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Abstract. In general, the orbit-averaged radial magnetic drift of trapped particles

in stellarators is non-zero due to the three-dimensional geometry of the magnetic

field. Stellarators in which the orbit-averaged radial magnetic drift vanishes are called

omnigeneous, and they exhibit neoclassical transport levels comparable to those of

axisymmetric tokamaks. However, the fulfilment of the omnigeneity condition requires

such a precise alignment of the external coils that the effect of deviations from

omnigeneity cannot be neglected in practice. The effect of such deviations is more

deleterious at small collisionalities. In stellarator reactor conditions the ion collision

frequency is expected to be sufficiently low (in particular below the values that define

the 1/ν regime) for the terms of the drift-kinetic equation involving the components

of the drifts tangential to the flux surface to become relevant. This article focuses

on the study of such collisionality regimes in stellarators close to omnigeneity. It is

found that at those collisionality values transport is determined by two small collisional

layers located at different regions of phase space. One of these layers corresponds to

the so-called
√
ν regime and the other to the so-called superbanana-plateau regime. A

formula for the ion energy flux that includes both regimes is given. Finally, we explain

why below a certain collisionality value, that we estimate, new regimes can appear and

it is expected that this formula will cease to be valid.



The effect of tangential drifts in stellarators close to omnigeneity 2

1. Introduction

Stellarators [1] present some intrinsic advantages with respect to tokamaks, such as

the possibility of steady-state operation and the absence of disruptions. However, the

magnetic configuration of a stellarator has to be designed very carefully for it to have

confinement properties comparable to those of an axisymmetric tokamak. In a generic

stellarator, trapped particle orbits have non-zero secular radial drifts and they leave the

device in a short time. The stellarator is called omnigeneous [2, 3, 4] if the magnetic

configuration is chosen so that the secular radial drifts vanish.

Omnigeneity guarantees that the neoclassical transport level of the stellarator is

similar to that in a tokamak. Define the normalized ion Larmor radius ρi∗ := vti/ΩiL0,

where vti and Ωi are the ion thermal speed and the ion gyrofrequency, and L0 is the

typical length of variation of the magnetic field, which is assumed to be of the order of

the system size. The gyrofrequency is Ωi = ZieB/(mic), where Zie is the charge of the

ions, e is the elementary charge, B is the magnitude of the magnetic field, mi is the

ion mass, and c is the speed of light. Since ρi∗ � 1 in a strongly magnetized plasma,

the drift-kinetic formalism [5] is appropriate. To lowest order in ρi∗, the phase-space

distribution function fi(r,v) is a Maxwellian fMi with density ni and temperature Ti
that are constant on flux surfaces.

If we denote by fi1 the O(ρi∗fMi) perturbation to the Maxwellian distribution, i.e.

fi = fMi + fi1 +O(ρ∗2i fMi), the radial ion energy flux Qi reads

Qi =

∫
d2S

∫
d3v

miv
2

2
vd · n̂ fi1. (1)

Here, vd is the drift velocity, n̂ is the unit vector normal to the flux surface, vd·n̂ ∼ ρi∗vti,

and the integrals are performed over velocity space and over the flux surface. In a

perfectly omnigeneous stellarator [6]

Qi ∼ νi∗ρ
2
i∗niTivtiSψ, (2)

where νi∗ := νiiL0/vti is the ion collisionality and νii is the ion-ion collision frequency.

The area of the flux surface is denoted by Sψ, with ψ the radial coordinate.

The proof of Cary and Shasharina [2, 3] for the existence of omnigeneous

magnetic fields implies, at the end of the day, that exact omnigeneity throughout

the plasma requires non-analiticity. Let us explain this in more detail. As shown in

references [2] and [3], there exist omnigeneous magnetic fields that are analytic. These

configurations coincide with the set of quasisymmetric magnetic fields [7, 8]. To the

virtues of omnigeneity, quasisymmetry adds the vanishing of neoclassical damping in

the quasisymmetric direction. Therefore, in quasisymmetric stellarators larger flow

velocities can be attained. In principle, this makes the stellarator plasma prone to

develop large flow shear, that is known to reduce turbulent transport [9]. However, the

quasisymmetry condition is incompatible with the magnetohydrodynamic equilibrium

equations in the whole plasma [10], and the stellarator can be made quasisymmetric

only in a limited radial region.
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The mathematical obstructions to achieve quasisymmetry do not exist for

omnigeneity. This is why we said above that a necessary condition for exact omnigeneity

is non-analiticity; specifically, the discontinuity of some derivatives of second or

higher order. However, designing and aligning coils that create a magnetic field with

discontinuous derivatives at certain points in space is probably technically impossible.

Therefore, even in optimized magnetic fields, the effect of deviations from the

desired omnigeneous configuration cannot be neglected. It is therefore necessary to

study magnetic fields of the form B = B0 + δB1, where B0 is omnigeneous and δB1 is

a perturbation, with 0 ≤ δ � 1 and B1 ∼ B0. The effect of these deviations is more

dangerous at small collisionalities, when the details of particle orbits are more relevant.

If νi∗ � 1 and the stellarator is non-omnigeneous, the non-omnigeneous piece of fi1
becomes large, so that fi1 � ρi∗fMi and the energy flux can be much larger than the

estimation (2) even if δ is small. The quantification of this effect for

ρi∗ � νi∗ � 1, (3)

that defines the 1/ν regime, has been the subject of [11, 12, 13] for stellarators close to

quasisymmetry‡ and is the subject of [14] for stellarators close to omnigeneity. However,

this regime does not exhaust the low collisionality parameter space in stellarators. When

νi∗ . ρi∗ (4)

the terms of the drift-kinetic equation involving the components of the drifts tangential

to the flux surface count [1, 15]. In this paper we begin the study of stellarators close

to omnigeneity in the collisionality regime (4), which is actually relevant because in a

stellarator reactor the ions can have such low collisionalities.

It is important to point out that the calculations in this paper do not rely on

large aspect ratio approximations. Of course, if the stellarator close to omnigeneity

under consideration has large aspect ratio, one can perform a subsidiary expansion in

the inverse aspect ratio and refine the results obtained in what follows, and also the

definitions of the collisionality regimes (3) and (4). This will be the subject of future

work.

The rest of the paper is organized as follows.

In Section 2 we introduce a set of flux coordinates that is well-adapted to stellarator

magnetic geometries. Then, we give the formal definition of omnigeneity.

In Section 3 we derive, starting from the complete drift-kinetic equation, the

equation for the dominant component of the distribution function when δ � 1 and

νi∗ . ρi∗. In particular, we explain why the standard drift-kinetic expansion in ρi∗
breaks down for a generic stellarator when νi∗ � ρi∗. In brief, the reason is that fi1
becomes so large that fi1 ∼ fMi. For stellarators close to omnigeneity, however, the ρi∗
expansion still makes sense when νi∗ � ρi∗ due to the presence of the additional small

parameter δ. In addition, in a generic stellarator the drift-kinetic equation becomes

‡ Stellarators close to quasisymmetry have been studied in different regimes in [11, 12, 13], but with a

special focus on the 1/ν regime.
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radially non-local when νi∗ . ρi∗. We will see that the condition δ � 1 allows to derive

a radially local drift-kinetic equation in this collisionality regime.

A precision must be made about the asymptotic expansion in δ carried out in this

paper. When ρi∗ � νi∗ � 1, it has been understood (in [11, 12, 13] for stellarators close

to quasisymmetry and in [14] for stellarators close to omnigeneity) that the effect of

the deviations (from quasisymmetry or omnigeneity) is very different depending on the

size of the gradients on the surface of the magnetic field perturbation. For the regime

(4), the case of deviations with small gradients and the case of deviations with large

gradients also require different treatments, in principle. Here, we restrict to deviations

with small gradients, and this restriction includes the expansion in δ � 1 of Section 3.

Let us be more specific. If B0 := |B0| and B1 := |B1|, by ‘small gradients’ we mean

that the characteristic variation length of B0 and B1 along the directions tangent to the

flux surface is L0.

In Section 4, the equation derived in Section 3 for the non-omnigeneous piece of

the distribution function is solved when νi∗ � ρi∗. We find that Qi is dominated by two

collisional layers in phase space. One of the layers lies at the boundary between trapped

and passing trajectories and produces an energy flux

Qi ∼ δ2
ν
1/2
ii

ω
3/2
α

ρ2i∗niTiv
2
tiL
−1
0 Sψ, (5)

where ωα, defined in Section 4, is the precession frequency in the direction α due to the

tangential drifts. The other layer lies at the points of phase space where ωα vanishes

and yields Qi independent of νi∗. Namely,

Qi ∼ δ2ρi∗niTivtiSψ. (6)

The first layer is an analogue of the so-called
√
ν regime, found in certain models

of stellarator geometry [16] where the inverse aspect ratio and the helical ripple are

employed as expansion parameters. The second layer is an analogue of the superbanana-

plateau regime, derived in [17] for finite aspect ratio tokamaks with broken symmetry.

