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A numerical and an analytical study of the triggering of resistive MHD modes in tokamak plasmas with
low magnetic shear core is presented. Flat q profiles give rise to fast growing pressure driven MHD modes,
such as infernal modes. It has been shown that infernal modes drive fast growing islands on neighbouring
rational surfaces. Numerical simulations of such instabilities in a MAST-like configuration are performed
with the initial value stability code XTOR-2F in the resistive frame. The evolution of magnetic islands is
computed from XTOR-2F simulations as well as analytically based on Rutherford’s theory in combination
with the model of resistive infernal modes. The parameter ∆′ is derived and additionally, the destabilizing
contribution due to a helically perturbed bootstrap current is considered. Applying this model to a MAST-
like configuration, we find that coupling has a strong destabilizing effect on (neoclassical) tearing modes and
is able to trigger 2/1 magnetic islands in situations when the standard NTM theory predicts stability. For
large width of the magnetic island, the coupling effect from infernal modes drops, but growth is maintained
by the effect of the bootstrap current.

1 Introduction

Future operation scenarios for tokamaks like ITER are the
standard, advanced and hybrid scenario [1]. The latter
being a scenario of particular interest also in present day
tokamaks, since it allows longer sawteeth-free plasma dis-
charges at high beta and reasonably large current [2]. The
hybrid scenario is characterized by low magnetic shear in
the core with a flat or weakly reversed q profile, slightly
above unity, where q > 1 across the whole plasma. Hybrid
plasmas achieve high values of βN = 〈β〉aBT /Ip with 〈β〉
being the volume averaged normalized plasma pressure,
β = 〈p〉/(B2/(2µ0)), a the minor radius, BT the toroidal
magnetic field and Ip the plasma current. Plasmas with
low shear core are also met after sawtooth crashes when
the field lines are fully reconnected [3, 4].

Such toroidal, low-shear core plasmas, or plasmas with
shear-free core, are susceptible to a class of pressure driven
MHD modes called infernal modes [5, 6], which are related
to the quasi-interchange modes described by Wesson for
the special case m = n = 1 [7]. Infernal modes are charac-
terized by the coupling due to toroidicity, between a fun-
damental harmonic, which does not need to be resonant,
in the core with mode numbers (m0, n) and its (m0 ±1, n)
sidebands due to toroidicity. When resistivity is included,
the sidebands show a tearing character on their rational
surfaces where q = (m0 ± 1)/n. The perturbation due to
the sidebands of the infernal mode contribute to the devel-

opment of fast growing modes (neoclassical tearing modes
(NTMs)) [8] which decrease plasma performance or can
lead to disruptions. The linear theory of infernal modes
[9] predicts islands growing up to ideal timescales. Fur-
thermore, it has also been observed experimentally that
such resistive modes are able to grow much faster than
classical tearing modes [10], especially following sawtooth
crashes [8, 11] where the safety factor profile is completely
above unity which might be interpreted as n > 1 modes
coupling to the strong m = 1 internal kink perturbation.
Other examples of non-resonant infernal modes have re-
cently been considered in Refs. [12, 13, 14].

Previous analyses of resistive infernal modes were in-
vestigated without the inclusion of the bootstrap current
[6, 15]. The bootstrap current plays a crucial role in the
stability of toroidal plasmas, since it has a destabilizing
effect which allows for unstable NTMs in situations in
which classical tearing modes would be stable. In the
present work we investigate the (seed island) triggering of
NTMs in low-shear plasmas focusing on the coupling to
infernal modes. By including effects due to the bootstrap
current we consider a destabilizing mechanism that is still
maintained even if the driving effect of infernal modes on
the island growth were to disappear, e.g. due to the q
profile in the low-shear region moving away from a ratio-
nal surface rs where q(rs) = m0/n. This allows us to see,
whether the bootstrap current is able to maintain NTMs
that have been triggered with the help of infernal modes
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after the contribution from the triggering mechanism be-
comes weak. To do this, the tearing stability parameter
∆′ is derived in the presence of infernal modes, ultimately
in order to calculate the strength of the coupling contri-
bution to the evolution of the island width. These an-
alytical results are compared with numerical simulations
performed by using the initial value code XTOR-2F [16].
By carrying out simulations with and without bootstrap
current, the effect of the bootstrap contribution on these
infernal mode triggered NTMs can be estimated and com-
pared with analytical predictions.

