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We aim to simulate the bootstrap current for a MAST-like spherical tokamak using

two approaches for magnetic equilibria including externally caused 3D effects such as

Resonant Magnetic Perturbations (RMPs), the effect of toroidal ripple, and intrin-

sic 3D effects such as non-resonant internal kink modes. The first approach relies on

known neoclassical coefficients in ideal MHD equilibria, using the Sauter[O. Sauter et

al, Phys. Plasmas 6, 2834, (1999)] expression valid for all collisionalities in axisymme-

try, and the second approach being the quasi-analytic Shaing-Callen[K. C. Shaing and

J. D. Callen, Phys. Fluids 26, 3315, (1983)] model in the collisionless regime for 3D.

Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the

flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen

expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier

with the application of resonant magnetic perturbations, and equilibria possessing a

saturated non- resonant 1/1 internal kink mode with a weak internal pressure bar-

rier. We compare the applicability of the self-consistent iterative model on the 3D

applications and discuss the limitations and advantages of each bootstrap current

model for each type of equilibrium.
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I. INTRODUCTION

The bootstrap current plays an important role in the steady-state function of future

fusion devices, especially tokamaks such as ITER, as it reduces the dependence on external

current drive, leading to savings in the input energy. Thus, it is of great interest to study the

bootstrap current in existing fusion devices, under operational conditions similar to ITER.

For tokamaks with steep edge pedestals, similar to those found in H-mode operations, the

bootstrap current near the edge acquires a large value, significantly reducing the dependence

on current drive. In TCV, operation of the tokamak with 100% bootstrap current has

been demonstrated1, leading to hopes that future tokamaks can achieve high bootstrap-

current fractions. At the same time, plasma behaviour at and near the edge is crucial

for the operation of a tokamak. The toroidal field ripple caused by the discretization of

the toroidal magnetic field is a 3D effect that can play an important role in confinement

of particles near the edge. Another example of such 3D effect on the edge is the Edge

Localized Mode (ELM), which in short bursts, causes large degradation to the confinement

of the plasma. Recently, the effort towards mitigating ELMs has concentrated on using

Resonant Magnetic Perturbations (RMPs), to mitigate and control ELMs. However, large

density pump-outs associated with ELM mitigation can cause a change in the edge bootstrap

current. In addition to the 3D effects caused by externally imposed magnetic fields, the

saturated 1/1 internal kink mode, also known in experimental plasma physics as Long Lived

Modes (LLMs), is an intrinsic effect in toroidally confined hybrid-type plasmas. The pressure

barrier around the helical-core region can contribute significantly to the bootstrap current,

and therefore, it is important to see to what extent the helical core affects the bootstrap

current ordinarily associated with core localised pressure gradients.

In this paper, we attempt to undertake such self-consistent calculations of the bootstrap

current in the 3D applications mentioned above. In particular, we use a self-consistent

iterative scheme for the bootstrap current and employ two contrasting models to compute

the bootstrap current. The iterative scheme yields the bootstrap current self-consistently

starting from an ideal (2D and 3D) MHD equilibrium obtained from the VMEC code2.

The two distinctive models of bootstrap current we use are as follows: First, the Sauter

model3 and second the Shaing-Callen model4. Both bootstrap current calculation models are

applied to both 2D and 3D equilibria, even though the Sauter model was originally derived
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for axisymmetric equilibrium calculations, and the Shaing-Callen model was conceived for

3D equilibria. In the current work, we compare the performance of the two models for a

variety of cases ranging from axisymmetric equilibria, to 3D equilibria incorporating the ideal

response of RMPs to 3D equilibria with a helical core. This resultant bootstrap current is

incorporated into the original toroidal current density profile, and iterated through VMEC

again to generate a new equilibrium. The scheme is iterated until the bootstrap current

profiles are sufficiently converged, resulting in a self-consistent magnetic equilibrium and its

resultant bootstrap current profile. There have been apparently similar attempts to simulate

bootstrap current using an iterative scheme on tokamaks and stellarators5,6. However, each

work has usually limited itself to using either an axisymmetric model or solely using a 3D

model. The current work will compare and contrast the two bootstrap current models on

2D and 3D equilibria, obtaining novel, realistic bootstrap current calculations in tokamaks

with field ripple, RMPs and helical cores.

The paper is organised as follows: In the first section, we describe the self-consistent

approach to obtaining the bootstrap current from an ideal MHD equilibrium. In the second

section, we benchmark the performance of the scheme for an axisymmetric equilibrium. In

section 3, we consider 3D equilibria with a steep edge pressure pedestal, and explore the

effect of toroidal field ripple and the effect of RMPs on the bootstrap current. In section 4,

we study one case of helical-core 3D equilibrium and its associated bootstrap current density

profiles. Brief concluding remarks are provided in section 5.