We will also use this nomenclature for the regimes giving (5) and (6). Typically, the

contribution of one of the layers is much larger than the contribution of the other, but

the formula for Qi is additive in both regions of phase space§ and a general expression

embracing both regimes can be provided.

In Section 5 we use the quasineutrality equation and the results of previous sections

to give the equations that allow to solve for the radial electric field and for the lowest-

order contribution to the electric field tangent to the flux surface. The potential

importance of the latter for impurity transport is pointed out, for example, in [18, 19].

Finally, in Section 6, we point out that the results of Section 4 are not valid for

arbitrarily small νi∗. For each δ, there exists a value of the collisionality νδ∗ such that if

νi∗ < νδ∗ the collisional layers are not responsible anymore for the dominant contribution

to Qi. We explain this and estimate νδ∗.

In Section 7 we summarize the conclusions of the paper.

§ Cases in which the two layers overlap are not treated here.
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2. Omnigeneous stellarators

Throughout the paper, we deal with stellarators whose magnetic field configurations

possess nested flux surfaces. In the first place, we define the spatial coordinates {ψ, α, l},
adapted to the magnetic field, that will be employed. The coordinate ψ determines the

flux surface, whereas α is an angular coordinate that labels a magnetic field line once

ψ has been fixed. Finally l, the arc length over the magnetic field line, specifies the

position along the line for fixed ψ and α. Denote by ψ(r), α(r) and l(r) the functions

giving the value of these coordinates for each point r in the stellarator. The magnetic

field can be written as

B = Ψ′t(ψ)∇ψ ×∇α. (7)

Here, Ψt is the toroidal magnetic flux over 2π and primes stand for differentiation with

respect to ψ. In order to have unique pairs (α, l) associated to each point on a flux

surface, we choose a curve C that closes poloidally‖. This curve can be parameterized

by α. All points on the curve are assigned, by definition, the value l = 0. For each pair

ψ and α, we take l ∈ [0, L(ψ, α)], where L(ψ, α) is found by integrating from C along

the line until the curve C is hit again.

Let v be the magnitude of the velocity and λ = v2⊥/(v
2B) the pitch angle. Given a

flux surface determined by ψ, particles are passing or trapped depending on the value

of λ. Passing trajectories have λ < 1/Bmax(ψ), where Bmax(ψ) is the maximum value of

B on the flux surface. Passing particles explore the entire flux surface and always have

vanishing average radial magnetic drift. Particles with λ > 1/Bmax(ψ) are trapped.

For trapped particles, the radial magnetic drift averaged over the orbit is non-zero

in a generic stellarator. A stellarator is called omnigeneous if the orbit-averaged radial

magnetic drift is zero for all particles [2, 3, 4]. That is, if and only if the second adiabatic

invariant J = 2
∫ lb2
lb1
|v|||dl is a flux function, which means that

∂α

∫ lb2

lb1

√
1− λBdl = 0 (8)

must hold for every trapped trajectory. Here lb1 and lb2 are the bounce points, the

solutions for l of 1 − λB(ψ, α, l) = 0 for a particular trapped trajectory. Since (8) has

to be satisfied for every λ, we can equivalently define omnigeneity by requiring that

∂α

∫ lb2

lb1

Λ(ψ, v, λ,B(ψ, α, l))dl = 0 (9)

for any function Λ that depends on α and l only through B. We will make use of this

definition of omnigeneity several times along the article.

‖ To fix ideas one can think of α as a poloidal angle, but things work analogously if α has a different

helicity.
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3. Low-collisionality drift-kinetic equation in stellarators close to

omnigeneity

As we said in the Introduction, the smallness of ρi∗ allows to employ the drift-kinetic

approach [5, 20, 11]. It consists of a systematic way to average, order by order in

ρi∗, over the fast gyration of particles around magnetic field lines. This is achieved by

finding a coordinate transformation on phase space that decouples the gyromotion from

the comparatively slow motion in the other directions. The new coordinates are called

drift-kinetic coordinates.

The form of the drif-kinetic equation is determined by the transformation from

coordinates {r,v} to drift-kinetic coordinates¶ {R, E , µ, σ, γ}, where R is the position

of the guiding center, E is the total energy per mass unit, µ is the magnetic moment, σ

is the sign of the parallel velocity and γ is the gyrophase. Namely,

R = r− 1

Ωi

b̂× v +O(ρ∗2i L0),

E = v2/2 + Zieϕ/mi,

µ =
1

2B
(v2 − (v · b̂)2) +O(ρi∗v

2
ti/B),

γ = arctan (v · ê2/v · ê1) +O(ρi∗), (10)

where b̂ = B−1B, the right sides of the previous expressions are evaluated at r and ϕ is

the electrostatic potential. The orthogonal unit vector fields ê1 and ê2 satisfy at each

point ê1 × ê2 = b̂. The higher-order corrections in the definition of µ are determined

by the fact that µ is the adiabatic invariant corresponding to the ignorable coordinate

γ. Finally, σ = v||/|v||| gives the sign of the parallel velocity, where the latter is viewed

as a function of the other coordinates through the expression

v|| = σ

√
2

(
E − µB − Zieϕ

mi

)
. (11)

Denote by Fi(ψ(R), α(R), l(R), E , µ, σ) the distribution function in drift-kinetic

coordinates. We assume from the beginning that our distribution function does not

depend on the gyrophase, which is true for all the calculations in this paper (see [11] for

the proof that only pieces of the distribution function O(ρ∗2i fMi) or smaller are gyrophase

dependent). In these coordinates the drift-kinetic equation reads

Ṙ · ∇Fi = CEii[Fi, Fi]. (12)

Here,

Ṙ · b̂b̂ = v||b̂ +O(ρi∗vti) (13)

¶ Even though we will end up employing the coordinates v and λ defined in Section 2, it is conceptually

advisable to start using as independent coordinates the total energy per mass unit E and the magnetic

moment µ.
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and

Ṙ− Ṙ · b̂b̂ = vM,i + vE +O(ρ∗2i vti), (14)

with

vM,i =
1

Ωi

b̂×
(
v2||κ + µ∇B

)
, (15)

vE =
c

B
b̂×∇ϕ (16)

and κ := b̂ · ∇b̂.

In (13) and (14) we have only shown the terms that will be needed later on. All

the terms of Ṙ up to O(ρ∗2i vti) have been computed in [20]. In (12), an expansion in the

mass ratio
√
me/mi � 1 has been taken so that ion-electron collisions are neglected,

and CEii is the ion-ion Landau collision operator written in coordinates E and µ. Its

explicit expression (see [21], for example) is not necessary for our purposes. From now

on, we concentrate on ion transport.

We write

Fi(ψ, α, l, E , µ, σ) = F Ei0(ψ, E) + Fi1(ψ, α, l, E , µ, σ) +O(ρ∗2i F
E
i0) (17)

with Fi1 ∼ ρi∗F
E
i0, and we also expand the electrostatic potential,

ϕ = ϕ0 + ϕ1 +O(ρ∗2i ϕ0), (18)

where ϕ0 ∼ Ti/Zie and ϕ1 ∼ ρi∗ϕ0. To lowest order in ρi∗ equation (12) imposes ϕ0 to

be a flux function [22] and

F Ei0(ψ, E) = ni(ψ)

(
mi

2πTi(ψ)

)3/2

exp

(
−miE − Zieϕ0(ψ)

Ti(ψ)

)
. (19)

To O(ρi∗vtiL
−1
0 F Ei0) equation (12) gives

v||∂lFi1 + ΥEi vM,i · ∇ψF Ei0 = CE,`ii [Fi1], (20)

where

ΥEi =
n′i
ni

+
T ′i
Ti

(
miE − Zieϕ0

Ti
− 3

2

)
+
Zieϕ

′
0

Ti
(21)

and CE,`ii is the linearization of CEii around F Ei0. Namely,

CE,`ii [Fi1] = CEii[Fi1, F
E
i0] + CEii[F

E
i0, Fi1]. (22)

3.1. Drift-kinetic equation when ρi∗ � νi∗ � 1

If the collisionality is small, νi∗ � 1, one can perform an expansion in νi∗ that is

subsidiary with respect to the expansion in ρ∗i . We write

Fi1 = F
[−1]
i1 + F

[0]
i1 +O(νi∗ρi∗Fi0), (23)

where F
[j]
i1 ∼ νji∗ρi∗Fi0. To lowest order in the νi∗ expansion, (20) yields

v||b̂ · ∇F [−1]
i1 = 0. (24)
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This implies that on an ergodic flux surface F
[−1]
i1 can be written as

F
[−1]
i1 = Hi(ψ, E , µ, σ) + gi(ψ, α, E , µ), (25)

where gi can be chosen such that it vanishes in the passing region of phase space and

such that ∫ 2π

0

gi dα = 0. (26)

The functions Hi and gi are found from (20) to next order in νi∗,

v||b̂ · ∇F [0]
i1 + +ΥEi vM,i · ∇ψF Ei0 = CE,`ii [F

[−1]
i1 ]. (27)

For passing particles, we multiply (27) by 1/v|| and integrate over α and l, obtaining∫ 2π

0

dα

∫ L(ψ,α)

0

dl
1

|v|||
CE,`ii [F

[−1]
i1 ] = 0. (28)

For trapped particles, we multiply (27) by 1/v|| and integrate over the lowest order orbit.