This paper is organized as follows: Section 2 introduces
the physical models and gives a brief description of the
linear stability of infernal modes as well as the non-linear
theory of neoclassical tearing mode growth. In section 3
an analytic expression for the contribution of the infernal
mode coupling to the linear and non-linear growth of a
NTM is made. In section 4 this is applied to a MAST-like
equilibrium and the magnetic island growth is calculated
using the estimate derived in the previous section. Nu-
merical simulations of MAST-like equilibria are performed
using XTOR-2F and the numerical results are compared
to the analytical results. A variation of the pressure is
performed and the dependency of the saturated island
width on βN is presented.

2 Physical Model

2.1 Resistive MHD Equations

The physical model used in XTOR-2F [16] is derived from
the full resistive MHD equations that result from the full
Braginskii equations [17] and includes non-MHD effects
like thermal transport, diamagnetism and some neoclas-
sical effects like bootstrap current [16]. Since the main
extended MHD effect of interest is that of the bootstrap
current, the general model [16] providing the time evolu-
tion of the velocity field v, magnetic field B, pressure field
p and density field ρ, used by XTOR-2F is simplified to

ρ [∂tv + (v · ∇)v] = J × B − ∇p+ (∇ν∇)v ,

∂tB = ∇ × (v × B) − ∇ × η(J − Jbs) ,

∂tp = −Γp∇ · v − v · ∇p+ ∇ · χ⊥∇p

+
[

B

( χ‖

B2
(B · ∇)p

)]

,

∂tρ = −ρ∇ · v − v · ∇ρ+ ∇ ·D⊥∇ρ .

(1)

In the above equations the density and the pressure are
defined as ρ = mini = mine p = pe + pi. The sub-
scripts e, i denote the electron and ion species, respec-
tively. J = ∇ × B is the current density field. We chose
for the bootstrap current Jbs to be calculated according
to the Rosenbluth model [18]. The fluid velocity is given
by v. ν is the viscosity, η the resistivity and Γ the ratio
of specific heats. Resistivity is allowed to vary over the
radial extension of the plasma, but is kept constant in
time. The resistivity profile is chosen in a way that the
equilibrium toroidal electric field is kept constant over the
radius [16]. χ⊥ and χ‖ are the perpendicular respectively

the parallel heat transport coefficients and D⊥ the per-
pendicular diffusion coefficient.

2.2 Non-linear Stability of NTMs

Non-linear stability of the tearing mode is well described
by Rutherford’s theory [10], originally developed for cylin-
drical plasmas, predicting that the growth in the early
non-linear phase is linear in time and related to increas-
ing tearing stability parameter

∆′ = lim
ǫ→0

ψ′
rs+ǫ

ψrs+ǫ
− ψ′

rs−ǫ

ψrs−ǫ
, (2)

which measures the jump of the eigenfunction of the
global perturbation on the rational surface. Several ex-
tensions to Rutherford’s model have been made to include
neoclassical effects and to describe neoclassical tearing
modes [19, 20]. Letting w be the magnetic island width,
the modified Rutherford equation describes the growth of
magnetic islands by:

τR

rs

dw

dt
= fn

∑

i

rs∆′
i(w) = fnrs∆′

total , (3)

where τR = µ0r
2
s/η denotes the resistive time, rs is the po-

sition of the resonant surface, S = τR/τA is the Lundquist
number, τA = 1/ωA = R0/vA is the Alfvén time with
vA = B0

√

(µ0ρ0) being the Alfvén speed. The factor fn

comes from a change in radial transport across the island
and is typically set to 1.22 or 1.66 [21]. ∆′

i are the sta-
bilizing or destabilizing contributions to the total tearing
stability parameter ∆′

total. These include the linear stan-
dard tearing stability parameter

∆′
0 = −2m

√
gχχΛπ cot (Λπ) , (4)

with
√
gχχ = 1/rs and Λ ≈ − rq

mq′

µ0

Bθ

j′
‖|rs

[22]. Eq. (4) is
obtained in a simple cylinder, and large island corrections
[22, 23, 24] are also known in the literature [21]. The
contribution from the bootstrap current

∆′
bs = −4.63

qs

q′
s

βp

√
ǫLp

(

w

w2 + w2
d

)

, (5)

provides a well known non-linear contribution to Eq. (3),
arising from the current perturbation associated with
pressure flattening in the region of the island [20, 25].
The bootstrap term includes corrections for small is-
land sizes due to transport which are given by wd ≈
√

2Ls/kθ(χ⊥/χ‖)(1/4) with Ls = q2/(q′ǫ), kθ = m/r,
Lp = −p/p′ and βp = 〈p〉 /[B2

θ/(2µ0)].
Other terms usually included in non-linear NTM anal-

ysis comprise ∆′
GGJ [25, 26, 27], arising from toroidal ge-

ometry effects and a polarization current term ∆′
pol [28].

