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The Electron Cyclotron Current Drive (ECCD) efficiency is usually modeled in the

collisionless limit. While such models are sufficient for plasmas with rather low colli-

sionality, they might underestimate the current drive in plasmas at low temperatures

likely to occur at the initial phase of high density device operation. In this paper, the

impact of finite collisionality effects on the wave-induced current drive is studied for a

high-mirror configuration of Wendelstein 7-X using a combination of the drift kinetic

equation solver NEO-2 and the ray-tracing code TRAVIS for a realistic set of plasma

parameter profiles. The generalized Spitzer function, which describes the ECCD effi-

ciency in phase space, is modeled with help of NEO-2, which uses the full linearized

Coulomb collision operator including energy and momentum conservation. Within

this approach, the linearized drift kinetic equation is solved by means of the field

line integration technique without any simplifications on device geometry. Results

of the ray-tracing code TRAVIS using the ECCD efficiency from NEO-2 within the

adjoint approach show a significant difference for the driven current when compared

to commonly used collisionless models for the ordinary as well as the extraordinary

second harmonic mode.

a)gernot.kapper@tugraz.at
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I. INTRODUCTION

In the Wendelstein 7-X stellarator1 low-order rational flux surfaces are avoided in the

plasma core by its low-shear concept since large magnetic islands may be formed there. In

turn, such resonant flux surfaces are placed at the plasma edge forming an island divertor

configuration. These special device characteristics can be destroyed by a small bootstrap

current which has to be compensated by Electron Cyclotron Current Drive (ECCD)2, where

the cyclotron resonant interaction of electrons and incident radio-frequency (RF) waves

drives a parallel current3. The Electron Cyclotron Resonance Heating (ECRH) system of

Wendelstein 7-X is designed for ten gyrotrons each with a power up to 1 MW at a wave

frequency of 140 GHz at continues operation4. The two main ECRH/ECCD scenarii are

heating and current drive with the X2-mode for low and moderate densities and the O2-mode

for high densities. Both cases are investigated in this paper.

The efficiency of current drive by microwave injection, defined by the generalized Spitzer

function using the adjoint approach5, has been well studied in asymptotical collisionality

limits, namely for the collisionless case where the 2D bounce averaged equation is solved

and in the high collisionality limit where the classical Spitzer function6 for homogenous

magnetic fields can be applied. In contrast to the collisionless limit, for finite collisionality,

the generalized Spitzer function has a finite value in the trapped region7 (but smaller than in

the high collisionality limit) and also has an offset in the passing region8. These features can

qualitatively be reproduced by interpolation between asymptotical limits9. However, direct

calculations of the generalized Spitzer function in the case of finite collisionality exhibits

also a feature which can not be expected from such an interpolation. This feature is due

to the symmetric part of this function with respect to parallel velocity, which is absent in

asymptotical limits, resulting from the combined action of magnetic mirroring and collisions.

This part, which is localized in velocity space around the trapped-passing boundary in the

long mean free path regime, is also responsible for the bootstrap effect. As shown analytically

in Ref. 10 and demonstrated later numerically in Refs. 11–13, the symmetric part of the

generalized Spitzer function can be used for current drive by waves with symmetric spectra

in the parallel wave number. In the present paper, the generalized Spitzer function, which is

the normalized distribution function of the parallel flow, is calculated by the neoclassical drift

kinetic equation solver NEO-214, which treats plasmas with finite collisionality without any
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simplification on device geometry by means of the field line integration technique15. In this

code the linearized drift kinetic equation is solved using the full linearized Coulomb collision

operator including energy and momentum conservation16. Originally, NEO-2 was developed

for the computation of mono-energetic neoclassical transport coefficients in stellarators17

and for the computation of distribution functions in tokamaks11. However, recent progress

such as the development of a quasilinear code version for non-axisymmetric tokamaks18 as

well as ongoing technical improvements such as parallelization techniques for a more efficient

computation of the generalized Spitzer function in stellarators12,13 resulted in a more general

version of the code.

In this paper the impact of finite collisionality on ECCD is studied with the ray-tracing

code TRAVIS19 using the local current drive efficiency computed by NEO-2 in the non-

relativistic limit without further simplifications to the collisional model. The structure of

this paper is as follows, in Sec. II the derivation of the parallel driven current density within

the adjoint approach is presented, in Sec. III results of the current drive efficiency computed

by NEO-2 as well as results from ray-tracing are presented for realistic plasma parameter

profiles from an initial stage of device operation in Wendelstein 7-X, while in Sec. IV a

conclusion of the observed effects is given.