We get∑
σ

∫ lb2

lb1

1

|v|||
CE,`ii [F

[−1]
i1 ] dl =

(∑
σ

∫ lb2

lb1

1

|v|||
vM,i · ∇ψ dl

)
ΥEi F

E
i0. (29)

Equations (28) and (29) allow to determine Hi and gi in the so called 1/ν regime.

The electrostatic potential ϕ1 is found from the quasineutrality equation, which to

lowest order in
√
me/mi � 1 reads(

Zi
Ti

+
1

Te

)
ϕ1 =

1

eni

∫
Fi1 dv3, (30)

with d3v ≡
∑

σ B/|v|||dEdµdγ. Here, Te is the electron temperature. From (30) and the

fact that Fi1 ∼ ν−1i∗ ρi∗Fi0, one realizes that ϕ1 ∼ ν−1i∗ ρi∗Ti/e. The 1/ν regime exists for

any stellarator. The analysis of the 1/ν regime in stellarators close to omnigeneity is

carried out in depth in reference [14]. However, we explain in the next subsection that

the 1/ν regime is restricted to the range ρi∗ � νi∗ � 1, and that it ceases to exist for

values of the collisionality νi∗ . ρi∗.

3.2. Drift-kinetic equation when νi∗ . ρi∗ in stellarators close to omnigeneity

In this paper, we would like to understand what happens at values of the collisionality

below the 1/ν regime. It is easy to realize that as long as νi∗ becomes comparable to

ρi∗, the ρi∗ expansion breaks down because Fi1 becomes as large as Fi0 and ϕ1 becomes

as large as ϕ0. Equivalently, some terms that are nominally O(ρ∗2i ) in (12) cannot be

neglected. This is an important point: in a generic stellarator the drift-kinetic expansion

does not make sense when νi∗ . ρi∗. Furthermore, the drift-kinetic equation becomes

radially non-local because there is no reason, in principle, to drop terms like vM,i·∇ψ∂ψFi
in (12). That is, instead of (20), in a generic stellarator one should solve

(vM,i + vE) · ∇ψ∂ψFi1 + (vM,i + vE) · ∇l∂lFi1

+(vM,i + vE) · ∇α∂αFi1 + v||∂lFi1 + ΥEi (vM,i + vE) · ∇ψF Ei0 = CE,`ii [Fi1] (31)
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when νi∗ . ρi∗. However, we show next that when the stellarator is close to omnigeneity

the drift-kinetic expansion is still meaningful and the derived drift-kinetic equation is

radially local, all due to the existence of an additional small parameter, δ, in the theory.

We assume that the non-omnigeneous piece of the distribution function dominates

transport. If

δ∂lB1 ∼ δL−10 B0,

δ∂αB1 ∼ δB0, (32)

it is proven in [14] that an expansion in integer powers of δ is consistent. If the

perturbation B1 has large helicities so that δ∂lB1 ∼ L−10 B0 or δ∂αB1 ∼ B0, the

asymptotic expansion in δ of the drift kinetic equation is remarkably more complicated.

This kind of perturbations will not be treated in this paper, but left for future work.

Then, we assume (32) and define the expansions

Fi1 = δF
(1)
i + . . . (33)

and

ϕ1 = δϕ(1) + . . . (34)

The equation derived in this subsection will be valid for stellarators close to omnigeneity

in the 1/ν regime and also when νi∗ . ρi∗. The sizes of F
(1)
i and ϕ(1) are given by

F
(1)
i ∼ ν−1i∗ ρi∗Fi0 and ϕ(1) ∼ ν−1i∗ ρi∗ϕ0 in the 1/ν regime. When νi∗ . ρi∗ the correct

ansatz is F
(1)
i1 ∼ Fi0 and ϕ(1) ∼ ϕ0, as will be shown in Section 4.

The largest term in (31) is the parallel streaming. Imposing ∂lF
(1)
i = 0 implies

F
(1)
i = H

(1)
i (ψ, E , µ, σ) + g

(1)
i (ψ, α, E , µ), (35)

where g
(1)
i can be chosen such that it vanishes in the passing region of phase space and

such that ∫ 2π

0

g
(1)
i dα = 0. (36)

The O(δ) piece of the second term in (31) equals zero due to (35). In order to

find an equation for F
(1)
i we take averages of the remaining terms in (31) expanded to

O(δ). For passing particles we multiply (31) by 1/|v(0)|| | and integrate on the flux surface,

obtaining∫ 2π

0

dα

∫ L(ψ,α)

0

1

|v(0)|| |
C
E,`(0)
ii [H

(1)
i ]dl = 0, (37)

where

v
(0)
|| (ψ, α, l, E , µ) = σ

√
2

(
E − µB0(ψ, α, l)−

Zie

mi

ϕ0(ψ)

)
(38)

and in C
E,`(0)
ii the superindex (0) indicates that only B0 has been kept in the kernel that

defines the linearized collision operator. In order to get (37) we have used that in the
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passing region F
(1)
i = H

(1)
i , and is therefore independent of α. We have also employed

that for passing trajectories∫ 2π

0

dα

∫ L(ψ,α)

0

1

|v(0)|| |
(vM,i + vE) · ∇ψdl = 0 (39)

and finally the fact that∫ 2π

0

dα

∫ L(ψ,α)

0

1

|v(0)|| |
C
E,`(0)
ii [g

(1)
i ]dl = 0 (40)

due to (36).

For trapped particles we multiply (31) by 1/v
(0)
|| and integrate over the orbit,

arriving at

−∂ψJ (0)∂αF
(1)
i + ∂αJ

(1)ΥEi F
E
i0 =

∑
σ

ZieΨ
′
t

mic

∫ lb20

lb10

dl

|v(0)|| |
C
E,`(0)
ii [F

(1)
i ]. (41)

Equation (41) has conveniently been expressed in terms of the second adiabatic

invariant J , defined by

J(ψ, α, E , µ) := 2

∫ lb2

lb1

|v|||dl. (42)

For that, we have employed the relations

2

∫ lb2

lb1

1

|v|||
(vM,i + vE,0 + vE,1) · ∇ψ dl =

mic

ZieΨ′t
∂αJ (43)

and

2

∫ lb2

lb1

1

|v|||
(vM,i + vE,0 + vE,1) · ∇α dl = − mic

ZieΨ′t
∂ψJ, (44)

that are derived in Appendix A, and we have expanded J as

J = J (0) + δJ (1) + . . . , (45)

with

J (0) = 2

∫ lb20

lb10

|v|||(0)dl,

J (1) = −2

∫ lb20

lb10

1

|v|||(0)

(
µB1(α, l) +

Zie

mi

ϕ1(α, l)

)
dl. (46)

Here lb10 and lb20 are the bounce points for the orbits of B0; i.e. the solutions of

1 − λB0(ψ, α, l) = 0. In order to write (41) we have used that ∂αJ
(0) = 0 because

B0 is omnigeneous (recall the definition (8)).

Now, we integrate (41) over α, which gives∑
σ

∫ 2π

0

dα

∫ lb20

lb10

1

|v(0)|| |
C
E,`(0)
ii [H

(1)
i ]dl = 0. (47)
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Here, we have used that
∑

σ

∫ lb20
lb10
|v(0)|| |−1C

E,`(0)
ii [ · ]dl is an operator with coefficients

independent of α when acting on functions independent of l, as can be deduced by

invoking the definition of omnigeneity (9). Multiplying (37) and (47) by −H(1)
i /Fi0,

integrating over velocity space and applying an entropy-production argument, we find

that H
(1)
i has to be a Maxwellian distribution with zero flow. Thus, it can be absorbed

in the definition of Fi0 and, from here on, we can assume H
(1)
i ≡ 0 without loss of

generality.

Then, we only need to determine g
(1)
i , which is found from (41) by setting H

(1)
i

equal to zero. Namely,

−∂ψJ (0)∂αg
(1)
i + ∂αJ

(1)ΥEi F
E
i0 =

∑
σ

ZieΨ
′
t

mic

∫ lb20

lb10

dl

|v(0)|| |
C
E,`(0)
ii [g

(1)
i ], (48)

It is obvious, but still worth pointing out, that when ρi∗ � νi∗ � 1 the first term

in (48) can be neglected and one recovers the equation for the dominant piece of the

distribution function in the 1/ν regime in a stellarator close to omnigeneity where the

non-omnigeneous perturbation to the omnigeneous magnetic field has small gradients.