II. APPROACH TO THE SIMULATION AND BOOTSTRAP CURRENT

MODELS

Our aim to calculate the bootstrap-current and a magnetic equilibrium consistently re-

quires that if the initial current profile used for the magnetic equilibrium calculation included

the bootstrap current, the equilibrium thus generated would extract the same bootstrap cur-

rent density profile as the one we began with. In order to establish this iteratively, we need

a magnetic equilibrium and an interface for calculating the bootstrap current. The equi-

librium for the iterative process is provided by the Variational Moments Equilibrium Code

(VMEC)2. VMEC is a versatile ideal free-boundary MHD equilibrium code which generates

equilibrium by minimizing the variations in the equilibrium energy functional. Using the
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free-boundary version of VMEC8, we generate equilibria for the desired current and pressure

profiles. We also vary the equilibrium by specifying an initial guess of a skewed magnetic

axis of 1/1 helicity with axisymmetric boundary conditions that leads to the formation of a

helical core, thereby allowing the representation of a 1/1 internal kink mode12.

One can include the effect of external fields in VMEC by prescribing the coil positions

and coil currents. A package within the VMEC-Suite, MAKEGRID allows us to calculate the

magnetic field generated by the specified coils. Including this external magnetic field in

the equilibrium calculations allows us to generate equilibria with the ideal response of the

equilibrium to the external fields. One element of this study is to analyse the the variation

in the equilibrium and the bootstrap currents due to the varying number of toroidal field

coils (TF-coils), and due to the Resonant Magnetic Perturbation (RMP) coils. In addition

to the externally produced 3D effects, VMEC can also generate a realistic representation of a

saturated 1/1 internal kink mode13. Of special interest will be to examine and contrast the

3D helical core state and the axisymmetric sister-state and thus isolate the 3D effect of the

bootstrap current.

For calculating the bootstrap current, we consider two models. First, the Sauter model3,

which is an axisymmetric 2D model, and the second is the Shaing-Callen model4,7 which is

quasi-analytic and valid for 3D equilibria. The calculation using these models is performed in

a separate module. The advantage of this separate module is that it can take into account the

specific profiles for each numerical experiment, thus delivering a tailored bootstrap current

profile for each particular simulation.

We now proceed to describe the Sauter bootstrap current model in subsection IIA, the

Shaing-Callen bootstrap current model in subsection II B explaining the resonance effects

and resonance detuning (in II C), and the iterative scheme used for the self-consistent boot-

strap current calculation in subsection IID.

A. The Sauter bootstrap current density model

The expression given by Sauter et al, in which the parallel bootstrap current density

〈Jbs.B〉, is given by

〈Jbs.B〉 = −I(ψ)pe
[
L31

p

pe

∂ ln p
∂ψ

+ L32
∂ lnTe
∂ψ

+ L34α
∂ lnTi
∂ψ

]
(1)
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where µ0I(ψ) = −Bv in VMEC coordinates (or equivalently µ0I(ψ) = RBφ assuming an

axisymmetric magnetic field). Throughout the current work, we work in S. I. units for the

sake of consistency through all our simulations. Following usual conventions, ψ is the flux-

surface label, p is the pressure and Tj is the temperature of the species j in the plasma. The

dimensionless factor α is a coefficient for correctly accounting for the contribution of each

species towards the bootstrap current in the collisionless limit.

The coefficients L31, L32, L34 and α are described in Ref. 3 where these are determined

as fits of functions of the trapped fraction of particles and collisionalities. After the fit to

the previously computed results in Ref. 3, these have the following expressions in terms of

the trapped particle fraction ft in the 1/ν collisionless regime:

L31 =
(

1 + 1.4
Z + 1

)
ft −

1.9
Z + 1f

2
t + 0.3

Z + 1f
3
t + 0.2

Z + 1f
4
t (2)

L32 =
[

0.05 + 0.62Z
Z(1 + 0.44Z)(ft − f 4

t ) + 1
1 + 0.22Z (f 2

t − f 4
t − 1.2(f 3

t − f 4
t )) + 1.2

1 + 0.5Zf
4
t

]

+
[
− 0.56 + 1.93Z
Z(1 + 0.44Z)(ft − f 4

t ) + 4.95
1 + 0.44Z (f 2

t − f 4
t − 0.55(f 3

t − f 4
t ))− 1.2

1 + 0.5Zf
4
t

]
(3)

and

L34 ≈ L31 (4)

α(ν∗ = 0) = α0 = 1.17(1− ft)
1− 0.22ft − 0.19f 2

t

(5)

where in L32, the two terms in their respective square brackets represent the electron and

ion contributions to L32 respectively. Z refers to the effective screened charge of the ions.