II. CURRENT DRIVE USING THE ADJOINT APPROACH

A. Conductivity problem

Following Ref. 14, the linearized drift kinetic equation ignoring cross-field drift for the

current drive problem is given as,

L̂0fMg3 = q3fM, (1)

where fM is a local Maxwellian, g3 is the distribution function driven by the parallel electric

field, q3 = v‖B is the source term in the conductivity problem, B is the magnetic field

module, v‖ is the parallel velocity module, and L̂0 is an integro-differential operator defined

as,

L̂0 = vλhϑ
∂

∂ϑ
− L̂C , (2)

where v is the particle velocity module, λ = v‖/v = λ(ϑ, η) is the pitch parameter, hϑ is

the contra-variant poloidal component of the unit vector along the magnetic field line, ϑ is
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the field line parameter, and L̂C is the full linearized Coulomb collision integral including

energy and momentum conservation. Operator (2) is written in terms of integrals of motion

v and normalized perpendicular adiabatic invariant η = v2⊥/(v
2B) which are conserved in

zero order over the Larmor radius. Here, the cross-field rotation term is neglected because it

has a small effect on this distribution function in finite collisionality regimes as well as at low

collisionalities where the electrons are mostly in the 1/ν regime. Besides Eq. (1), function

g3 must satisfy two additional constraints which remove the null-space of this equation14,〈∫
d3v fMg3

〉
=

〈∫
d3v v2fMg3

〉
= 0. (3)

Eq. (1) is solved on a long enough field line, 0 < ϑ < 2πιNt, where ι is the rotational

transform and Nt � 1 is a number of toroidal periods large enough to cover the magnetic flux

surface in a way allowing for a sufficiently accurate interpolation. The distribution function

g3 is related to the generalized Spitzer function gsp, which is independent of collisionality in

asymptotical limits, as follows,

gsp =
1

lCBref

g3, lC =
T 2
e

πnee4 ln Λee

, (4)

where lC is the mean free path, Bref is a reference magnetic field module, Te is the electron

temperature, ne is the electron density, e is the electron charge, and ln Λee is the Coulomb

logarithm as defined in Ref. 20. The thermodynamic flux connected to the current drive

problem is defined as,

I3 = ne
〈
Ve‖B

〉
= −

〈∫
d3vq†3δfRF

〉
, (5)

where Ve‖ is the electron parallel flow velocity, < . . . > denotes neoclassical flux surface

average (average over the volume between neighboring flux surfaces), the cross denotes an

opposite parallel velocity sign, and the distribution function δfRF is the solution to the linear

current drive problem,

L̂0δfRF = QRF, (6)

where

QRF = L̂QLfM = − 1

J

∂

∂vi
(
JΓiRF

)
(7)

is the quasilinear particle source in phase space due to the resonant interaction with radio-

frequency waves, ΓiRF is the wave-induced quasilinear diffusion flux density, and L̂QL is the
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quasilinear diffusion operator acting on the local Maxwellian fM. Here, a co- and contra-

variant notation with respect to the velocity space components vi is used, and J is the phase

space Jacobian.

Using the same adjoint approach as in Ref. 5, the averaged parallel electron current

density je‖ can be expressed as follows,

〈
je‖B

〉
= −e

〈∫
d3vq†3δfRF

〉
= −e

〈∫
d3vδfRFf

−1
M (q†3fM)

〉
= −e

〈∫
d3vδfRFf

−1
M (L̂†0fMg

†
3)

〉
= −e

〈∫
d3vg†3L̂0δfRF

〉
, (8)

where L̂†0fMg
†
3 = q†3fM and the adjointness relation,〈∫

d3vGL̂0fMF

〉
=

〈∫
d3vF L̂†0fMG

〉
, (9)

is used. Finally, the parallel current density can be directly linked to the source term in

Eq. (6),

〈
je‖B

〉
= −elCBref

〈∫
d3vg†spQRF

〉
= −elCBref

〈∫
d3v

∂g†sp
∂vi

ΓiRF

〉
, (10)

where the adjoint generalized Spitzer function is expressed through the generalized Spitzer

function (4) as follows, g†sp(v‖) = gsp(−v‖).