Note that the orbit integrations in (46) and (48) only involve B0 and ϕ0. In

particular, the integrations are actually taken by keeping constant the kinetic energy

miv
2/2 instead of the total energy miE (recall that ϕ0 is a flux function and ψ does

not change along the integration path). This is a consequence of assumption (32), that

allowed to expand the drift-kinetic equation in integer powers of δ, and it turned out

that to lowest order only the omnigeneous orbits count. In general (that is, if B1 has

large helicities), however, the modifications of the orbits by ϕ1 might be non-negligible,

and the distinction between integrating keeping constant E or keeping v2/2 might be

important. A detailed discussion on the asymptotic expansion of the second adiabatic

invariant in a stellarator close to omnigeneity is provided in reference [23]. As we have

said above, we restrict ourselves to perturbations satisfying (32).

In what follows we employ the more common coordinates

v =
√

2(E − Zieϕ0/mi),

λ =
µ

E − Zieϕ0/mi

. (49)

We will not change the names of the functions v
(0)
|| , ∂ψJ

(0), ∂αJ
(1) and g

(1)
i but assume

that they are expressed in coordinates v and λ. Let us be explicit to avoid any confusion.

From now on, by ∂ψJ
(0) and ∂αJ

(1) we understand

∂ψJ
(0) = −

∫ lb20

lb10

λv∂ψB0 + 2Zie/(miv)∂ψϕ0√
1− λB0

dl, (50)

∂αJ
(1) = −

∫ lb20

lb10

λv∂αB1 + 2Zie/(miv)∂αϕ1√
1− λB0

dl. (51)

In these coordinates, the equation for g
(1)
i reads

−∂ψJ (0)∂αg
(1)
i + ∂αJ

(1)ΥiFi0 =
∑
σ

ZieΨ
′
t

mic

∫ lb20

lb10

dl

|v(0)|| |
C
`(0)
ii [g

(1)
i ], (52)
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where

Fi0(ψ, v) = ni(ψ)

(
mi

2πTi(ψ)

)3/2

exp

(
− miv

2

2Ti(ψ)

)
, (53)

Υi =
n′i
ni

+
T ′i
Ti

(
miv

2

2Ti
− 3

2

)
+
Zieϕ

′
0

Ti
(54)

and C
`(0)
ii is the linearized collision operator corresponding to B0 written in coordinates

v and λ.

The energy flux can be written as

Qi =
πm2

i cδ
2

2Zie

∫ ∞
0

dvv5
∫ 1/B0,min

1/B0,max

dλ

∫ 2π

0

dα ∂αJ
(1) g

(1)
i , (55)

where B0,min and B0,max are the minimum and maximum values of B0 on the flux surface,

respectively. In Section 4 we solve (52) when νi∗ � ρi∗ and give the expressions that

allow to compute (55) in such collisionality regimes.

4. Solution of the drift-kinetic equation (52) when νi∗ � ρi∗

Let us define the precession frequency

ωα(ψ, v, λ) :=
mic

ZieΨ′tτ
(0)
b

∂ψJ
(0), (56)

where

τ
(0)
b (ψ, v, λ) =

2

v

∫ lb20

lb10

dl√
1− λB0(ψ, α, l)

(57)

is the time that a particle trapped in B0 takes to complete its orbit. Note that τ
(0)
b does

not depend on α due to property (9), and therefore ωα is also independent of α.

Typically, ωα ∼ ρi∗vti/L0, and equation (52) is solved by expanding in νii/ωα ∼
νi∗/ρi∗ � 1. We use the notation

g
(1)
i = g0 + g1 +O((νii/ωα)2Fi0), (58)

where g1/g0 ∼ O(νii/ωα) and g0 ∼ Fi0.

To lowest order in the νii/ωα expansion, equation (52) gives

∂αg0 =
∂αJ

(1)

∂ψJ (0)
ΥiFi0. (59)

The solution of (59), choosing
∫ 2π

0
g0 dα = 0, is

g0 =
1

∂ψJ (0)

(
J (1) − 1

2π

∫ 2π

0

J (1)dα

)
ΥiFi0. (60)

It is easy to realize that (60) does not contribute to (55). The next order terms of

(52) in the νii/ωα expansion yield

∂αg1 = − 1

ωα
C
`(0)
ii [g0], (61)
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where we have introduced a convenient notation for the orbit average,

(·) =
1

τ
(0)
b v

∑
σ

∫ lb20

lb10

(·) dl√
1− λB0(ψ, α, l)

. (62)

Thus,

g1 = − 1

ωα

∫ α

C
`(0)
ii [g0]dα

′, (63)

where the lower limit of the integral is selected so that
∫ 2π

0
g1dα = 0.

When plugged into (60), this piece of the distribution function gives a scaling

Qi ∼ δ2
νii
ωα
ρi∗niTivtiSψ (64)

for the particle flux. The interesting point is that this is not the dominant contribution

to Qi. It turns out that the energy flux is dominated by two small collisional layers. We

prove this and solve the equations in the layers in subsections 4.1 and 4.2.

4.1. Layer around the boundary between trapped and passing particles: the
√
ν regime

Recall that g
(1)
i ≡ 0 in the passing region. The value of g

(1)
i at the boundary of the

trapped region is given by+ g+ := g0(λc) 6= 0, with λc = 1/B0,max and g0 given by

(60). Then, the distribution function is not continuous. This discontinuity comes from

an incorrect treatment of the region around the interface between passing and trapped

particles. More specifically, it is the consequence of dropping the collision term in that

region. Usually, this indicates [25] that there is a small layer in a neighborhood of

λc where the distribution function develops large variations in λ, and neglecting the

collision term is not correct. In the standard language of boundary-layer theory g0 is

the outer solution, and the inner solution of the boundary layer, that we will denote by

gbl, remains to be found.

We have to replace (58) by

g
(1)
i = g0 + gbl + . . . , (65)

where gbl satisfies the equation

ωα∂αgbl + C
`(0)
ii [gbl] = −C`(0)

ii [g0]. (66)

The collision operator acting on g0 has been included on right-hand side of the previous

equation because very close to λc the function g0 varies fast with λ, and the right side

of (66) actually diverges at λc, as we will see below.

Rigorously speaking, we need to find an interpretation of (66) as an equation on

λ ∈ [λc,∞). The boundary conditions will be such that gbl vanishes when λ− λc →∞,

and such that gbl(λc) = −g+.

If the two terms on the left side of (66) are to be comparable in size, then gbl ∼ g0
and the support of gbl (that is, the size of the boundary layer) is ∆λB0 ∼ (νii/ωα)1/2.

+ Sometimes, in order to ease the notation, we will omit some of the arguments of the functions. For

example, in this section it will be common to display only the dependences on λ.
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The latter estimation allows to keep only the pitch angle scattering piece of the collision

operator on the left side of (66),

C
`(0)
ii [gbl] =

νλv
(0)
||

v2B0

∂λ

(
v
(0)
|| λ∂λgbl

)
+ . . . (67)

where

νλ(v) =
8πniZ

4
i e

4 ln Λ

m2
i v

3
[erf(v/vti)− χ(v/vti)] (68)

is the pitch angle scattering frequency, ln Λ is the Coulomb logarithm, χ(x) = [erf(x)−
(2x/
√
π) exp(−x2)]/(2x2) and erf(x) = (2/

√
π)
∫ x
0

exp(−t2) dt is the error function.

In the boundary layer the pitch-angle scattering operator in the right side of (67)

is dominated by the piece that involves ∂2λgbl. The same happens for the right side of

(66) close to λc, as will be justified below. Therefore, (66) can be approximated by

ωα∂αgbl + νλλB
−1
0 (1− λB0) ∂

2
λgbl = −νλλB−10 (1− λB0) ∂

2
λg0, (69)

where the coefficient multiplying ∂2λgbl and ∂2λg0 does not depend on α due to (9), again.

The smallness of the boundary layer allows to approximate this equation further

by writing

∂ψJ
(0)∂αgbl + νλξ∂

2
λgbl = −νλξ∂2λg0, (70)

where

ξ(ψ, v) :=
ZieΨ

′
t

mic

2λc
v

∫ lb20

lb10

B−10

√
1− λcB0(ψ, α, l) dl. (71)

The dependence of ∂ψJ
(0) on λ cannot be neglected because ∂ψJ

(0)(ψ, v, λ) diverges

when λ→ λc, so that λc is a singular point of the differential equation (70) and requires

a careful analysis. The right-hand side of (70) also diverges at λc, as pointed out above.

Now, we proceed to explain how these divergences emerge.