These two contributions are much smaller than the contri-
bution of interest to this paper, which is due to coupling
to infernal modes ∆′

inf . In effect ∆′
inf replaces correc-

tions due to geometry in ∆′
GGJ , and corrections due to

two-fluid effects in ∆′
pol.

Should however the infernal mode become weak, the
toroidal effects and two-fluid effects associated with infer-
nal modes could diminish such that once again ∆′

GGJ and
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∆′
pol could play a significant role in Eq. (3). As will be

seen, ∆′
inf also naturally contains the classical ∆′ term

of ∆′
0. Thus in the analysis to come, the Rutherford

equation will contain only contributions from ∆′
inf and

∆′
bs. Coupling of islands to infernal modes arises due to

toroidal geometry. In order to represent coupling in the
modified Rutherford equation, ∆′ has to be calculated
from the infernal mode eigenfunctions. The eigenfunc-
tions ψ and the growth rates γ = iω have to be calculated
by solving the infernal mode problem. First, this is done
from the linear theory, described next, valid for small is-
lands which occur during the linear phase of mode growth.
A non-linear extension to the model is also described.

2.3 Linear Theory of Infernal Modes

The model described here constitutes the basis for the
derivation of the tearing stability parameter when infer-
nal modes are present. Infernal modes are a class of pres-
sure driven MHD modes that occur in toroidal plasmas
with low or vanishingly low magnetic shear ŝ = (r/q) q′

in the core (here, x′ describes a derivative of x with re-
spect to r). They can be both ideal or resistive in charac-
ter. The stability threshold in resistive plasmas lies below
the threshold for ideal internal modes [6]. These modes
occur already at very low βp when infinite n ballooning
theory predicts stable modes. Infernal modes are char-
acterized by an ideal mode with mode number (m0, n)
located in the core, coupled to its poloidal sidebands with
mode numbers (m0 ±1, n). The existence of such coupled
modes was predicted by Zakharov in Ref. [29]. The ex-
istence of unstable pressure driven modes, far below the
ballooning stability threshold, is due to the destabilizing
effect of the q profile with extended low-shear when it
is close to a rational value. The coupling that occurs in
this situation allows an energy transfer between the ideal
mode in the core and the sideband mode, resulting in
a much larger growth. When resistivity is included the
sideband modes develop a tearing character on their own
magnetic surfaces, which contributes to the formation of
magnetic islands and enhances the growth of the m0 main
mode. The growth rate of infernal modes is larger for
higher pressure and small absolute δq = qmin − m0/n.
The typical shape of a q profile in a situation where infer-
nal modes arise and the parameter δq is shown in Fig. 1.
Classical tearing modes grow on resistive timescales like
γ ∼ S−3/5, whereas the scaling for infernal modes is dra-
matically faster with γ ∼ S−3/13 at the ideal stability
boundary.

The dispersion relation for linear resistive infernal
modes with inclusion of non-MHD effects has been de-
rived by Brunetti et. al [9]

ω(ω − ω∗
i )

ω2
A

∣

∣

∣

∣

∗

=
n2

1 + 2q2
∗

[

(

δq

q∗

)2

+ β2
pG0

B0 − rs∆′
inf

A0 − rs∆′
inf

]

,

(6)
with the Alfvén frequency ωA and ion diamagnetic fre-
quency ω∗

i . The subscript ∗ indicates that a quantity
is evaluated at the transition position r∗ between low
shear and sheared region. The poloidal β is given by
βp = p0q

2
∗/(B

2
0ǫ

2)(a/r0)4. The closeness of the q profile to

q

δq

rarsr*

m0

n

m0+1
n

(i) (ii) (ii)

(iii)

m0

n

qmin

Figure 1: Typical q profile considered in the analytical
theory. Region (i) is characterized by a flat q and low
to vanishing shear. Region (ii) constitutes the external
region in which the shear is high. The resistive layer (iii)
or internal region is located at the resonant (m0 + 1)/n
surface.

the rational value is expressed through δq = qmin −m0/n.
rs is the position of the rational surface of the sideband,
where q = (m0 ± 1)/n. ∆′

inf denotes the tearing stabil-
ity parameter (Eq. (2)) at the (m0 + 1)/n surface for a q
profile of the form

1/q = ι ≈ 1

m0 + 1

{

n

m0

[

1 −
(

r

rs

)λ
]

+ n

}

, (7)

in the sheared region. The coefficients A0 =

− π cot (πã)
λ (m2 − m2) and B0 = π cot (πb)(m2 − m2)/λ

carry information locally on the shape of q. Here, m is
defined as m =

√
m2 + 2λ+ λ2, ã = (m − m)/λ and

b = (m+m)/λ. The quantity

G0 =
ǫ2∗(r∗/rs)2m

m(m+ 1)

Γ(ξ)Γ(ζ)Γ(1 − ξ − ζ)

Γ(−ξ)Γ(−ζ)Γ(1 + ξ + ζ)
, (8)

carries information about the shape of eigenfunction in
terms of the q profile in the region r < rs and is written
in terms of the Γ function. Setting m = m0 + 1, ξ =
(m−m)/λ and ζ = (m+m)/λ.