B. Distribution function for full linearized collision model

The velocity dependence of the NEO-2 solution to the integro-differential equation (1)

pertinent to the full linearized collision model is expanded over a complete set of test func-

tions ϕm(v),

g3(ϑ, v, λ) =
M∑
m=0

gσ3,m(ϑ, η(ϑ, λ))ϕm(v), (11)

where M+1 is the number of basis functions, and σ is the parallel velocity sign. The expan-

sion coefficients gσ3,m(ϑ, η) of the generalized Spitzer function are computed by NEO-2 using

a conservative 2D finite difference scheme of third order over the normalized perpendicular
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adiabatic invariant η and of the first order over the field line parameter ϑ with an adaptively

refined η-grid in order to resolve all trapped-passing boundary layers14. In previous versions

of NEO-2, the basis functions ϕm(v) were fixed to be generalized Laguerre polynomials of

order 3/2 (Sonine polynomials). This choice was not an intrinsic limitation of the code and

has been overcome recently allowing the usage of an arbitrary complete set of basis functions,

which are not necessarily orthogonal. For the computation of flux surface averaged neoclas-

sical diffusion coefficients, the typical number of basis functions used is between M = 3 and

M = 5. Further increase of the number of Sonine polynomials results in an expansion of the

solution by high order polynomials which tend to diverge at higher velocities. However, for

the computation of the distribution function for ECCD applications, a stable computation

up to five times the thermal velocity is necessary, which is computationally a rather difficult

task when using a polynomial basis. In contrast to Sonine polynomials, which are globally

defined on the whole velocity space, the usage of local basis functions, such as B-splines21,

allows to increase the upper velocity limit and the velocity resolution using the same number

of basis functions as with the Sonine basis.

For the computations of the generalized Spitzer function, cubic basis splines are used

resulting in a velocity dependence of the solution represented by piecewise cubic polynomi-

als. Another application of NEO-2 such as the investigation of NTV in non-axisymmetric

tokamaks18 make it necessary to use low order basis splines, e.g., first order splines (hat

functions), in order to resolve resonances accurately. These approaches and the pertinent

numerical schemes are presented in detail in Ref. 14. The derivation of the matrix elements

of the full linearized Coulomb collision operator including extensive benchmarks of various

sets of basis functions will also be presented in an upcoming separate publication.

C. Computational treatment

1. Data precomputation

The high dimensionality of the problem, which is 5D for a given magnetic configuration

with fixed plasma parameter profiles in case of a stellarator, makes the precomputation

of the generalized Spitzer function inevitable. Therefore, the local NEO-2 solutions are

precomputed on a prescribed set of flux surfaces, where on each flux surface the drift kinetic
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FIG. 1. Total number of toroidal field periods Nt as a function of the normalized toroidal flux s.

The gray band indicates the intended lower and upper limits, respectively, for precomputation.

equation is solved along a single field line. The number of traced toroidal field periods Nt

until the field line is closed artificially, defines the poloidal accuracy of the reconstruction

process of the distribution function. The prescribed set of flux surfaces is chosen in such

a way that Nt per flux surface is within a defined boundary between 200 and 400 periods.

The lower boundary guarantees an accurate computation, whereas the upper boundary keeps

memory and runtime treatable. In a first step, these flux surfaces are uniformly distributed

in the normalized toroidal flux s and are, if necessary, shifted from its initial distribution

to avoid computation close to low-order rational flux surfaces. This is important to avoid a

closure of the field line after only a few toroidal periods, which would result in poor poloidal

resolution and, as a consequence, in extremely low accuracy of the flux surface averages.

As seen from Fig. 1, the restriction to an intended number of periods is not possible with

a purely uniform distribution due to resonances, therefore, the distribution is adaptively

modified. Since the restriction can not be fulfilled everywhere without significantly violating

the initial uniform distribution, a slightly larger number of periods is accepted for some values

of s. The resulting set of flux surfaces and pertinent collisionality parameters computed from

plasma parameter profiles is used as input for one NEO-2 run per flux surface.

In NEO-2 the field line is separated into domains which can be solved independent of each

other. This allows an efficient parallelization of the code with almost ideal speedup with the

number of computing nodes. Despite that NEO-2 is an efficient solver in sense of runtime
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and memory demands as shown in Ref. 14, the usage of the full linearized Coulomb collision

operator expanding the velocity dependence of the solution with several basis functions

and rather long field lines, would not be treatable with reasonable effort without code

parallelization. The computed solution on a dense mesh in phase space leads to rather large

amounts of data (∼ 100 GB per configuration and pertinent profile) stored in the HDF5

file format22. Since these data should be used as input also for other applications, the focus

was on the development of an interface allowing straightforward access to the precomputed

results.

2. Data access

The generalized Spitzer function acting as a current drive efficiency in phase space has

to be evaluated along the microwave beam propagating through the plasma. Therefore, it

has to be known for any point (x, v, λ) in phase space, where x = (s, ϑb, ϕb) are Boozer

coordinates being the normalized toroidal flux, poloidal and toroidal angles, respectively.