In Appendix B we show that the asymptotic expansion of ∂ψJ
(0) for small λ − λc

(with λ > λc) is of the form

∂ψJ
(0) = a1 ln(B0,max(λ− λc)) + a2 +O(vtiL0B0(λ− λc)/ψ), (72)

where

a1 =

√
1

2λc

2∑
k=1

λcv∂ψB0(lM,k) + 2Zie/(miv)∂ψϕ0√
|∂2l B0(lM,k)|

. (73)

and the values lM,k, for k = 1, 2, locate two consecutive absolute maxima of B0 when

moving along the field line; in particular, B0(ψ, α, lM,k) ≡ B0,max(ψ) for k = 1, 2, does

not depend on α. Then, the coefficient a2 can be computed from the relation

a2 = lim
λ→λc

(
∂ψJ

(0) − a1 ln(B0,max(λ− λc))
)
. (74)

By rewriting a2 as

a2 = a1 ln
(
B−10,maxã2

)
(75)
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one can recast (72) in the more convenient way

∂ψJ
(0) = a1 ln(ã2(λ− λc)) +O(vtiL0B0(λ− λc)/ψ). (76)

Analogously, the asymptotic expansion of J (1) yields

J (1) = c1 ln(B0,max(λ− λc)) + c2 +O(vtiL0B0(λ− λc)), (77)

where

c1 =

√
1

2λc

2∑
k=1

λcvB1(lM,k) + 2Zie/(miv)ϕ1(lM,k)√
|∂2l B0(lM,k)|

(78)

and

c2 = lim
λ→λc

(
J (1) − c1 ln(B0,max(λ− λc))

)
. (79)

Then, we rewrite (77) as

J (1) = c1 ln(c̃2(λ− λc)) +O(vtiL0B0(λ− λc)), (80)

with

c2 = c1 ln
(
B−10,maxc̃2

)
. (81)

As we said above, we would like to formulate our boundary-layer equation as a

differential equation in [λc,∞). We do this by replacing (70) by

∂̂ψJ (0)∂αgbl + νλξ∂
2
λgbl = −νλξ∂2λĝ0, (82)

where

∂̂ψJ (0) = a1 ln(ã2(λ− λc)), (83)

ĝ0 =
1

∂̂ψJ (0)

(
Ĵ (1) − 1

2π

∫ 2π

0

Ĵ (1)dα

)
ΥiFi0 (84)

and

Ĵ (1) = c1 ln(c̃2(λ− λc)). (85)

That is, (82) is obtained from (70) by keeping only the dominant terms in the asymptotic

expansions of ∂ψJ
(0) and J (1) near λc. The fact that the right side of (66) gets large in

the neighborhood of λc (and only there) is clear by observing (83), (84) and (85). It is

also obvious that, whereas both ∂ψJ
(0) and J (1) diverge at λc, g+ := g0(λc) is finite, as

it should be.

The solution of equation (82) is more easily found by first expanding gbl in Fourier

modes with respect to the coordinate α. Define gbl,n and g+,n by the relations

gbl(λ) =
∞∑

n=−∞

gbl,n(λ)einα,

ĝ0(λ) =
∞∑

n=−∞

g0,n(λ)einα,

g+ =
∞∑

n=−∞

g+,ne
inα, (86)
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recalling that gbl,0 = 0 because of condition (36). Here, we have stressed the α and λ

dependence although, obviously, gbl, ĝ0 and g+ also depend on ψ and v. Then, (82)

transforms into the set of ordinary differential equations

in ∂̂ψJ (0)gbl,n + νλξ∂
2
λgbl,n = −νλξ∂2λg0,n, (87)

that must be solved with the boundary conditions

gbl,n(λc) = −g+,n (88)

and

lim
λ→∞

gbl,n(λ) = 0. (89)

For each n, the boundary layer equation (87) has two irregular singular points [25],

λ = λc and λ = ∞. In Appendix C we prove that (87) possesses solutions compatible

with (88) and (89).

Using the notation

Ĵ (1)(ψ, α, v, λ) =
∞∑

n=−∞

Ĵ (1)
n(ψ, v, λ)einα (90)

and the solution for gbl, we find that the contribution of the boundary layer to the right

side of (55) is

Qi,
√
ν =

π2m2
i cδ

2

Zie

∞∑
n=−∞

(−in)

∫ ∞
0

dvv5
∫ ∞
λc

dλ Ĵ (1)−n gbl,n. (91)

The fact that (91) scales with the square root of the collisionality can be understood from

a simple rescaling of the coordinate λ in (87). However, it is important to emphasize

that the scaling is not exact but has logarithmic corrections. Even if these corrections do

not change the qualitative features of this collisionality regime, they must be correctly

accounted for in order to have accurate results for the neoclassical fluxes. Roughly, the

size of Qi,
√
ν is

Qi,
√
ν ∼ δ2

ν
1/2
ii

ω
3/2
α

ρ2i∗niTiv
2
tiL
−1
0 Sψ. (92)

4.2. Layer around points where ωα = 0: the superbanana plateau regime

The outer solution (60) for the distribution function is correct everywhere except near

the boundary between the passing and trapped regions (already treated in subsection

4.1) and in the neighborhood of points where ωα = 0. Around these ‘resonant points’

the νii/ωα � 1 expansion is not valid. This region of phase space is the subject of the

present section.

In order to understand what happens in the vicinity of a point where ωα = 0, we

go back to equation (52) and do not carry out the νii/ωα � 1 expansion. That is, we

consider the equation

ωα∂αg
(1)
i + C

`(0)
ii [g

(1)
i ] = S (93)



The effect of tangential drifts in stellarators close to omnigeneity 17

with

S(ψ, α, v, λ) =
mic

ZieΨ′tτ
(0)
b

∂αJ
(1)ΥiFi0. (94)

Assume for a moment that ∂ψϕ0 = 0. Given an omnigeneous magnetic field B0,

ωα may vanish for some values of λ or may not vanish for any value of λ. If ωα never

vanishes, we do not have to continue with the analysis. We assume that if ∂ψϕ0 = 0,

then ωα vanishes for a single value of λ, which is obviously independent of v. In such

a case, for non-zero ∂ψϕ0 there exists a minimum value of v for which ωα = 0 for some

value of λ. We denote this value of v by vmin. When v ≥ vmin, we denote by λr the

value of λ such that ωα = 0. Of course, λr is a function of ψ and v, λr ≡ λr(ψ, v).

Around λr,

ωα(λ) = ∂λωα(λr)(λ− λr) +O((λ− λr)2), (95)

where the dependence on ψ and v has been omitted for simplicity. The balance of the

two terms on the left side of (93) implies that in a neighborhood of λr of size ∆λ,

∂λωα(λr)∆λ ∼
νii

B2
0∆λ2

. (96)

Since, typically, ∂λωα(λr) ∼ ρi∗B0L
−1
0 vti, one finds

(B0∆λ)3 ∼ νi∗
ρi∗
� 1 (97)

and therefore

C
`(0)
ii [grl] ∼ νii(ρi∗/νi∗)

2/3grl, (98)

where grl is the distribution function in the ‘resonant layer’ of size ∆λ. In particular,

the pitch-angle scattering piece of the collision operator dominates in this layer,

C
`(0)
ii [grl] =

νλv
(0)
||

v2B0

∂λ

(
v
(0)
|| λ∂λgrl

)
+ . . . , (99)

and we can actually keep only the term involving ∂2λgrl. Hence, in the resonant layer we

can write the drift kinetic equation as

∂λωα,r(λ− λr)∂αgrl + νλχr∂
2
λgrl = Sr, (100)

with

χr(ψ, v) := λrB
−1
0 (1− λrB0) , (101)

∂λωα,r(ψ, v) := ∂λωα(ψ, v, λr(ψ, v)) (102)

and

Sr(ψ, α, v) := S(ψ, α, v, λr(ψ, v)). (103)

Define the Fourier expansions

grl =
∞∑

n=−∞

grl,ne
inα,

Sr =
∞∑

n=−∞

Sr,ne
inα, (104)
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noting that grl,0 = 0 due to (36), and that Sr,0 = 0 due to definition (94). Inserting

the expansions in (100) and noting that ∂λωα,r and χr do not depend on α, we find an

ordinary differential equation for each mode grl,n,

in∂λωα,r(λ− λr)grl,n + νλχr∂
2
λgrl,n = Sr,n. (105)

The solution of this equation is

grl,n = − Sr,n
∂λωα,rn2/3λrβ

∫ ∞
0

exp

(
i
n1/3

β

λ− λr
λr

z − 1

3
z3
)

dz, (106)

where

β :=

(
νλχr

∂λωα,rλ3r

)1/3

� 1 (107)

gives the width of the layer.

Then, the contribution of resonant particles to (55) is

Qi,sb−p = −π
2m2

i cδ
2

Zie

∞∑
n=−∞

in

∫ ∞
vmin

dvv5
∫ ∞
−∞

dλ J
(1)
−n grl,n

= −π
2m3

i c
2δ2

Z2
i e

2Ψ′t

∞∑
n=−∞

∫ ∞
vmin

dvv5
n4/3

∂λωα,rτ
(0)
b,r λr

ΥiFi0

∫ ∞
−∞

dλ |J (1)
n |2

{
1

β

∫ ∞
0

exp

(
i
n1/3

β

λ− λr
λr

z − 1

3
z3
)

dz

}

= −2π2m3
i c

2δ2

Z2
i e

2Ψ′t

∞∑
n=1

∫ ∞
vmin

dvv5
n4/3

∂λωα,rτ
(0)
b,r λr

ΥiFi0

∫ ∞
−∞

dλ |J (1)
n |2

{
1

β

∫ ∞
0

cos

(
n1/3

β

λ− λr
λr

z

)
exp

(
−1

3
z3
)

dz

}
, (108)

where we have defined

J (1)(ψ, α, v, λr) =
∞∑

n=−∞

J (1)
n (ψ, v, λr(ψ, v))einα (109)

and τ
(0)
b,r = τ

(0)
b (ψ, v, λr(ψ, v)).