In general [9] the model includes plasma diamagnetism,
subsonic equilibrium toroidal flow shear and viscosity, but
these effects are not considered for this study.

3 Analytical Model for Island Width

The aim of this section is the calculation of the growth
and saturated width of magnetic islands in the presence
of infernal modes. Equation (3) provides the island size w
with respect to time and as we have already argued should
comprise ∆′ contributions from infernal mode coupling
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and bootstrap current, the latter having been neglected
in Refs. [9, 15]. We present the calculation of ∆′

inf , which
describes the jump of the derivative of the eigenfunction
on the rational surface in the presence of infernal modes.
The dispersion relation (6) has to be solved in order to
obtain eigenfunction profiles, which will be needed for the
linear and appropriate non-linear extended ∆′

inf . Addi-
tionally we consider destabilizing effects from the boot-
strap current. First, this is derived for the linear phase,
i.e. when the island is small. The non-linear extension for
wide islands is discussed afterwards. For convenience in
the following we make use of the normalized island width
ŵ = w/a and normalized time t̂ = t/τA.

The plasma is split into three regions, a low-shear re-
gion in the core, a high-shear region (external region) to-
wards the edge and a thin resistive layer (internal region)
at the resonant surface, as seen in Fig. 1. The ι = 1/q
profile is given by Eq. (7). The q profile that is flat in the
core and results in high shear towards the edge.

By matching the eigenfunction in the resistive layer
with the external eigenfunction, ∆′

inf calculated in the
inner region can be matched to ∆′

inf in the outer region.
A further matching of the eigenfunctions in the low-shear
and high-shear regions provides the linear tearing stability
parameter in presence of infernal modes

rs∆′
inf = S̄3/4γ̂5/4 , (9)

where S̄ = [2πΓ(3/4)/Γ(1/4)]
4/3 [

(1 + 2q2)/ŝ2
s

]1/3
S with

Γ being the Γ function and ŝs the magnetic shear on the
rational surface. The growth rate γ̂ = γ/ωA is calculated
from the dispersion relation of Eq. (6). Using the defini-
tion of the linear tearing stability parameter Eq. (2) ∆′

inf

can be obtained from the eigenfunction in the external
region evaluated in the limit r → rs and a matching to
the solution in the resistive layer. In the external region
only the (m0 ±1, n) sideband contributes at leading order,
while the eigenfunction of the main (m0, n) harmonic can
be neglected in that region. The sideband eigenfunctions
ξr± are governed by [9]

d

dz

[

z2/λ+1(1 − z)2 dξr±

dz

]

−m2 − 1

λ2
z2/λ−1(1−z)2ξr± = 0 ,

(10)
where a new radial variable z = (r/rs)λ has been intro-
duced. For ι profiles given by Eq. (7) this differential
equation can be solved analytically. The eigenfunctions
ξr± describe the fluid displacement at r < rs (ξr−) re-
spectively at r > rs (ξr+) and are given by

ξr− = z(m−1)/λ(1 − z)−1

(

A∗
1F (ã, b; ã+ b+ 1; z)

+B∗
1z

−ã−bF (−b,−ã; 1 − ã− b; z)

)

,

(11)

ξr+ = z−(1+m)/λ(z − 1)−1

(

A∗
2F (b,−ã; 1 + b− ã; 1/z)

+B∗
2z

b−ãF (−b, ã; 1 + ã− b; 1/z)

)

.