From the local solution of the linear current drive problem g3(ϑ, v, λ), the solution to the

5D problem is reconstructed by linear interpolation over the radial coordinate and over the

periodic Boozer angles. These periodic Boozer angles are related to the field line parameter

ϑ via the relations,

ϑb = ϑ0 + ϑ, ϕb = ϕ0 +
ϑ− ϑ0

ι
, (12)

where ϑ0 and ϕ0 are the starting points of the field line and ι is the rotational transform.

The values of ϑ, where the drift kinetic equation is solved, are adaptively distributed by the

solver. Transformations of the field line parameter to Boozer coordinates as given in Eq. (12)

results in Fig. 2, where a zoomed depiction of points where the problem is actually solved

is given. It should be noted that the depiction of a whole flux surface with 0 < ϑb < 2π

and 0 < ϕb < 2π/N (N = 5 for Wendelstein 7-X) would result in a grid which size can

be estimated with Nt × Nϕb
, where typical values are Nt = 400 and Nϕb

= 600. In the

center of the figure an arbitrary point of interest is marked by a cross in order to indicate

the used points of precomputed values for linear interpolation. First, interpolation along

two segments on the same field line enclosing the point is performed, while in a second step

interpolation is done in the poloidal direction apart from the field line. Since the point of

interest will usually be located between two precomputed flux surfaces, this procedure is
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FIG. 2. Depiction of precomputed data points (•) by NEO-2 on a single flux surface. An arbitrary

point of interest (×) is shown, where the required data points for interpolation are highlighted

(◦). The non-equal spacing of the data points is a consequence of the adaptive level placement in

NEO-2 as shown in Ref. 14.

performed on two flux surfaces enclosing the point with subsequent radial interpolation. As

a consequence, one spatial point requires eight precomputed values of NEO-2. The use of

linear interpolation is justified by the dense grid in periodic Boozer angles and the sufficiently

large number of flux surfaces.

In order to find the relevant precomputed data points to a requested point on the 3D

(s, ϑb, ϕb)-grid, fast lookup routines based on binary search were implemented. The co-

efficients to reconstruct the distribution function, gσ3,m(ϑ, η(ϑ, λ)), are read from the data

base using special features of the HDF5 library where only portions of a dataset (so-called

hyperslabs22) are read in order to reduce disk operations. In addition, in order to speedup

consecutive calls of the interface, all required information for interpolation of the previous

spatial point is cached as long as the spatial position does not change. The time for querying

one spatial point is of the order of milliseconds, while the evaluation of several velocities

takes almost no extra time due to the described data caching. Therefore, the usage of the

NEO-2 interface does not significantly harm the interactive usage of TRAVIS.
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III. RESULTS

A. Current drive efficiency with NEO-2

The impact of finite plasma collisionality on ECCD is investigated using plasma parameter

profiles from the transport code NTSS23 and a high-mirror configuration of Wendelstein 7-X

computed by the equilibrium code VMEC24 as depicted in Figs. 3 and 4. The plasma param-

eters correspond to a collisionality at the onset of the long mean free path regime, where the

collisionality is roughly three times smaller than needed for the plateau regime. Therefore,

this profile represents an initial stage of device operation, where finite collisionality effects

play a more significant role than at higher temperatures.

Heating by microwaves is mainly performed close to the field maximum where the ab-

sorption of the wave energy by passing particles usually dominates the amount of energy

absorbed by trapped particles. Therefore, the behavior of the generalized Spitzer function

at spatial points around the field maximum is of special interest and is investigated in the

following. The magnetic field module at half radius is given in Fig. 4, where some spatial

points of interest are marked. Results of the generalized Spitzer function from NEO-2 for

finite collisionality pertinent to given plasma parameters together with results for the long

mean free path regime from the code SYNCH25 for two different particle velocities, v = vT

and v = 3vT , are presented in Fig. 5. Here, vT =
√

2Te/me is the thermal velocity, where Te

and me are electron temperature and electron mass, respectively. SYNCH is a fully relativis-

tic code for the computation of the generalized Spitzer function in the long mean free path

regime for general toroidal geometry and all types of flux coordinates. Both, the internal

TRAVIS model, where the generalized Spitzer function is approximated in the collisionless

limit, and the SYNCH model conserve parallel momentum. It has been shown that the high

speed limit models can significantly underestimate the current drive efficiency in contrast to

collisionless models with parallel momentum conservation26.

It can be seen that the generalized Spitzer function with finite collisionality effects taken

into account is strictly antisymmetric only at the absolute field maximum, and nearly an-

tisymmetric for points in the bean-shaped plane ϕb = 0 in which the absolute maximum

is located. For regions apart from the field maximum in toroidal directions, a significant

symmetric part arises in the trapped region which can be explained by a combined effect of
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FIG. 4. Magnetic field module at flux surface s = 0.25 as function of Boozer angles (N = 5 for

Wendelstein 7-X).

mirroring force and trapping/detrapping due to collisions. While finite collisionality leads

mainly to an antisymmetric offset in the passing domain of the distribution function, the

symmetric part is also of special interest because it is responsible for current drive by waves

with symmetric spectra10. These effects become smaller at higher particle velocities where

the distribution function converges to the collisionless limit.