Next, we prove that the right side of (108) has a non-zero limit when β → 0. For

this, we employ the identity

lim
β→0

1

β

∫ ∞
0

e−z
3/3 cos

(
1

β
xz

)
dz = πδ(x) (110)

and the property δ(ax) = |a|−1δ(x), where δ(·) is the Dirac delta distribution and a is

a real number. Then, for β � 1, the asymptotically dominant term is

Qi,sb−p = −2π3m3
i c

2δ2

Z2
i e

2Ψ′t

∞∑
n=1

n

∫ ∞
vmin

dvv5
1

∂λωα,rτ
(0)
b,r

ΥiFi0|J (1)
n |2. (111)

If vmin . vti, the size of the energy flux is

Qi,sb−p ∼ δ2ρi∗niTivtiSψ. (112)
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4.3. Formula for the ion energy flux when νi∗ � ρi∗

Since the layers studied in subsections 4.1 and 4.2 are small and, in general, they are

located around different points of phase space, their contributions to transport are

additive. This means that we can write, for νi∗ � ρi∗,

Qi = Qi,
√
ν +Qi,sb−p, (113)

where Qi,
√
ν is given by (91) and Qi,sb−p is given by (111). The weight of each term in

(113) is determined by the value of vmin. If vmin . vti, then the superbanana-plateau

regime (recall (111) and (112)) dominates over the
√
ν regime (recall (91) and (92)). If,

on the contrary, vmin � vti, then the superbanana-plateau regime will be subdominant

with respect to the
√
ν regime because the integral in (111) will be taken over a region

of phase space in which Fi0 is very small.

Finally, we note that the value of vmin is influenced by the size of ∂ψϕ0, but also by

the specific λ-dependence of ωα when ∂ψϕ0 = 0.

5. Calculation of the electric field

The radial electric field, determined by ϕ′0, is one of the quantities that are routinely

computed in standard neoclassical calculations. It is found by imposing that the radial

electric current vanish, as recalled in subsection 5.2.

On the contrary, the components of the electric field tangent to the flux surface

are usually neglected. However, we have seen that under our ordering ϕ1 = δϕ(1) + . . .

contributes to the energy transport of the main ion species. It is therefore necessary to

explain how to compute it and we deal with this problem in subsection 5.1.

Perhaps the most obvious way (although not the only one) to calculate both, ϕ(1)

and ϕ′0, is to use (115) to solve for ϕ(1) for a fixed value of ϕ′0, and then use (120) to

find ϕ′0 in an iterative process.

5.1. Calculation of ϕ(1)

The components of the electric field along the flux surface are given, to lowest order, by

ϕ(1), which is found from (30). Expanding (30) in δ, we obtain(
Zi
Ti

+
1

Te

)
ϕ(1) =

2π

eni

∫ ∞
0

dv

∫ B−1

B−1
0,max

dλ
v3B0

|v(0)|| |
g
(1)
i , (114)

where we have used that in {v, λ, γ} coordinates d3v ≡
∑

σ v
3B/(2|v|||)dvdλdγ and that

g
(1)
i vanishes in the passing region, so the integral on the right side of (114) is taken

only over trapped trajectories. The solution (60) does not contribute to transport, but

it does contribute to (114). Note, however, that (60) diverges wherever ∂ψJ
(0) = 0.

Interestingly, in general the points λr where ∂ψJ
(0) vanishes contribute to (114) as much

as the rest of phase space. Asymptotically, we can write(
Zi
Ti

+
1

Te

)
ϕ(1) =

2π

eni
P.V.

∫ ∞
0

dv

∫ B−1

B−1
0,max

dλ
v3B0

|v(0)|| |
g0
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+
2π

eni

∫ ∞
vmin

dv

(
lim
β→0

∫ B−1

B−1
0,max

dλ
v3B0

|v(0)|| |
grl

)
. (115)

Here, P.V. stands for the principal value of the integral in λ.

Expanding grl in Fourier modes, and using (106) and (110), one gets(
Zi
Ti

+
1

Te

)
ϕ(1) =

2π

eni
P.V.

∫ ∞
0

dv

∫ B−1

B−1
0,max

dλ
v3B0

|v(0)|| |
g0

−2π2

eni

∫ ∞
vmin

dv
v3B0

|v(0)||,r|
1

∂λωα,r

∞∑
n=−∞

1

|n|
Sr,ne

inα, (116)

where

|v(0)||,r(ψ, α, v)| := v
√

1− λr(ψ, v)B(ψ, α, l) . (117)

Employing (60) for g0 and the definition (94) for S, and recalling the expression of ∂αJ
(1)

in terms of ϕ(1) (see (46)), one gets a linear equation that allows to solve for the latter.

5.2. Calculation of ϕ′0

Let us denote by Γi and Γe the radial fluxes of ions and electrons. The radial electric

field is determined by imposing

ZieΓi − eΓe = 0, (118)

and to lowest order in a mass ratio expansion
√
me/mi � 1 this is equivalent to the

condition

Γi = 0. (119)

The calculation of Γi is completely analogous to that of Qi. Hence, asymptotically,

(119) amounts to the condition

Γi,√ν + Γi,sb−p = 0, (120)

where

Γi,√ν =
2π2micδ

2

Zie

∞∑
n=−∞

(−in)

∫ ∞
0

dvv3
∫ ∞
λc

dλ Ĵ (1)−n gbl,n (121)

and

Γi,sb−p = −4π3m2
i c

2δ2

Z2
i e

2Ψ′t

∞∑
n=1

n

∫ ∞
vmin

dvv3
1

∂λωα,rτ
(0)
b,r

ΥiFi0|J (1)
n |2. (122)

6. Estimation of νδ∗

In Section 4 we have solved the drift-kinetic equation and computed Qi when νi∗ � ρi∗.

But we have advanced in the Introduction that our results are not valid for arbitrarily

small νi∗. There exists a value of the collisionality, that we call νδ∗, below which

equation (113) is expected to be incorrect because the drift-kinetic equation (52) is



The effect of tangential drifts in stellarators close to omnigeneity 21

incorrect. Hence, it is more precise to say that our results in Section 4 are correct when

νδ∗ � νi∗ � ρi∗. In this section we explain the reason for the existence of νδ∗ and

estimate its value.

The limitations of equation (52) for sufficiently small νi∗ are well understood by

inspecting the drift-kinetic equation in coordinates u and µ, given in (D.3) of Appendix

D. Equation (D.3) contains all terms that are needed to describe neoclassical transport

in stellarators when νi∗ � 1. In Appendix D we show how to obtain (52) from (D.3), and

therefore we can deduce which terms are lacking in (52) at small enough collisionality.

Tracking the derivation in Appendix D and employing the notation introduced there, it

is clear that the term

uκ · v∇B,i∂uF̂i1 (123)

is the key. It is easy to see that only the piece

u(κ · v∇B,i)(0)∂uF̂i1, (124)

corresponding to the omnigeneous magnetic field B0, enters (52). The effect of higher-

order terms like

u(κ · v∇B,i)(1)∂uF̂i1 (125)

have not been included. However, in Section 4 we learnt that transport is dominated by

two collisional layers when νi∗ � ρi∗. In these layers, derivatives with respect to u (or,

equivalently, with respect to λ) are large, and they grow as νi∗ decreases. Let us denote

by ∆u the width of the layer in the coordinate u. The term (125) becomes comparable

with the pitch-angle scattering piece of the collision operator when

δρi∗vti
L0(∆u/vti)

∼ νii
(∆u/vti)2

. (126)

If the stellarator is in the
√
ν regime, the boundary layer has a width ∆u/vti ∼

√
νi∗/ρi∗,

and we get the estimation

νδ∗ ∼ δ2ρi∗. (127)

If the stellarator is in the superbanana-plateau regime, the size of the boundary layer is

∆u/vti ∼ (νi∗/ρi∗)
1/3 and we get

νδ∗ ∼ δ3/2ρi∗. (128)

When νi∗ . νδ∗, effects like those described in [24] must be taken into account. We

leave this for future work.

7. Conclusions

Omnigeneity is the property of stellarators that have been perfectly optimized regarding

neoclassical transport. It has been argued in [14] and in the Introduction of the present

paper that deviations from omnigeneity are likely to have a non-negligible effect on
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the neoclassical fluxes. It is natural to expect that this effect will be larger at low

collisionality νi∗.

The 1/ν regime in stellarators close to omnigeneity is studied in [14]; this regime

is defined by ρi∗ � νi∗ � 1. In the core of hot stellarators, even lower collisionality

regimes are relevant. The subject of this paper has been the study of the parameter

range νi∗ � ρi∗, with the restriction (32) for the perturbations of the omnigeneous

configuration (i.e. the helicities of the perturbations have to be small).