(12)

Here, F denotes the hypergeometric function of the kind

2F1 [30]. The fluid displacements ξr± are related to the
perturbed poloidal flux by

ψ± = −(f ′
0k̂‖/m)ξr± , (13)

where f ′
0 ∼ rB0 is the radial derivative of the equilibrium

toroidal flux, k̂‖ = mι − n is the parallel wave vector
and we defined the quantities ã = (m − m)/λ and b =
(m+m)/λ. Now, the tearing stability parameter can be
written with respect to the outer eigenfunctions

∆′
inf = lim

ǫ→0

ψ′
+(rs + ǫ) − ψ′

−(rs − ǫ)

ψ+
. (14)

The external eigenfunctions, given by Eqs. (11) and
(12) both consist of a regular term, describing the classi-
cal tearing behaviour and a term describing the coupling.
The coefficients A∗

1, B
∗
1 , A

∗
2, B

∗
2 in Eqs. (11) and (12) are

calculated by various boundary conditions. Ensuring the
asymptotic behaviour of ξr− for z ≪ 1 [31, 9] and making
use of the above definition of ∆′ gives:

B∗
1

A∗
1

= −C∗
A0 − D0

1+D0

(A0 +B0 +m) − rs∆′
inf

B0 − D0

1+D0

(A0 +B0 +m) − rs∆′
inf

, (15)

where C∗ = Γ(−ã)Γ(−b)Γ(1+ã+b)
Γ(ã)Γ(b)Γ(1−ã−b) with Γ being the Gamma

function. The condition ξr+(a) = 0 provides an equation
for the coefficient B∗

2 :

B∗
2

A∗
2

= −
(rs

a

)2m F (b,−ã; 1 − ã+ b; (rs/a)λ)

F (−b, ã; 1 + ã− b; (rs/a)λ)
. (16)

From the matching of ξr− with ξr+ on the rational surface
rs we obtain

A∗
1

A∗
2

=
F (b,−ã; 1 + b− ã; 1) +

B∗

2

A∗

2

F (−b, ã; 1 + ã− b; 1)

F (ã, b; ã+ b+ 1; 1) +
B∗

1

A∗

1

F (−b,−ã; 1 − ã− b; 1)
,

(17)

where the ratios
B∗

2

A∗

2

and
B∗

1

A∗

1

are already known from

Eqs. (15) and (16). With the solution γ = iω of Eq. (6)
we now have all required to generate the full sideband
eigenfunctions of Eqs. (11) and (12).
γ̂ is plotted over δq for different values of βp in Fig. 2.

For larger βp and low δq the mode is more unstable as ex-
pected for infernal modes. The growth rate is very large
for small δq. As δq is increased the growth rate drops
drastically and undergoes a transition to tearing like be-
haviour. This behaviour is also reflected in the linear
definition of ∆′

inf (Eq. (14)) shown in Fig. 3 as a function
of δq. The transition point appears at larger δq as βp is
increased.

The strength of the coupling is determined by the ratio
B∗

1/A
∗
1. In the limit of large δq, i.e. when the q profile

is far from a rational value, the modes become decoupled
and B∗

1 ≈ 0 due to regularity of the sideband eigenfunc-
tion on the magnetic axis. In this limit ∆′

inf reduces
to the basic uncoupled cylindrical result of ∆′

0 given by
Eq. (4). Indeed, in this case the dispersion relation be-
comes rs∆′

inf = A0. Using the WKB formalism the pa-
rameter

A0 := 2(m0 + 1)
[

−C1C/ (2 + 2m0 + C1) − πΛ cot (πΛ)
]
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Figure 2: Dependence of the growth rate γ̂ = γ/ωA on δq
for different values of βp.
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Figure 3: Dependence of the linear tearing stability pa-
rameter ∆′

inf calculated in presence of infernal modes on
δq for different values of βp.

with C1 = mr∗ι
′(r∗)/(mι(r∗) − n), C = Γ2(1 −

Λ)(r∗/rs)2m and Λ = −qs 〈R0J0〉′
s /(2nq

′
s) becomes A0 =

−2mπΛ cot (πΛ) [9].
As mentioned earlier, when infernal modes are strongly

unstable, ∆′
inf contains much more important geometric

(toroidal) effects than those in ∆′
GGJ . In addition, ∆′

inf

is also capable of including two-fluid effects which would
dominate those in the polarization contribution. Thus,
in this analysis, we consider only the effects of ∆′

inf and
∆′

bs in the modified Rutherford equation. In the linear
treatment carried out so far, ∆′

inf is calculated in the
limit r → rs. Magnetic islands of finite size affect the
current profile and therefore ∆′

inf should be allowed to
depend on w to obtain a more physically refined model.
We define a finite width infernal mode contribution as [21]

∆′
inf (w) =

ψ′
+

ψ+

∣

∣

∣

∣

rs+w/2

− ψ′
−

ψ−

∣

∣

∣

∣

rs−w/2

, (18)

where the ψ(r) profile is pre-calculated in the limit of van-

ishing width. The importance of this correction becomes
clear by looking at the external eigenfunctions, a typical
example of which is shown in Fig. 4.
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Figure 4: Sideband eigenfunction ψ in the external region
(high magnetic shear) in logarithmic scale. The rational
(m0 + 1, n) surface is indicated by the dashed line.