In order to further investigate the symmetric part of the generalized Spitzer function,
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Line colors correspond to respective marker colors in Fig. 4.

this function is integrated over the pitch parameter in the trapped domain,

g
(tr)
sp (ϑ, x) =

+λtp(ϑ)∫
−λtp(ϑ)

dλgsp(ϑ, λ(η, σ), x), (13)

with

λtp(ϑ) =

√
1− B(ϑ)

Bmax

, (14)

where Bmax is the maximum magnetic field module on the flux surface. The distribution

of the resulting scalar (13) over the angles (this quantity is identical zero in asymptotical

limits) is shown in Fig. 6 for two velocity values, v = vT and v = 3vT , respectively. This

dependence is partly similar to Ref. 8 where the angular distribution of the mono-energetic

distribution function for λ = 0 has been studied.

From Fig. 5 it is expected that the sign of the mean value of the generalized Spitzer

function in the trapped domain is mainly determined by the toroidal Boozer angle. However,

as seen from Fig. 6 this is only the case in the vicinity of the absolute field maximum. At

toroidal positions apart from the bean-shaped poloidal plane, the sign is determined mainly

by the poloidal Boozer angle what is similar to the up-down-asymmetry in tokamaks11.

Summarizing, the non-vanishing mean values of the trapped region of the generalized Spitzer
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function on almost the whole flux surface indicate significant symmetric parts of this function

which would not be seen by collisionless models.

B. ECCD computations within a ray-tracing procedure

In TRAVIS the geometrical optics approach is used for the computation of ECCD, where

the quasilinear flux density ΓiRF of Eq. (7) is described in a local approximation, i.e., it

differs from zero in velocity space only at the resonance line where the (multiple) cyclotron

resonance condition taking into account Doppler shift is fulfilled,

ω = nωc + k‖v‖. (15)

Here, ω is the wave frequency, n is the cyclotron harmonic index, ωc = ωc0/γ is the relativistic

electron cyclotron frequency, γ = (1− v2/c2)−1/2 is the relativistic factor, and k‖ is the

parallel wave vector with respect to the magnetic field. In this approach the wave-induced

quasilinear diffusion flux density (7) is given as follows,

ΓiRF = −δ(ω − nωc − k‖v‖)Dij
0

∂fM
∂vj

, (16)
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where Dij
0 are quasilinear diffusion coefficients. Then, Eq. (10) takes the form

〈
je‖B

〉
=

〈 +∞∫
−∞

dv‖

+∞∫
0

dv⊥δ(ω − nωc − k‖v‖)F (ϑ, vi, vj)

〉
. (17)

The kernel is of the form

F (ϑ, vi, vj) ∝ v⊥
∂g†sp
∂vi

Dij
0

∂fM
∂vj

, (18)

where a constant positive factor has been omitted. This kernel is integrated along the

resonance line defined by the delta-function to obtain the driven current density. It should

be noted that on the (v⊥, v‖)-plane the resonance lines are lines of constant parallel velocity

in the non-relativistic case, circles in the weakly-relativistic approach, and elliptic curves in

the fully relativistic approach whose centers are located at the v⊥ = 0 axis, respectively.

This paper extends the studies of Ref. 8, where the DKES code27 has been used for the

computation of the ECCD efficiency with a simplified collision model for small but finite col-

lisionalities. In contrast, NEO-2 is used here for the computation of the generalized Spitzer

function without simplifications on device geometry or on the collision operator. In order

to investigate finite collisionality effects on a broad range of launch angles, scans over the

poloidal launch angle α (angle between the horizontal plane and the beam) and the toroidal

launch angle β (angle between the beam and the meridian plane containing the launcher)

are presented in the following for the X2- and the O2-scenario. The second harmonic ex-

traordinary mode (X2) with oblique propagation, sufficient for significant ECCD, is usually

characterized by almost total absorption before the beam reaches the position of cold reso-

nance ω = nωc0, while the second harmonic ordinary mode (O2) has overall lower absorption