In this regime the terms in the drift-kinetic equation that involve the components

of the drifts tangential to the flux surface have to be retained. The appropriate drift-

kinetic equation to solve for the dominant non-omnigeneous piece of the distribution

function has been derived in Section 3. In Section 4, the equation has been solved

and an explicit formula for the ion energy flux Qi has been provided in (113). The

formula manifests, in particular, that when νi∗ � ρi∗ transport is determined by two

small collisional layers on phase space. One of the layers is located around the boundary

between trapped and passing particles and the other is located in the neighborhood of

the points where the precession frequency (which is associated to the motion caused by

the tangential drifts) vanishes. The former corresponds to the
√
ν regime and the latter

to the superbanana-plateau regime.

In Section 5 we have given equations to determine the dominant contributions to

the radial electric field and to the electric field tangent to the flux surface.

Finally, in Section 6 we have explained why the results of Section 4 are not valid

below a certain value of the collisionality, that we call νδ∗ and that we have estimated.

The treatment of the regime νi∗ . νδ∗ in stellarators close to omnigeneity is left for

future work.

Appendix A. Proof of relations (43) and (44)

A straightforward calculation shows that

2

∫ lb2

lb1

1

|v|||
(vM,i + vE,0 + vE,1) · ∇ψ dl =

2mic

ZieΨ′t
∂α

∫ lb2

lb1

|v|||dl −
2mic

ZieΨ′t

∫ lb2

lb1

∂l(|v|||∂αr · b̂)dl (A.1)

and

2

∫ lb2

lb1

1

|v|||
(vM,i + vE,0 + vE,1) · ∇α dl =

− 2mic

ZieΨ′t
∂ψ

∫ lb2

lb1

|v|||dl +
2mic

ZieΨ′t

∫ lb2

lb1

∂l(|v|||∂ψr · b̂)dl. (A.2)

The last term in both (A.1) and (A.2) vanishes because v|| equals zero at lb1 and lb2 .

Finally, using the definition (42), we obtain (43) and (44).
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Appendix B. Asymptotic expansion of ∂ψJ
(0) near the boundary between

trapped and passing particles

We show that

∂ψJ
(0) = −

∫ lb20

lb10

λv∂ψB0 + 2Zie/(miv)∂ψϕ0√
1− λB0

dl (B.1)

has the form (72) for small λ− λc > 0 by, first, using the trivial identity

∂ψJ
(0) = −

2∑
k=1

∫ lb20

lb10

λv∂ψB0(lM,k) + 2Zie/(miv)∂ψϕ0√
(λc/2)|∂2l B0(lM,k)|(l − lM,k)2 −B0(lM,k)(λ− λc)

dl

−
∫ lb20

lb10

(
λv∂ψB0(l) + 2Zie/(miv)∂ψϕ0√

1− λB0(l)

−
2∑

k=1

λv∂ψB0(lM,k) + 2Zie/(miv)∂ψϕ0√
(λc/2)|∂2l B0(lM,k)|(l − lM,k)2 −B0(lM,k)(λ− λc)

)
dl, (B.2)

which is well defined for sufficiently small λ − λc. Here, we have only displayed the

dependence of B0 on l. The values lM,k, for k = 1, 2, locate two consecutive absolute

maxima of B0 when moving along the field line; in particular, B0(lM,k) = B0,max for

k = 1, 2. The second integral on the right side of (B.2) is finite when λ→ λc, and hence

it contributes to a2 and higher-order terms in (72). The first integral on the right side

of (B.2) can be computed analytically; namely,

−
2∑

k=1

∫ lb20

lb10

λv∂ψB0(lM,k) + 2Zie/(miv)∂ψϕ0√
(λc/2)|∂2l B0(lM,k)|(l − lM,k)2 −B0(lM,k)(λ− λc)

dl =

−
2∑

k=1

λv∂ψB0(lM,k) + 2Zie/(miv)∂ψϕ0√
(λc/2)|∂2l B0(lM,k)|

×
[

ln

(
x+

√
x2 − 2B0(lM,k)

λc|∂2l B0(lM,k)|
(λ− λc)

)]lb20−lM,k

lb10−lM,k

. (B.3)

For small λ− λc,

lb10 − lM,1 =

√
2B0(lM,k)(λ− λc)
λc|∂2l B0(lM,k)|

+ . . . , (B.4)

and

lb20 − lM,2 = −

√
2B0(lM,k)(λ− λc)
λc|∂2l B0(lM,k)|

+ . . . , (B.5)

whereas lb20 − lM,1 = O(L0) and lb10 − lM,2 = O(L0). Using these results in (B.3), it is

straightforward to deduce that

−
2∑

k=1

∫ lb20

lb10

λv∂ψB0(lM,k) + 2Zie/(miv)∂ψϕ0√
(λc/2)|∂2l B0(lM,k)|(l − lM,k)2 −B0(lM,k)(λ− λc)

dl =
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1

2λc

2∑
k=1

λcv∂ψB0(lM,k) + 2Zie/(miv)∂ψϕ0√
|∂2l B0(lM,k)|

ln(B0,max(λ− λc)) +O(vtiL0/ψ), (B.6)

from where (73) follows.

Appendix C. Analysis of the singular points of (87)

In this appendix we use the variable x = λ− λc and rewrite (87) as

∂2xgn + in
a1
νλξ

ln(ã2x) gn = −∂2xg0,n, (C.1)

where gn(x) = gbl,n(λc + x) and g0,n(x) = g0,n(λc + x). The equations (87) for n 6= 0

(recall that gn(x) and g0,n(x) vanish) have two irregular singular points [25], x = 0 and

x =∞.

We start by analyzing the point x = 0. The standard methods do not work to

study the behavior near x = 0 of the solutions of the homogeneous equation

∂2xgn + in
a1
νλξ

ln(ã2x) gn = 0. (C.2)

However, one can check that the ansatz

gn =
∞∑

m,p=0

am,p x
2p+m(lnx)p (C.3)

is consistent, in the sense that by substitution in (C.2) one can find recurrence relations

that determine all the coefficients am,p except two of them. The free coefficients can be

taken to be a0,0 and a1,0. This way one proves that there exist two linearly independent

solutions of (C.2) that are finite at x = 0.

It is easy to realize that the source term on the right side of (C.1) does not make

gn diverge at x = 0. First, note that g0,n is finite for any value of x. If one takes

gn = −g0,n + fn, (C.1) gives the following equation for fn:

∂2xfn + in
a1
νλξ

ln(ã2x) fn =
in

νλξ
(dn + c1,n lnx)ΥiFi0, (C.4)

with

c1 −
1

2π

∫ 2π

0

c1dα =
∞∑

n=−∞

c1,ne
inα (C.5)

and

c1 ln(c̃2)−
1

2π

∫ 2π

0

c1 ln(c̃2)dα =
∞∑

n=−∞

dne
inα. (C.6)

Recall that c1, c2 and c̃2 have been defined in (78), (79), (81). Since the indefinite

integrals of lnx are finite everywhere, the source term on the right side of (C.4) does

not introduce singularities in fn and we conclude that gn is finite for any value of x; in

particular, it is finite at x = 0.

Now, we turn to study the solutions of (C.1) at x = ∞. Actually, it is enough

to analyze the homogeneous equation (C.2) because the right side of (C.1) is negligible
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except in a neighborhood of λc. We can employ the standard technique to find local

solutions of homogeneous linear equations around irregular singular points described in

reference [25]. We start by introducing a formal small parameter γ in (C.1),

∂2xgn + inγ−2
a1
νλξ

ln(ã2x) gn = 0. (C.7)

At the end of the calculation, we will set γ = 1. Now, we write

gn = eγ
−1S

(0)
n +S

(1)
n , (C.8)

and plug (C.8) into (C.1), finding

γ−1∂2xS0 + ∂2xS1 + (γ−1∂xS0 + S1)
2 + γ−2in

a1
νλξ

ln(ã2x) = 0. (C.9)

Solving the orders γ−2 and γ−1 of this equation and finally setting γ = 1, one gets the

asymptotic expressions

gn ∼
1

(ln(ã2x))1/4
exp

(
± 1√

2
(i− 1)

√
na1
νλξ

∫ x√
ln(ã2y) dy

)
(C.10)

for n > 0 and

gn ∼
1

(ln(ã2x))1/4
exp

(
± 1√

2
(i+ 1)

√
−na1
νλξ

∫ x√
ln(ã2y) dy

)
(C.11)

for n < 0. In particular, for every n 6= 0 there exist solutions to (C.1) that vanish when

x→∞.

In summary, we have shown that (C.1) can be solved with the boundary conditions

given by (88) and the vanishing of gn when x→∞.

Appendix D. Drift-kinetic equation in coordinates u and µ

It is pedagogical to derive the drift-kinetic equation (52) by starting with the drift-

kinetic equation in coordinates u and µ, where u is the parallel velocity. Furthermore,

this derivation helps understand why (52) is not valid when the collisionality is small

enough, as pointed out in Section 6.