Expressing ∆′
inf (w) by Eq. (18) and adding the contri-

bution from the bootstrap current, the non-linear tearing
stability parameter in the presence of infernal modes can
now be written as

τR

rs

dw

dt
= 1.66rs

(

∆′
inf (w) + ∆′

bs

)

, (19)

with ∆′
inf (w) and ∆′

bs given by Eqs. (18) and (5) respec-
tively.

4 Application to a MAST-like

Equilibrium

In this section the theory outlined in the previous sec-
tion is applied to a MAST-like equilibrium with low-shear
core. XTOR-2F simulations of the same equilibrium are
presented, which have been performed with and without
inclusion of bootstrap current. The results obtained by
the analytical theory are compared with the results ob-
tained by the XTOR-2F simulations.

The plasma has a major radius of R0 = 0.796 m and
minor radius of a = 0.466 m. The resonant q = 2/1 sur-
face is located at rs = 0.8624 a. The equilibrium profiles
are shown in Fig. 5. The q profile is flat from the mag-
netic axis up to rs/a ≈ 0.65. We refer to this region as
low shear region. For rs/a ≥ 0.65 finite and considerably
large shear is present (high shear region). We stress the
fact that Eq. (7) cannot be used to express the q profile
over the whole range. Nevertheless, in the region around
rs the q profile can be approximated by 1/ι with ι given
by Eq. (7). The value of λ lies between 6.3 and 7 and is
set to 6.7 for the following calculations.

4.1 NTM Stability Calculation with Modified

Rutherford Equation

The growth of an NTM with helicity m = 2/n = 1 is cal-
culated for the MAST-like equilibrium described above
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Figure 5: Equilibrium profiles of a MAST-like configura-
tion which is susceptible to infernal modes. All profiles
are plotted over s = r/a =

√

|(ψ − ψ0)/(ψedge − ψ0)|. ψ0

is the poloidal flux on the magnetic axis. The dashed line
indicates the position of the resonant q = 2/1 surface. p
and I∗ are given in CHEASE units [32].

using Eq. (19). Cases with and without inclusion of boot-
strap current are considered. In the latter case the term
∆bs in Eq. (19) is set to zero. A plot of the non-linear
∆′

inf , ∆′
bs and ∆′

total = ∆′
inf + ∆′

bs is shown in Fig. 6,
where calculations are obtained by solving Eq. (6). For
small islands, the infernal mode coupling contribution is
dominant and triggers the creation of a magnetic 2/1 is-
land. The coupling drops very strongly as the island width
increases and its magnitude becomes comparable to ∆′

bs

for w & 0.03. For very large islands the coupling term
becomes stabilizing, while the bootstrap effect remains
approximately constant and destabilizing.

When including the bootstrap current contribution on
the island growth, we obtain a saturated island width of
ŵsat = 0.197. This is larger than in the case with no
bootstrap current where the island grows up to a size of
ŵsat = 0.095. The saturated island widths are evaluated
at the point in time where dŵ

dt̂
= 0, i.e. where ∆′

total =
0. This analysis shows that effects from the bootstrap
current can drive a magnetic island to a larger width,
compared to a case when its effect is neglected.

The necessity of including coupling into the NTM sta-
bility calculations becomes obvious when ∆′

total is cal-
culated in the standard way in the absence of infernal
modes, i.e. by Eq. (3) complete with ∆′

GGJ , ∆′
bs and

large width extensions of ∆′
0. Fig. 7 shows ∆′ calculated

in this way, including the non-linear tearing, GGJ and in
one case bootstrap current contributions. It is seen that
∆′

total(ŵ = 0) < 0 in the cases with and without con-
sideration of bootstrap current effects. This means that
the equilibrium would be (neoclassical) tearing stable and
an island would not develop, contradicting numerical ob-
servations (next section) of magnetic islands in such a
low-shear plasma [15].

To conclude, due to the largeness of ∆′
inf for w → 0 the

theory suggests that infernal mode coupling can provide
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Figure 6: ∆′
inf (w), ∆′

bs and ∆′
total dependency on normal-

ized island width ŵ = w/a. It is seen that the coupling
term is dominant for small ŵ, whereas for increasing is-
land width it drops and its value is comparable with the
bootstrap current term ∆′

bs.

a triggering or seeding mechanism that can lead to fast
growing modes in low-shear plasmas. The destabilizing
effects from the bootstrap current are able to maintain
island growth to considerably larger widths than in situ-
ations where the bootstrap current is not considered.
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Figure 7: ∆′
total resulting from the standard NTM treat-

ment, where ∆′
total contains cylindrical tearing, GGJ and

in one case bootstrap current contributions. In both cases
∆′

total(ŵ = 0) is negative, so the island cannot grow.