(typically 50% to 80% for the first pass). However, weak absorption of the O2-mode allows

deeper penetration into the plasma and therefore, a significant amount of power absorption

by trapped particles. It is necessary to clarify that the investigated launch angles are of

theoretical interest and capabilities of the mirrors and other device constraints were not

taken into account. As a test configuration one beam with Pinp = 1 MW input power and

a frequency of 140 Ghz is launched off axis (Z = 0.1 m), from an origin given in cylindrical

coordinates of R = 6.56 m and ϕ = −6.5 deg. This position is close to the bean-shaped

plane.
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1. Low and moderate density scenario - X2-mode

The common Wendelstein 7-X scenario for low and moderate plasma densities (ne <

1.2 ·1014 cm−3 for 140 GHz and 2.5 T) for heating and current drive is the X2-scenario. The

restriction on moderate densities originates from the plasma wave cut-off. As seen from the

total power absorption in Fig. 7 (upper plane) for various launch angles, the X2-mode is

characterized by total absorption for launch angles where the resonance condition can be

fulfilled. In Fig. 7 (lower plane) the total parallel current driven by passing and trapped

particles is depicted. The sign of this current is mainly determined by the parallel wave

number k‖, thus strongly depends on the toroidal launch angle. Two particular launch

angles are investigated in more detail, namely (α = 5 deg, β = 20 deg) and (α = 18.75 deg,

β = −2.5 deg), which are in the following referred to as X2a and X2b, respectively.

Scenario X2a (Fig. 8) is characterized by total absorption of the wave energy by strongly

passing particles before the beam reaches the position of cold resonance. This is due to the

high optical thickness of the plasma for the X2-mode. However, compared to the collisionless

model, a visible increase of the current due to an offset to the antisymmetric part of the

generalized Spitzer function is observed (see also Ref. 8). In Fig. 9 the integral kernel (18)

of the generated current density is plotted in the (v⊥, v‖)-plane for the finite collisionality

and for the collisionless model with three resonance lines corresponding to positions along

the central ray path shown in Fig. 8. In this qualitative dependence, in contrast to Fig.

8, beam attenuation along its path caused by the absorption is ignored in F , where the

wave amplitude has been set constant everywhere for simplicity. It should be noted that the

integral kernel F also depends on the spatial position, therefore it is different for different

resonance positions, however, the change is minimal within the three depicted resonance

positions and not of relevance for this qualitative view. As can be seen from Figs. 8 and

9, the strong absorption of the X2-mode does not allow any power absorption by trapped

particles, which is usually expected for X2-scenarii. In Fig. 10, where the total driven

current within the volume enclosed by a given flux surface is plotted, it can be seen that the

collisionless model underestimates the total current by approximately 10%.

Scenario X2b (Fig. 11), which is characterized by very low k‖, is special for X2 since

almost the same fraction of energy is absorbed by trapped and passing particles, respectively,

in a very narrow absorption region (roughly 1 cm) after the cold resonance position. As a
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FIG. 7. X2-mode - Total absorbed power (upper plane) and total driven current (lower plane) of

a beam with 1 MW input power as functions of the toroidal (β) and poloidal (α) launch angle by

passing particles (left) and trapped particles (right). Two particular launch angles, depicted as

X2a and X2b, are then studied in more detail.

consequence, a current is driven by both, trapped and passing particles, which is significantly

underestimated by the collisionless model. Again, in Fig. 12 the integral kernel (18) of the

parallel current density is depicted for the finite and collisionless model. As can be seen,

a significant fraction of resonance line 2 is located inside the deeply trapped region. In

contrast to the collisionless model where the distribution function is strictly antisymmetric

and the integral kernel vanishes in the trapped domain, this leads to a significant co-current

by trapped particles. In Fig. 13 the total driven parallel current indicates that account
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FIG. 8. Scenario X2a - Locally absorbed power dP/dl (left) and locally driven current dI/dl (right)

for the finite collisionality and the collisionless case as functions of the distance along the central

ray l. Contributions of passing and trapped particles are depicted as dashed and dotted lines,

respectively. The cold resonance position is marked with a thick vertical line.
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FIG. 9. Scenario X2a - Current density integral kernel (18) as a function of the parallel and perpen-

dicular normalized velocities for finite collisionality (left) and for the collisionless limit (right). The

three numbered resonance lines correspond to respective positions indicated by numbered vertical

lines in Fig. 8. The trapped-passing boundary is shown by dashed lines. Colors are supersaturated

in order to clarify the different signs of kernel F in different regions.
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FIG. 11. The same as in Fig. 8 for scenario X2b.

of finite plasma collisionality for this particular launch angle leads to an increase of the

total current by almost one order of magnitude. This current increase mainly results from

a non-vanishing symmetric part of the generalized Spitzer function in the trapped domain

referred to as the “Helander-Catto mechanism”10.