In accordance to previous work, we set Z = 1 throughout our simulations neglecting any

screening effect. The trapped fraction of particles ft is computed as

ft = 1− 3
4
〈B2〉
B2
max

∫ 1

0

λ

〈g1〉
dλ, (6)

where g1 is given by

g1 =
√

1− λ B

Bmax

, (7)

where the angle brackets 〈x〉 represent the quantity x averaged over a flux-surface. Hereto-

fore, we refer to Eqs. (1)-(5) as the Sauter formula.
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B. The Shaing-Callen bootstrap current density model

The Shaing-Callen formulation is given by

〈Jbs.B〉 = −Gb(ψ)
[
L31

∂p

∂ψ
+ Le32ne

∂Te
∂ψ

+ Li32ni
∂Ti
∂ψ

]
(8)

where Gb ≡ Gb(ψ) is a geometrical factor, calculated through averaging over the entire 3D

field. The coefficients L31 and Li,e32 are analytically determined in terms of the neoclassical

viscosity coefficients and the trapped particle fractions. The expressions for the L-coefficients

can be found in Ref. 17. In this sense, the Shaing-Callen formulation can be considered to

be a quasi-analytic approach to determining the bootstrap current.

The geometrical factor Gb(ψ) is computed in the 1/ν (collisionless) regime as

Gb(ψ) = 1
ft

{
〈g2〉 −

3
4
〈B2〉
B2
max

∫ 1

0

〈g4〉
〈g1〉

λdλ

}
(9)

where again,

ft = 1− 3
4
〈B2〉
B2
max

∫ 1

0

λ

〈g1〉
dλ,

g1 =
√

1− λ B

Bmax

.

The quantities g2 and g4, in turn, must also satisfy the following expressions.

B.∇
(
g2

B2

)
= B×∇Φ.∇

( 1
B2

)
(10)

B.∇
(
g4

g1

)
= B×∇Φ.∇

(
1
g1

)
(11)

g2(Bmax) = 0 (12)

g4(Bmax) = 0 (13)

where Φ is the toroidal flux, related to the poloidal flux ψ through the safety factor q =

dΦ/dψ (thereby making ∇ψ and ∇Φ canonical flux coordinates). We integrate these equa-

tions by transforming them into Fourier-space, where the gradients can be realized simply

as coefficients multiplying the Fourier-transformed integrand.

C. Numerical resonance mitigation

The mitigation of numerical resonances at rational q-surfaces is of particular importance

to the Shaing-Callen model19. For solving the equations in the Shaing-Callen model, we
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use a Fourier-decomposition scheme to simplify the equations in Fourier space. However,

the B.∇ operator is proportional to (mΨ′ − nΦ′)−1, which is singular at rational q = m/n

surfaces. This has been mitigated in previous work by the inclusion of a resonance detuning

operator ∆mn, which numerically prevents the singularities from occurring. The detuning

operator is defined as follows:

∆mn = ∆ [(m+ 1)Ψ′ − nΦ′] (14)

where ∆ is a dimensionless factor determining the amplitude of the resonance detuning. The

singularity itself is prevented by changing its form to

1
mΨ′ − nΦ′ →

mΨ′ − nΦ′
(mΨ′ − nΦ′)2 + ∆2

mn

. (15)

It is important to note that this scheme is purely a numerical correction on the resonant

q = m/n surfaces. In reality, these resonances represent parallel current sheets which would

create islands and local pressure flattening (and thus reduction of the local bootstrap current

density) in a resistive MHD model. However, this cannot be accounted for by an ideal

MHD equilibrium code like VMEC, and hence is unphysical under the VMEC equilibrium

model. As will be seen, the 1/1 non-resonant internal kink mode is a particularly interesting

application because the core 3D structure avoids resonance and hence, the need of the

resonance detuning here.

In the bootstrap current density profile, the resonant contributions appear as sharp spikes

at the values of s corresponding to the resonant q-values. These spikes are very sensitive

to the choice of the detuning factor ∆. Choosing too large a value of ∆ makes the current

density profile globally distorted to a significant order, and the choice of too small ∆ leads

to the presence of large spikes at rational q surfaces. We will explore this in more detail in

the next section.

D. Computing the bootstrap current

In order to calculate the flux-surface averaged toroidal bootstrap current density 〈Jbs.∇φ〉(ψ)

, we must average over the toroidal and poloidal angles as follows

〈Jbs.∇φ〉(ψ) =
∫ 2π

0

∫ 2π

0

〈Jbs.B〉(ψ)
B2 Φ′(ψ)dudv. (16)
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where again the angled brackets 〈x〉 are used to represent the flux-surface average of the

parameter x. In VMEC coordinates, this is computationally difficult to perform on account

of coordinate system used. The toroidal current density 〈Jbs.∇φ〉 in VMEC coordinates is

given by

〈Jbs.∇φ〉(ψ) = 〈Jbs.B〉(ψ)
∫ π

0

∫ 2π

0

dudv√g
(
Φ′ − ∂λ

∂u

)
gvv(

Ψ′ + ∂λ
∂v

)2
guu +

(
Φ′ − ∂λ

∂u

)2
gvv + 2

(
Ψ′ + ∂λ

∂v

) (
Φ′ − ∂λ

∂u

)
guv

.

