaotic, however, it fills up a certain ”area” in the Poincaré section, and
D > 1 is expected. We remark that the accurate evaluation of D requires a large number
of toroidal transits, Ntrans, when generating the Poincaré section via field-line-tracing.
Satisfactory convergence was found at values of about Ntrans > 2× 104.

Figure 7 shows the calculated fractal dimension as a function of the toroidal flux in
equilibria of increasing β. First, we observe that for sufficiently low β we obtain D(Ψ) = 1,
as expected, because magnetic surfaces are preserved in the entire volume. Second, we
notice that for sufficiently high β there are regions in which D(Ψ) > 1 for Ψ > Ψa. Third,
the value of D seems to be almost-binary, taking values at either D ≈ 1 or D ≈ 1.6.
Fourth, the regions with D ≈ 1.6 correspond to what appears to be stochastic regions
in the corresponding Poincaré section. Finally, the volume occupied by these regions
increases with β. These observations suggest that D is a good proxy for the emergence
of chaos, which greatly simplifies the task of probing the ”non-ideal β-limit”. In fact, we
can now define the volume of chaos, Vchaos, in the system as

Vchaos = Vtot

nlines∑
i=1

(Ψi −Ψi−1)

Ψedge
H(D(Ψi)−Dcrit) (5.2)

where Vtot is the total volume defined by the fixed-boundary, nlines is the number of
traced field-lines, Ψi−Ψi−1 measures the enclosed toroidal flux between two neighbouring
field lines, and H is the Heaviside function, with H = 0 for D < Dcrit = 1.5 and H = 1
otherwise. Figure 8 shows the profile of Vchaos(β) calculated for two different values of
Np. Clearly, the emergence of chaos occurs at some critical value of β = βchaos, which we
define as the non-ideal equilibrium β-limit. The question remains: can we theoretically
predict the value of βchaos?

At this point we make the following hypothesis: the emergence of chaos shall occur
when the perturbations in the poloidal field due to finite toroidal current are comparable
to the vacuum poloidal field. Namely, chaos may emerge when ι-I(β) ∼ ι-v. From the
HBS theory we know that ι-I increases with β according to Eq. (4.5), hence applying our
constraint we have

1 =

√√√√1

2

(
1 +

√
1 + 4

β2
chaos

ε2aι-
4
v

)
− 1 (5.3)
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Figure 7. Fractal dimension of the magnetic field lines in a Poincaré section as a function of
toroidal flux. The pressure pedestal is at Ψ/Ψedge = 0.3. Different curves are for different values
of β. All equilibria have Np = 5 and ε = 0.1.

and hence

βchaos =
√

12εaι-
2
v (5.4)

which gives βchaos ≈ 0.5% for Np = 3 and βchaos ≈ 1.4% for Np = 5, thus in excellent
agreement with the observed transition to chaos (see Fig.8). More importantly, Eq. (5.4)
is a general result and predicts that the non-ideal equilibrium β-limit scales exactly as
the ideal equilibrium β-limit but with a larger factor in front, of the order of

√
12 ≈ 3.5.

6. Discussion

The equilibrium β-limit in a classical stellarator has been thoroughly investigated
via numerical calculations that have guided our analytical understanding. A classical
stellarator with zero net-toroidal-current possesses an equilibrium β-limit as predicted
by ideal MHD, βlim = εaι-

2
v, above which a separatrix forms due to the vanishing of the

rotational transform at the plasma edge, ι-a → 0. A classical stellarator with constant ι-a,
however, has a larger equilibrium β-limit that is of non-ideal nature. In fact, ι-a can be
maintained at any value of β as long as a net-toroidal-current flows in the vicinity of the
pressure pedestal; when such current produces a change in transform that is comparable
to the vacuum transform, ι-I ∼ ι-v, magnetic field-line chaos emerges in maximally-relaxed
equilibria, and this occurs at βchaos =

√
12εaι-

2
v. For β > βchaos, the volume of destroyed

magnetic surfaces increases monotonically with β and radially outward from the location
of the pressure pedestal. We remark that this non-ideal β-limit does not consider the
possibility of island-healing mechanisms; on the contrary, it considers the ”worst-case-
scenario” of complete relaxation. Therefore βchaos should be interpreted as a lower bound
for the β-limit of a classical stellarator where a net-toroidal-current clamps the value of
ι-a. Furthermore, we would like to notice that a relatively small toroidal current is enough
to maintain ι-a constant and therefore to raise the β-limit. For example, for a classical
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vertical dashed lines indicate the predicted transition to chaos at β = βchaos given by Eq. (5.4).

stellarator with Np = 5, ε = 0.1, B0 ∼ 1 T, and R0 = 10 m, we have Iϕ ≈ 40 kA at
about β ≈ 2% (Fig. 6).

Two questions remain to be investigated: (1) can this predictive theory be extended to
more complex stellarator geometries? (2) how to incorporate the possibility of pressure-
induced island healing (Bhattacharjee et al. 1995; Narushima et al. 2008; Hegna 2012)
in the derivation of the equilibrium β-limit? Some new ideas are here needed.

The authors would like to thank Per Helander, Sam Lazerson, and Jürgen Nührenberg
for useful discussions. This work has been carried out in the framework of the EUROfusion
Consortium and has received funding from the Euratom research and training programme
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