In addition, an angle scan over the toroidal angle β at a fixed poloidal launch angle

α = 18.75 deg is given in Fig. 14. As can be seen, for small toroidal launch angles, a

significant amount of energy is absorbed by trapped particles, resulting in a current which
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FIG. 12. The same as in Fig. 9 for scenario X2b. The three numbered resonance lines correspond

to respective positions indicated by numbered vertical lines in Fig. 11.
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FIG. 13. The same as in Fig. 10 for scenario X2b.

is clearly underestimated by the collisionless model.

2. High density scenario - O2-mode

In contrast to the X2-mode, the plasma is optically gray for the O2-mode, thus the energy

of the wave is not fully absorbed within a single pass. The cut-off density is twice the cut-off

density of X2, which makes the O2-scenario applicable for high-density plasmas. 2D launch
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FIG. 14. Absorbed power (left) and total driven current (right) of a X2-beam with 1 MW input

power by passing (dashed) and trapped (dotted) particles as functions of the toroidal launch angle

β at fixed poloidal angle α = 18.75 deg.

angle scans in Fig. 15, similar to scans of Fig. 7 for X2, show that the sign of the total driven

current by passing particles is mainly determined by the toroidal launch angle which mainly

determines the parallel wave number k‖. However, the sign of the total current driven by

trapped particles is mainly determined by the poloidal position of the absorption region.

This is in agreement with the behavior of the pitch-angle integral of the generalized Spitzer

function in the trapped domain (13) in Fig. 6. Also for the O2-scenario two particular

launch angles are investigated, namely (α = 5 deg, β = 20 deg), which is the same as X2a,

and (α = 0 deg, β = −10 deg), which are in the following referred to as O2a and O2b,

respectively.

In launch scenario O2a (Fig. 16) a major fraction of energy is absorbed by passing

particles before the cold resonance surface, and a significant amount is also absorbed by

trapped particles after the cold resonance surface. The resonant parallel velocity changes

its sign after the cold resonance position, thus leading to both, co- and counter-current by

passing particles at different sides of cold resonance, respectively. However, the significant

amount of trapped particles involved in the absorption process leads to a pertinent current in

contrast to the collisionless model. For detailed investigation of the different current drive

mechanisms, the integral kernel (18) of the current density is presented in Fig. 17. The
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FIG. 15. The same as in Fig. 7 for the O2-resonance. Two particular launch angles, depicted as

O2a and O2b, are then studied in more detail.

resonance line at position 1 is fully located in the passing region, what results in a counter-

current drive by passing particles only. Integration along resonance line 2 covers both,

passing and trapped region. Here, a co-current is generated by a non-vanishing symmetric

part of the generalized Spitzer function in the trapped domain. The resonance line at

position 3 is almost fully located in the passing domain, which results in a co-current by

passing particles and almost no contribution from trapped particles. As can be seen in Fig.

18, the increase of the total driven current by passing particles is mitigated by the different

sign of the current by trapped particles. In order to maximize the current drive, a scenario

has to be found where both, current driven by trapped and passing particles, have the same
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FIG. 16. The same as in Fig. 8 for scenario O2a.

3 2 1

−3 −2 −1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

v‖/vT

v ⊥
/v

T

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

F

3 2 1

−3 −2 −1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

2.5

3.0

v‖/vT

v ⊥
/v

T

−0.008

−0.006

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

F
FIG. 17. The same as in Fig. 9 for scenario O2a. The three numbered resonance lines correspond

to respective positions indicated by numbered vertical lines in Fig. 16.

sign and where absorption processes prohibit damping of the current due to the change of

the sign of the resonant parallel velocity when passing the cold resonance position. Such a

launch angle scenario has been found and is presented in the following.

In scenario O2b (Fig. 19) the current by trapped particles significantly increases the total

driven current since the counter-current by passing particles is not strong enough to mitigate

this effect. In Fig. 20, where the current density kernel (18) is plotted, it is clearly seen that

at resonance position 1 the whole current is produced by passing particles, while in contrast
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FIG. 18. The same as in Fig. 10 for scenario O2a.
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FIG. 19. The same as in Fig. 8 for scenario O2b.

to the collisionless model, at positions 2 and 3 there is a non-vanishing contribution to the

generated current in the trapped domain close to the boundary layer. As seen from the total

driven current in Fig. 21, the collisionless model underestimates the current by 60%.