(17)

This is computationally expensive to calculate for each flux-surface and over each iteration of

the scheme, as the double integral would have to performed for every point of the defined grid

in u and v with sufficient precision. Instead, we convert the obtained equilibrium to Boozer

coordinates using TERPSICHORE15. On multiplying the numerator and the denominator by

the Jacobian √g, we find that the averaging in Eq. (16) is just required over 〈Jbs.B〉 as

follows

〈Jbs.∇φ〉(ψ) = 〈Jbs.B〉(ψ) Φ′(s)V ′(s)
Ψ′(s)J(s)− Φ′(s)I(s) . (18)

It is immediately noticeable that the computation required to perform the integral has been

reduced by a factor of nu × nv, where nu and nv are the grid sizes chosen over the VMEC

coordinates u and v. Now one can integrate over the value of 〈Jbs.∇φ〉 to arrive at the value

of bootstrap current profile IBS(ψ) as follows:

Ibs(ψ) =
∫ ψ

0
〈Jbs.∇φ〉(ψ) dψ (19)

where Ibs is the total bootstrap current obtained in amperes. In addition, the net toroidal

current density has to be adjusted for the bootstrap current for the next iteration of the

scheme in order to keep the total toroidal plasma current Ip constant. If 〈JOhm.∇φ〉(ψ) is

the purely Ohmic current density profile chosen over the first iteration of the equilibrium,

the bootstrap current and the Ohmic current profiles are now modified so as to preserve the

total toroidal current as follows:

〈J.∇φ〉(ψ) =
(
Ip − IBS
IOhm

)
〈JOhm.∇φ〉(ψ) + 〈Jbs.∇φ〉(ψ) (20)

The coefficient of 〈JOhm.∇φ〉(ψ) is used to rescale the Ohmic current IOhm to match the

desired value Ip − IBS from the values obtained at the previous iteration. This coefficient

converges to 1. At each iteration, the form of the Ohmic current is kept the same, but the

8



overall current profile changes with respect to the form of the bootstrap current obtained in

the last equilibrium. For the next iteration, VMEC takes the profile 2π〈J.∇φ〉(ψ) and creates

a new equilibrium satisfying that profile.

In order for the iterative scheme to end, we stop it after an iteration where the bootstrap

current converges to a sufficient precision. To that effect, we define the tolerance ‘tol’ as

the relative difference between the current density profiles between successive iterations.

Therefore, we have for the nth iteration

tol = I
(n)
BS − I

(n−1)
BS

I
(n−1)
BS

(21)

where the superscript n represents the total bootstrap current at the nth iteration. We

declare the bootstrap current density as having being ‘saturated’ when the specified tolerance

is reached.

III. BOOTSTRAP CURRENT PROFILES FOR 2D AND 3D EQUILIBRIA

WITH A STEEP EDGE PRESSURE PEDESTAL

We begin by generating equilibria with an input pressure profile. We choose the pressure

profile in a manner so as to represent the steep edge pedestals observed in H-modes in

tokamaks (alternatively referred to as edge pressure ‘barrier’, as such steep profiles near

the edge provide an edge transport barrier increasing the confinement of the plasma). The

chosen pressure profile allows for an edge pressure pedestal beyond s = 0.8 (where s is

the normalized toroidal flux given by s = Φ/Φedge; note that this corresponds to ρtor ∼
√
s ≈ 0.9), which can be seen in Fig. (1) (above). Further, the density profile is deliberately

chosen to be a similar form as the pressure profile so as to obtain a smooth and relatively

flat temperature profile near the edge. The temperature profiles is calculated as T (s) =

p(s)/(2n(s)), and as can be observed from Fig. (1) (below), is relatively flattened in the edge

region beyond s = 0.8. Additionally, we fix the density on the axis to n0 = 1020m−3 and the

temperature on the axis to be T0 = 0.6keV . These values ensure faithful representation of

the kind of equilibria seen in MAST, as can be together observed in Fig. (1).

We begin the first iteration of the iterative scheme by setting solely the Ohmic part as

the total toroidal current I. The initial Ohmic current profile is chosen as

〈JOhm.∇φ〉(s) = Itotal
5
12(1− s− s2 + s3) Am−2 (22)
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FIG. 1. The profiles are chosen so as to generate a VMEC equilibrium a steep edge pressure

pedestal. (a) Notice the pressure barrier staring at s = 0.8, and (b) The temperature profile

flattens at s > 0.8 so as to allow pedestals in pressure and density.

and we fix the total toroidal plasma current to Itotal = 0.48MA (where the 5/12 is the

normalization factor for the chosen s polynomial). This prescription of pressure, density

and temperature profiles is the initial condition for the calculation of the first equilibrium.