We have derived the drift-kinetic equation to O(ρ∗2i ) in coordinates u and µ in

reference [11]. One of the original results of [11] is the explicit calculation of all the

O(ρ∗2i ) terms, given in equation (79) of that reference. From equation (79) of [11] we

only have to keep terms that become large when νi∗ � 1; that is, terms that contain

either F̂i1 or ϕ1. Here, we are using the notation

F̂i(r, u, µ) = Fi0(r, u, µ) + F̂i1(r, u, µ) +O(ρ2i∗Fi0), (D.1)

where

Fi0(r, u, µ) = ni(ψ(r))

(
mi

2πTi(ψ(r))

)3/2

exp

(
−mi(u

2/2 + µB(r))

Ti(ψ(r))

)
. (D.2)
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Retaining only the relevant terms O(ρ∗2i ) and adding the standard O(ρi∗) terms,

we have

(vM,i + vE,0) · ∇F̂i1

+

[
uκ · (v∇B,i + vE,0)−

Zie

mi

b̂ · ∇ϕ1

]
∂uF̂i1

+vE,1 · ∇Fs0 + uκ · vE,1∂uFi0

+(ub̂ · ∇ − µb̂ · ∇B∂u)F̂s1 +
Zie

Ti
ub̂ · ∇ϕ1Fi0

+ΥivM,i · ∇ψFi0 = C`
ii[F̂i1], (D.3)

where

Υi =
n′i
ni

+
T ′i
Ti

(
miu

2/2 + µB

Ti
− 3

2

)
+
Zieϕ

′
0

Ti
, (D.4)

vM,i =
1

Ωi

b̂×
(
u2κ + µ∇B

)
, (D.5)

v∇B,i =
1

Ωi

b̂× µ∇B, (D.6)

vE,0 =
c

B
b̂×∇ϕ0, (D.7)

vE,1 =
c

B
b̂×∇ϕ1 (D.8)

and

Fi0(r, u, µ) = ni(ψ(r))

(
mi

2πTi(ψ(r))

)3/2

exp

(
−mi(u

2/2 + µB(r))

Ti(ψ(r))

)
. (D.9)

The last two lines in (D.3) contain the terms of the standard drift kinetic equation.

The third line in (D.3) can be rewritten as

vE,1 · ∇Fs0 + uκ · vE,1∂uFi0 =

Zie

Ti
vM,i · ∇ϕ1Fi0 + vE,1 · ∇ψ

(
n′i
ni

+
T ′i
Ti

(
miu

2/2 + µB

Ti
− 3

2

))
Fi0. (D.10)

These terms are not very surprising. However, the first two lines in (D.3) look a

bit awkward at first sight. The awkwardness disappears if one employs {r, E , µ, σ}
as independent coordinates, where E is the total energy per mass unit and σ is the sign

of the parallel velocity. The coordinate E expressed as a function of the coordinates

{r, u, µ} reads

E(r, u, µ) =
1

2
u2 + µB(r) +

Zie

mi

(ϕ0(ψ(r)) + ϕ1(r)). (D.11)
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We define F̃i1(r, E , µ) by F̂i1(r, u, µ) = F̃i1(r, E(r, u, µ), µ), Then, we can write

(vM,i + vE,0) · ∇F̂i1

+

[
uκ · (v∇B,i + vE,0)

]
∂uF̂i1 =

(vM,i + vE,0) · ∇F̃i1 +
Zie

mi

(vM,i + vE,0) · ∇ϕ1∂E F̃i,1. (D.12)

Finally, the last term in the second line of (D.3) combines with the parallel streaming

terms in the last line of (D.3) to give

−Zie
mi

b̂ · ∇ϕ1∂uF̂i1 + (ub̂ · ∇ − µb̂ · ∇B∂u)F̂s1 = v||b̂ · ∇F̃i1, (D.13)

where

v||(r, E , µ, σ) = σ

√
2

(
E − µB(r)− Zie

mi

(ϕ0(ψ(r)) + ϕ1(r))

)
. (D.14)

Hence, (D.3) is recast as

(vM,i + vE,0) · ∇F̃i1

+
Zie

mi

(vM,i + vE,0) · ∇ϕ1∂E F̃i,1 + v||b̂ · ∇F̃i1 +
Zie

Ti
v||b̂ · ∇ϕ1Fi0

+
Zie

Ti
vM,i · ∇ϕ1Fi0 + vE,1 · ∇ψ

(
n′i
ni

+
T ′i
Ti

(
miu

2/2 + µB

Ti
− 3

2

))
Fi0

+ΥivM,i · ∇ψFi0 = CE,`ii [F̃i1] (D.15)

and, after a slight rearrangement, as

(vM,i + vE,0) ·
(
∇F̃i1 +

Zie

Ti
∇ϕ1Fi0

)
+
Zie

mi

(vM,i + vE,0) · ∇ϕ1∂E F̃i,1 + v||b̂ ·
(
∇F̃i1 +

Zie

Ti
∇ϕ1Fi0

)
+Υi(vM,i + vE,1) · ∇ψFi0 = CE,`ii [F̃i1]. (D.16)

With the notation CE,`ii we emphasize that the kernel of the collision operator has a

different expression in coordinates {r, u, µ} and {r, E , µ}. Note that the first term in

the second line of the previous equation is very small. It is a nominally O(ρ3i∗) term, so

we drop it and arrive at

(vM,i + vE,0) ·
(
∇F̃i1 +

Zie

Ti
∇ϕ1Fi0

)
+v||b̂ ·

(
∇F̃i1 +

Zie

Ti
∇ϕ1Fi0

)
+Υi(vM,i + vE,1) · ∇ψFi0 = CE,`ii [F̃i1]. (D.17)
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Observe that

v||b̂ ·
(
∇F̃i1 +

Zie

Ti
∇ϕ1Fi0

)
=

v||b̂ · ∇
(
F̃i1 + F Ei0 exp

(
Zieϕ1

Ti

))
, (D.18)

where

F Ei0(ψ, E) = ni(ψ)

(
mi

2πTi(ψ)

)3/2

exp

(
−miE − Zieϕ0

Ti(ψ)

)
. (D.19)

is constant over trajectories with constant total energy.

In the first line of (D.17), we can replace Fi0 by F Ei0 because their difference gives a

nominally O(ρ∗3i ) contribution to the equation. We can do this in the last term of the

left side of (D.17) as well. However, in principle, we cannot do it in the rest of terms

of that equation and we have to be careful to keep all terms that are nominally O(ρ∗2i ).

Then, to the required accuracy, (D.17) can be recast as

(vM,i + vE,0) · ∇G̃i1 − ϕ1(vM,i + vE,0) · ∇
(
Zie

Ti
F Ei0

)

+v||b̂ · ∇

(
1

2

(
Zieϕ1

Ti

)2

F Ei0

)

+ΥivM,i · ∇ψ
Zieϕ1

Ti
F Ei0

+v||b̂ · ∇G̃i1 + Υi(vM,i + vE,1) · ∇ψF Ei0 = CE,`ii [G̃i1], (D.20)

where

G̃i1 := F̃i1 +
Zie

Ti
ϕ1F

E
i0. (D.21)

Noting that ϕ0, F
E
i0 and Ti are flux functions, one has

−ϕ1(vM,i + vE,0) · ∇
(
Zie

Ti
F Ei0

)
+ΥivM,i · ∇ψ

Zieϕ1

Ti
F Ei0 =

ZieT
′
i

T 2
i

vM,i · ∇ψ ϕ1F
E
i0 (D.22)

and (D.20) becomes

(vM,i + vE,0) · ∇G̃i1 +
ZieT

′
i

T 2
i

vM,i · ∇ψ ϕ1F
E
i0

+v||b̂ · ∇

(
1

2

(
Zieϕ1

Ti

)2

F Ei0

)

+v||b̂ · ∇G̃i1 + Υi(vM,i + vE,1) · ∇ψF Ei0 = CE,`ii [G̃i1]. (D.23)
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The last term on the first line combines with the last term on the left side, so (neglecting

again terms O(ρ3i∗)),

(vM,i + vE,0) · ∇G̃i1

+v||b̂ · ∇

(
1

2

(
Zieϕ1

Ti

)2

F Ei0

)

+v||b̂ · ∇G̃i1 + ΥEi (vM,i + vE,1) · ∇ψF Ei0 = CE,`ii [G̃i1], (D.24)

where

ΥEi =
n′i
ni

+
T ′i
Ti

(
miE − Zieϕ0

Ti
− 3

2

)
+
Zieϕ

′
0

Ti
. (D.25)

Finally, we define

Fi1 = G̃i1 +
1

2

(
Zieϕ1

Ti

)2

F Ei0. (D.26)

Dropping some small terms again, (D.24) can be rewritten as

(vM,i + vE,0) · ∇Fi1

+v||b̂ · ∇Fi1 + ΥEi (vM,i + vE,1) · ∇ψF Ei0 = CE,`ii [Fi1], (D.27)

Clearly, this equation coincides with (52) when expansions in νi∗ � 1 and δ � 1 are

taken.
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