4.2 Resistive Simulations

The numerical simulations are carried out with the equi-
librium code CHEASE [32] which is interfaced with the
initial value code XTOR-2F [16], used for the stability cal-
culation. First, simulations are performed with the exact
profiles shown in Fig. 5. Further simulations with varied
pressure and current profiles enable the investigation of
the effect that βp and δq have on the growth of the side-
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band magnetic island. In all the XTOR-2F simulations
resistivity is included, while ion and electron diamagnetic
effects are switched off. The largest poloidal mode consid-
ered in the simulations is m = 13 for n = 1. For n = 0 the
maximum poloidal mode number is chosen for each equi-
librium configuration individually such that convergence
is achieved. The largest poloidal mode considered msup,
lies in the range 12 ≤ msup ≤ 24 for each simulation.
The discretization grid consists of 201 points in radial
direction, 24 points in toroidal direction and in poloidal
direction of 96 points when msup ≥ 20 and 64 points in
simulations where msup < 20. The Lundquist number is
set to S = 106 on the magnetic axis. This value is lower
than the typical values for present day tokamaks (ranging
from S = 108 − 109), but larger values in the simulation
can lead to unnecessary convergence problems. Equilib-
rium toroidal rotation is neglected in the simulations. The
resistivity is allowed to vary over the radial extension of
the plasma, unlike in the analytical model, where resis-
tivity matters only in the resonant region, where it can
be considered constant. The value for the normalized vis-
cosity is ν = 5 × 10−6.
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Figure 8: Island width with and without bootstrap current
as computed in the XTOR-2F simulations. When boot-
strap current is included, the island growths to a larger
size.

First, simulations with the above equilibrium profiles
are performed. The poloidal βp for this equilibrium is
βp = 0.32 for which βN = 1.66. Here, a 2/1 island is
observed, both in the cases with and without bootstrap
current. The island evolution can be seen in Fig. 8. Dur-
ing the linear phase which ends at t ≈ 1000 τA the growth
of the magnetic island is exponential and comparable in
both cases. For t > 1000 τA, when the system enters the
nonlinear stage, the mode growth is stronger and main-
tained for a longer time in the case when bootstrap cur-
rent is included. The comparable growth during the lin-
ear phase that is observed in both cases, results from the
low value of ∆′

bs, which can be neglected for small island
sizes. The difference of the growth rate in the non-linear
phase is expected, since ∆′

bs becomes important here and
has a strong destabilizing effect for larger island width.

Fig. 9 shows Poincaré plots of the poloidal cross section
at toroidal angle φ = 0 at t ≈ 2800 τA, when the 2/1 is-
lands reach significant sizes. The main 1/1 mode can also
be seen, shifting the magnetic axis outward and giving
the flux surfaces in the core a bean-like shape.

(a) (b)

Figure 9: Poincaré plot at ϕ = 0 at time t = 2480 τA

in simulations with equilibrium profiles as in Fig. 5. The
magnetic 2/1 island is clearly visible. (a) with inclusion of
bootstrap current. (b) at without inclusion of bootstrap
current.
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Figure 10: Kinetic energy of the n = 0 and n = 1 mode
in a simulation including bootstrap current and using the
equilibrium profiles seen in Fig. 5. (a) shows the energy on
a linear scale, (b) on logarithmic scale. The m spectrum
of the n = 0 mode is shown in (c) and the m spectrum of
n = 1 mode in (d), both for t = 2500 τA.

The typical evolution of the kinetic energy of an infernal
mode is shown in Fig. 10. The energy growths linearly
until t ≈ 1000 τA and then enters the non-linear stage,
characterized by an oscillating behaviour. The poloidal
spectrum is well converged. The kinetic energy is related
to the growth rate by γ = −iω = 1/2 d ln (EK)/dt, where
Ek is the kinetic energy of the mode and it is linked to the
fluid displacement ξ by Ekin = 1/2m∂ξ/∂t and therefore
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allows the estimation of the mode amplitude. From the
beginning of the non-linear phase the amplitude of the
oscillations reduces until t ≈ 2200 τA. After t ≈ 2200 τA

the amplitude of the kinetic energy of the n = 1 mode rises
notably while the oscillation frequency decreases. This is
due to the effect of destabilizing effect of the bootstrap
current, leading to a substantially larger island width. A
similar behaviour, but without a rise of the kinetic energy
at large times, is also observed in the simulations without
bootstrap current.
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Figure 11: Island growth dŵ/dt is shown with respect to
island width ŵ for XTOR-2F simulations and the ana-
lytical prediction for cases with and without bootstrap
current. Agreement between simulations and analytical
results is found.