The choice of our current density and pressure profiles determines the q-profile which plays

an important role in the determination of the resonant rational surfaces which affects the

bootstrap current densities calculated from 3D approaches. The associated q-profile can be

seen in Fig. 2. With these profiles and axis parameters, we generate an equilibrium using

VMEC. It is important to point out that the (s, u, v) coordinates of VMEC make calculations easy

wherever harmonic decomposition is necessary. However, for the calculation of the bootstrap

current, these coordinates necessitate additional averaging loops because of the fact that

these are not field-aligned coordinates. This is computationally expensive. Therefore, as

alluded to in the previous section, we convert the equilibrium to Boozer coordinates through

the use of the TERPSICHORE package20. The bootstrap current is then calculated through
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FIG. 2. The safety factor q-profile for the simulations for the chosen initial current and pressure

profiles.

the use of the Sauter and Shaing-Callen formulae. The key idea, after this step is to scale

and incorporate the bootstrap-current into the Ohmic current, thus prescribing the new

current profile for the next iteration. This is subsequently iterated over with VMEC in order

to generate a new equilibrium. The iterations are performed until convergence is reached to

a required tolerance.

A. Benchmark with an axisymmetric MAST equilibrium

In order to benchmark the scheme, we first confine ourselves to axisymmetry. The

VMEC free-boundary version is used to generate an axisymmetric equilibrium by allow-

ing no toroidal modes except n = 0. This also ensures that there are no resonant surfaces

on which there can be singularities. Thus, we have the advantage of being able to examine

the two bootstrap current models without the numerical effects of 3D magnetic equilibria.

This lets us compare the forms and magnitudes of the bootstrap current generated by each

model.

In Fig. 3 it is seen that even just after the first iteration, the Sauter and Shaing-Callen

formulations prescribe bootstrap current density profiles which lie very close to each other,

and follow the overall same shapes (which depend on the initial profiles we specified). In fact,
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FIG. 3. Profiles of the parallel bootstrap current density 〈JBS.B〉 obtained according to the Sauter

formula (the blue curve) and the Shaing-Callen formula (green ‘+’ points).

the Shaing-Callen bootstrap current density is within 1% of the Sauter bootstrap current

density. Therefore, we see that despite being prescribed by different schemes, one based on

a fit and the other being quasi-analytic formulae, the profiles lie very close to each other.

Furthermore, it is of some interest to study the convergence of this scheme. In order to

do so, as seen in Fig. (4), we iterate the scheme several times until convergence is reached

to a required tolerance. In general, we notice that the Shaing-Callen scheme follows the

Sauter scheme very closely. Thus, it is usually enough to seek convergence with respect to

one of the prescriptions for the bootstrap current. On defining the tolerance as the relative

difference between the current and the previous iteration, we seek a tolerance of 10−3. We

observe that, with each iteration, the bootstrap current approaches saturation. Beyond the

fourth iteration, the tolerance is achieved, and the current profile can be considered to be

sufficiently converged.

Another point which is very useful to consider is that even at the end of the second

iteration, the form for the bootstrap current lies very close to the final form of the bootstrap

current density profile. For computation of the bootstrap current density for 3D equilibria,

which are computationally expensive, one can use this fact as a simple test to obtain an idea

of the form of the bootstrap current profile, before proceeding to iterate and obtaining the

profile more precisely.
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FIG. 4. Plots of the total current density profile and bootstrap current density profile assuming the

Sauter formulation, showing variation at each iteration for an axisymmetric MAST equilibrium.

(a) Plot of Sauter parallel bootstrap current density 〈JBS.B〉 for each iteration of the bootstrap

procedure. (b) The total current profile 〈J.∇Φ〉 for each iteration of the bootstrap procedure. The

profile for each nth iteration is the input for the VMEC equilibrium calculation of the (n + 1)th

iteration.
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B. Bootstrap current for a 3D equilibrium

In order to look at 3D effects on the bootstrap current density and to compare the 3D

models for the bootstrap current density, we generate MAST-like 3D equilibria using VMEC

under free-boundary conditions, keeping the same pressure, temperature, Ohmic current

and rotational-transform ι profiles. For our 3D case with possible resonant q surfaces, we

set the detuning factor ∆ = 10−4, the number of toroidal field coils (TF-coils) is chosen to

be 12 consistently with the experiment, and the RMP coil current is set to 0kA as a control.

More details regarding the finite number of TF-coils and the RMP coil current amplitude is

provided below.