Out of all figures, Fig. 19 is the best to illustrate all three current drive mechanisms

involved, which do not require momentum input. First, and the strongest of them, is the

Fisch-Boozer mechanism3 which results from the dependence of momentum relaxation time

on the position in the velocity space due to such a dependence of the local collision time. This

mechanism prevails in velocity space regions where F is negative for v‖ > 0 and, respectively,
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FIG. 20. The same as in Fig. 9 for scenario O2b. The three numbered resonance lines correspond

to respective positions indicated by numbered vertical lines in Fig. 19.
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FIG. 21. The same as in Fig. 10 for scenario O2b.

positive for v‖ < 0 (F is with high accuracy antisymmetric there). Another mechanism can

be called a “collisional Ohkawa effect”, called also a “trapped particle effect” in Ref. 28. This

mechanism also follows from the momentum relaxation time dependence on the velocity

which is induced now by the proximity of the trapped particle region (“momentum loss

cone”). The region where this mechanism prevails can be seen in the collisionless figure,

Fig. 19 (right), near the trapped-passing boundary in the passing particle domain. There,

the sign of F changes to the opposite with respect to the sign of F in the regions with
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Fisch-Boozer mechanism. It should be noted that the term “collisional Ohkawa effect” is

used here in order to distinguish from the conventional Ohkawa effect29, where the current is

generated by RF-diffusion alone which enforces the particle exchange between trapped and

passing regions. In turn, the “collisional Ohkawa effect” does not require the capability from

the RF-diffusion to move particles into the loss cone directly. It is sufficient for this diffusion

just to move particles closer to the trapped-passing boundary and the rest is completed

by collisions. Finally, in addition to these two mechanisms which are basically described

by the antisymmetric part of the generalized Spitzer function, also the “Helander-Catto

mechanism” can be seen in the collisional figure, Fig. 19 (left), where the symmetric part of

F makes a contribution in the trapped particle domain and in the vicinity of the trapped-

passing boundary in the passing region.

IV. CONCLUSION

It has been shown that finite collisionality effects have an impact on the total current

driven in both, ECCD scenarii where the wave energy is fully absorbed by passing particles

and in scenarii where also trapped particles are involved in the absorption process. For a

proper description of these effects the generalized Spitzer function was computed by the

drift kinetic equation solver NEO-2 using the full linearized Coulomb collision operator for a

high-mirror configuration of Wendelstein 7-X using realistic plasma parameters representing

an initial stage of device operation. This 5D function has been used in the ray-tracing code

TRAVIS and extends its various collisionless models. From the NEO-2 results it is seen that

the generalized Spitzer function exhibits symmetric parts, which are responsible for current

drive by waves with symmetric spectra10, which can not be expected from interpolation

between asymptotical collisionality limits. The impact of finite collisionality is not only

restricted to the trapped domain but also leads to an offset of the generalized Spitzer function

in the passing domain and therefore, to an increase of its antisymmetric part8. However,

the significance of these finite collisionality effects decreases at higher particle velocities

and lower collisionality, respectively. While the strong absorption of the X2-scenario for

low and moderate densities results in efficient current generation, in high density plasmas

this mode can not propagate through the plasma because of the wave cut-off. For such

scenarii heating and current drive with the O2-mode might become necessary, where finite
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collisionality effects play a more significant role. Since the overall low absorption of the

O2-mode, also multi-pass scenarii are planed, while in this paper only the first pass was

investigated.

It has also been demonstrated that precomputation is possible not only for flux surface

averaged quantities such as diffusion coefficients, but also for the high dimensional distribu-

tion function. Various techniques such as usage of the HDF5 file format and data caching

capabilities of the provided data interface, allow straightforward and fast access to the data.

The precomputation would not be possible within reasonable effort without the efficient

parallelization of the code NEO-2.

The ray-tracing code TRAVIS uses a fully relativistic approach for the computation of

the resonance condition and the absorption and emission coefficients. Up to now, NEO-2

models the generalized Spitzer function in the non-relativistic limit (for the applied plasma

parameters, this does not produce any significant error in ECCD calculations). However,

this is not a limitation of the code itself and can be generalized using a collision operator

treating relativistic effects. This is a pending task for the nearest future.
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2M. Romé, V. Erckmann, U. Gasparino, and N. Karulin, Plasma Physics and Controlled

Fusion 40, 511 (1998).

3N. J. Fisch and A. H. Boozer, Physical Review Letters 45, 720 (1980).

4V. Erckmann, P. Brand, H. Braune, G. Dammertz, G. Gantenbein, W. Kasparek, H. P.

Laqua, H. Maaßberg, N. B. Marushchenko, G. Michel, M. Thumm, Y. Turkin, M. Weiss-

gerber, A. Weller, and the W7–X ECRH–teams at IPP Greifswald, FZK Karlsruhe and

IPF Stuttgart, Fusion Science and Technology 52, 291 (2007).

5T. M. Antonsen and K. R. Chu, Physics of Fluids 25, 1295 (1982).
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