From the analysis that has been done so far, it is un-
clear if the islands are saturated. Saturation can be es-
timated by relating dŵ/dt to the width ŵ. For a non-
saturated island dŵ/dt > 0 and saturation is obtained
when dŵ/dt̂ = 0. The relation between island growth
and width is shown in Fig. 11 for both the analytical
results and XTOR-2F, with and without bootstrap cur-
rent effects. In the XTOR-2F simulation without in-
clusion of bootstrap current saturation is achieved at a
width ŵsat = 0.044. In the case with bootstrap cur-
rent the island is not saturated at the end of the sim-
ulation at t = 3098 τA, though island growth, i.e. the
slope ˙̂w = dŵ/dt̂ is reduced to 1/3 of its maximal value.
For small island sizes the growth of bootstrap and non-
bootstrap simulations are comparable as expected.

The analytical island growth is calculated using
Eq. (19). In order to compare the XTOR-2F simulations
without inclusion of bootstrap current to the analytical
model, the term ∆′

bs in Eq. (19) is set to zero for this
case. For both cases the numerical and analytical results
agree well. The apparent large seed island effect, where
dŵ/dt̂ is large for small ŵ is observed in both the ana-
lytic results and XTOR-2F. Difference between saturated
values in ŵ are likely to be due to the approximations
that have been made for the non-linear corrections in the
derivation of Eq. (19).

From the dispersion relation Eq. (6) it can be seen
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Figure 12: Saturated magnetic island width ŵ versus pres-
sure on the magnetic axis p0 from XTOR-2F simulations
with and without bootstrap current. Note, that the whole
pressure profile is scaled down, hence not only p0 varies,
but p(r) for 0 ≤ r ≤ a.

that the growth rate of infernal modes depends on βp =
p/(B2

θ/2µ0). In order to examine the influence of βp on
the growth of the 2/1 NTM, the pressure profile is scaled
by multiplying p(r) with a constant parameter c over the
range 0.3 ≤ c ≤ 1. The shape of the profile is maintained.
This is done for cases with and without bootstrap current
and the result is shown in Fig. 12. Without bootstrap
current, there is a linear dependence on p(r), which re-
sults from the effect of increasing p on the infernal mode
growth rate. With the additional effect of bootstrap cur-
rent, and its dependence on pressure, the island width
scales non-linearly on p.

5 Conclusions

In this work analytical and numerical studies in the frame
of resistive MHD with inclusion of bootstrap current have
been presented. In particular we investigated the trigger-
ing of fast growing MHD modes by infernal modes in low-
shear plasmas. Analytical and numerical results for cases
with and without bootstrap current have been compared
and good agreement has been found.

Standard NTM analysis [25] is not applicable when is-
lands are coupled to infernal modes. In this work a deriva-
tion of the infernal mode coupling contribution to the
modified Rutherford equation has been presented. To ob-
tain the linear ∆′

inf , which describes the initial ’kick’ that
can trigger the creation of an NTM, the external eigen-
functions have been evaluated in the limit r → rs. The
resulting destabilizing effect is much stronger compared to
standard tearing analysis, suggesting that coupling pro-
vides the dominant destabilizing effect. A non-linear ex-
tension which evaluates ∆′ at finite width has been pro-
vided to generalize the equation governing island growth.

The new analytical model has been applied to a MAST-
like equilibrium with low-shear core. In such a plasma,
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where infernal modes are present, the modified Ruther-
ford equation used in standard (neoclassical) tearing the-
ory predicts stability, even when the destabilizing term
∆′

bs is considered. With the new contribution ∆′
inf in

the modified Rutherford equation, the coupling provides
a strongly destabilizing effect that triggers a magnetic is-
land. Due to the largeness of ∆′

inf for small widths, the
island shows a very fast growth at this width. This highly
destabilizing effect of coupling can explain the triggering
of magnetic islands in numerical simulations and the ex-
perimentally observed fast growing modes.

Numerical simulation results obtained with the XTOR-
2F code in the same equilibrium, show the existence of
a fast growing 2/1 island. When bootstrap current is
considered, the island grows much faster and to a larger
width than in the case without bootstrap current. This
behaviour is expected due to its additional destabilizing
effect. A comparison with the analytical model shows
good agreement for the island growth in both cases.
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