We can see in Fig. 5 that the Shaing-Callen derived bootstrap current now carries de-

viations from the axisymmetric Sauter model, as is expected from the 3D nature of the

magnetic field. The spikes observed are caused by resonant rational q-surfaces, and in re-

ality, represent parallel sheet currents, as seen in the side-by-side comparison in Fig. (6).

redWe observe convergence within the same number of iterations as for the axisymmetric

case. However, it can be immediately noticed that there are major resonances distorting

the edge bootstrap current profile at and around the q = 2/1 and q = 3/1 surfaces. These

resonances are not avoidable because of the choice of the mode numbers and the effectively
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FIG. 6. A comparison of the Sauter and Shaing-Callen bootstrap current densities. It can be seen

that the spikes on the edge bootstrap current correspond to rational values of q on the profile.

attained q-profile. Additionally, we mention that the resonances have little effect on the

convergence rate of the scheme. Furthermore, the choice of the grid for averaging over the

pitch λ in Eq. 9 plays little to no effect on the resonant spikes. We chose to implement

several forms (linear, sinusoidal, hyperbolic) pitch grid between s, λ so as to concentrate

a high sampling density near the bounce point. We observe virtually no mitigation of the

resonances.

However, we would still like to see whether these spikes can be removed by adequately

adjusting the detuning factor ∆. In Fig. (7), where the value of ∆ is varied, we see that

above ∆ = 10−4, the detuning causes the whole current density profile to change, distorting
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FIG. 7. The parallel Shaing-Callen bootstrap current density 〈JBS.B〉 for different values of

detuning factor ∆. The dashed black line in the background is the Sauter bootstrap current

calculated for ∆ = 10−7. The bootstrap current density curve for ∆ = 10−7 overlaps with the

curve for ∆ = 10−4.

the current density profile itself. We observe, that the change in the profile becomes worse

at ∆ = 10−2. And as we decrease below ∆ = 10−4, we observe that the profile remains the

same. Thus, the optimal value of the detuning factor seems to be 10−4. However, we still see

resonance causing spikes despite there being an optimal range for the resonance detuning18.

We now investigate the effect of toroidal field ripple. In what follows, the RMP currents

are kept at 0kA to obtain 3D effects solely from the toroidal field ripple created by the

variation in the number of the toroidal field coils (TF-coils). In order to investigate whether

resonance stemming from the toroidal field ripple can be suppressed, we observe the change

in bootstrap current density profile for increasing number of TF-coils with free-boundary

calculations with VMEC. The normal number of TF-coils in MAST is 12. We investigate cases

with 8 TF-coils (increased ripple), and with 12 TF-coils (ripple similar to observations in

MAST), 24 and 32 TF-coils (decreased ripple).

The coil positions can be specified to VMEC using another package in the VMEC-Suite

called MAKEGRID. MAKEGRID can define the magnetic-field strength of the TF-coils to any

specified precision and to any specified number of modes. This is an important point to
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FIG. 8. Diagram depicting coil placement in MAST. The doughnut shaped figure is a plot of the

magnetic field on the last closed flux-surface of the equilibrium. The toroidal field coils are shown

in orange, and the RMP coils are shown in red.

keep in mind, as increasing the number of coils would subsequently require an increase in

the number of requested toroidal modes, in order to maintain the same order of accuracy

as in the tests with a lower number of TF-coils. Also, the current in the coil has to be

proportionally compensated corresponding to the number of coils being used in order to

maintain the same field strength.

We notice from Fig. 9 that when the number of TF-coils is decreased to 6, there is a change

in the bootstrap current profile, though the net difference from the axisymmetric value does

not significantly increase. In addition, we can see more spikes for the case with 6 TF-coils,

which implies that a larger ripple causes more resonances, and hence more spikes. However,

as can be seen in the figure, these additional spikes appear at mid-radius region, where

the bootstrap current is weak. However, the increase in the number of TF-coils beyond 12

neither affects the bootstrap current density curve, nor the particular spikes observed in the

density profile. Thus, we conclude that the number of TF-coils does not play any significant

role on the form or order of the bootstrap current. In all the cases beyond 12 TF-coils, we

do not see a difference in the bootstrap current density curve.

For all the cases considered, including the case with 6 TF-coils where a strong ripple
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FIG. 9. The effect of increasing TF-coil numbers on the parallel Shaing-Callen bootstrap current

densities. The resonance detuning factor is fixed at ∆ = 10−4. The black dashed curve represents

the Sauter bootstrap current density for the same ∆.

ensues at the edge of the plasma, the Shaing-Callen bootstrap current density curve closely

follows the axisymmetric Sauter bootstrap current density curve, except for the spikes ob-

served at the resonant q-rational surfaces. It is reasonable to hypothesize that if these spikes

were not present, the curves agree closely with the axisymmetric case. It is therefore rea-

sonable to conclude that the axisymmetric Sauter model is a good representation of the

bootstrap current, for the cases with a steep edge pedestal and toroidal field ripple. This is

essentially because the plasma is nearly axisymmetric.

Furthermore, we investigate whether an increased VMEC coordinate grid-size can help

mitigate the resonant spikes. For this purpose, we fix the TF-coil number at 32 in order

for VMEC to be able to resolve the magnetic field better near the edge, keep the RMP coil

currents at 0kA, and proceed to increase the radial resolution ns. We find, as is noticeable in

Fig. (10), that the radial sampling also plays no significant role in mitigating the resonances.

Given that the computation time for VMEC scales as n2
s, and considering that the increased

radial sampling does not affect the bootstrap current density curve, we conclude that lower

grid-sizes provide sufficiently converged bootstrap current density values with the added

benefit of a significantly lower computation time. (We essentially reproduce the grid-size
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FIG. 10. A plot of the bootstrap current density, for the case of 32 TF coils, for increasing sampling

in radial variable s. We have especially zoomed in between the near-edge region s = 0.8−1.0. It is

immediately noticeable that the increase in the sampling produces neither a significant amelioration

of the numerical resonance, nor do the non-resonant portions differ significantly.

effects in Ref. 9, but for presence of resonant current sheets in bootstrap current density

calculations.)

Additionally, we would like to learn if any relevant physics can yet be extracted under

similar conditions. Given that RMPs play an important role in mitigating ELMs, the effects

of RMP fields on the bootstrap current are important. We apply RMPs to the same VMEC

equilibrium (12 TF-coils) and get equilibria corresponding to the ideal response of the RMP

fields. The RMP coils, again, are specified through the MAKEGRID package. Now, in order to

check the effect of the RMP fields on the bootstrap current, we progressively increase the

value of the bootstrap current from 0kA to 14kA. In MAST, the order of currents used in

the RMP coils is usually 1kA. In our scan, the value closest to realistic values would be

around 1.4kA. It is worth mentioning that the 14kA case is purely academic, pertaining to

curiosity regarding any extreme effects RMPs might cause to the edge bootstrap current.

The RMP coils, as seen in Fig. 8, are chosen so as to create an n = 3 perturbation of

even-parity respecting stellarator symmetry required for the up-down symmetric plasmas

considered.
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FIG. 11. The parallel Shaing-Callen bootstrap current density 〈JBS.B〉 as calculated for 12 TF-

coils for a MAST 3D equilibrium with varying RMP currents. The black dashed curve represents

the Sauter bootstrap current. The resonance detuning factor is set to ∆ = 10−4. Note in particular

the higher (m,n) mode number resonances caused in the mid-radius.

We notice that beyond a certain value of the RMP current, there is virtually no difference

in the bootstrap current at the edge, and that the bootstrap current remains virtually

unchanged between the RMP-coil current values of IRMP = 0A and IRMP = 1.4kA. The

RMP-coil current values lying in between these values correspond to a bootstrap current

curve that lies in between the blue and green curves in Fig. 11.

We notice that the bootstrap current at the edge is not significantly modified by varying

the RMP current. However, in the s = 0.3 to s = 0.8 region, there is a small but noticeable

effect of the changing IRMP on the 3D Shaing-Callen bootstrap current. It is indeed expected

that an n = 3 perturbation would penetrate more towards the axis. Ultimately however,

we conclude a negative result, that RMPs do not affect the bootstrap current significantly

for realistic RMP coil currents. In contrast, if we assume (an unrealistic) value of RMP-coil

current at IRMP = 14kA, we see that the parallel current spikes in the region between the

edge and the axis is more affected than the edge itself. We see, in general, that the parallel

current spikes grow with the increasing RMP-coil current, therefore distorting the bootstrap

current profile significantly and preventing us from extracting any significant results in this
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region of interest. Again, the 3D model does not offer any insight here. To summarize, we

observe no significant change in the bootstrap current density with any value of RMPs in

the edge region, and the effects of the n = 3 RMP on the bootstrap current density in the

mid-radius region are masked by strong higher-order resonances. Thus the axisymmetric

model is as good as the 3D model for the 3D equilibria with steep edge pressure barrier.

IV. BOOTSTRAP CURRENT PROFILES FOR A 3D HELICAL-CORE

CASE WITH WEAK INTERNAL PRESSURE GRADIENT

A saturated n = 1 kink is known in experimental plasma physics as a long-lived mode

(LLM)10,11 or a helical-core. The deformation of the flux-surfaces near the core twist around

helically with the toroidal angle. The helical core extends up to the point where the safety

factor q is at its minimum (qmin), i. e. where the rotational transform is maximum (ιmax).

Beyond that, the flux-surfaces are almost axisymmetric, and the region enclosing the helical

core is known as the axisymmetric mantle. LLMs play an important role in the functioning

of machines such as MAST and JET, and future fusion devices like ITER. Helical-core

equilibria can be generated in VMEC by initializing a VMEC simulation with an initial magnetic

axis guess with a 1/1 distortion which leads to the formation of a helical core.

We now begin by fixing the safety factor q-profile in VMEC, and letting the current profile

relax in VMEC. In order to avoid resonance, we choose a q-profile which avoids major resonant

surfaces in the helical-core region and which possesses a minimum qmin ≈ 1. Additionally,

the pressure profile is chosen so as to provide a weak internal pressure barrier in the helical

core region. Having fixed the q-profile, and not the current density profile 2π〈J.∇Φ〉, we

only perform the first step of the iteration to obtain the form of the bootstrap current

profile. Following from benchmarks in the preceding sections, the first iteration itself will

bring the bootstrap current current density profile sufficiently close to the converged value.

Additionally, the helical-core deformation can be observed more prominently in terms of the

minor radius ρtor ∼
√
s rather than in the normalised toroidal flux s, henceforth, we plot all

the relevant quantities in
√
s in this section.

The q-profile is chosen to have a minimum around s = 0.2 or equivalently,
√
s = 0.45,

indicating that the helical core extends until that point, as can be seen from Fig. 12. Beyond

that, the equilibrium is effectively axisymmetric. Furthermore the pressure profile in the
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FIG. 12. The safety factor q-profile chosen to generate a helical core.
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FIG. 13. The chosen density profile for the helical core equilibrium. We can see that in the helical

core-region up to s = 0.2, there is a pressure gradient, consistent with a weak internal pressure

barrier.

helical core-region is chosen to provide a weak pressure gradient in the helical-core region,

as seen in Fig. 13. The temperature profile is chosen to be constant at T = 640keV , thus

making the pressure profile of the same form as the density profile. With these, we generate

a 3D equilibrium with a helical core, which can be seen in Fig. (14).

Using the above-mentioned profiles, we start by benchmarking the case against a 2D ax-

isymmetric sister-state. In order to create this axisymmetric sister equilibrium, we force only
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FIG. 14. The helical core equilibrium obtained from VMEC for the specified ι-profile and pressure

profile. One surface from inside the helical core (s = 0.1), one from near the axisymmetric boundary

(s = 0.25) and the last from the edge (s = 1) are shown here for reference.

one toroidal mode n = 0, which forces VMEC to have an axisymmetric magnetic axis around

which to form an equilibrium. This axisymmetric equilibrium is similar in all aspects with

its helical core sister-state except for the presence of a helical skew in the core up to around

s = 0.2, which can be seen in Fig.15. We perform our bootstrap current density calculations

on this axisymmetric equilibrium using the Sauter and Shaing-Callen equilibrium. One can

see in the Fig. (16), that again, we see an excellent agreement between the two models to

within 5%. Clearly, the form of the Sauter bootstrap current density is determined chiefly

from the pressure gradient dp/ds and the trapped fraction ft. In the core region s < 0.2,

the trapped fraction ft is the chief contributor to the form of the bootstrap current, taking

it abruptly towards zero as it approaches the magnetic axis. Again, the Shaing-Callen boot-

strap current density also closely follows the Sauter bootstrap current density. We observe

no resonant contributions because of the lack of n 6= 0 modes in the computation of the

geometrical factor Gb.

Having found a similar agreement as the previous edge pressure barrier case for ax-

isymmetry, we move on to compute the bootstrap current density for the 3D helical core

equilibrium with a skewed magnetic axis and a nearly axisymmetric free boundary. With

the carefully chosen q-profile to avoid major resonances in the helical core region, we com-

pute the Sauter and Shaing-Callen bootstrap current densities. The resonance detuning
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FIG. 15. A comparison of toroidal cross-sections of (s, u, v) coordinate grids for the helical core

equilibrium (above) and its axisymmetric sister-state (below). The magenta coloured lines are lines

of constant u. The helical core region is represented by green coloured lines of constant s, and the

axisymmetric mantle is represented by blue coloured lines of constant s.

parameter is set at ∆ = 10−4, as per the optimal detuning parameter value obtained in the

previous case. We notice from Fig. 17, that in the helical core region, there are no ma-

jor resonance contributions, leading to a smooth bootstrap current density curve with the

Shaing-Callen prescription. However, at a small distance outside of the helical core, near

the beginning of the axisymmetric mantle, we notice spikes caused by the ι-profile crossing

major resonant surfaces. In the axisymmetric mantle, there is an agreement between the
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FIG. 16. The bootstrap current densities calculated for the axisymmetric sister state of the helical

core equilibrium for the chosen helical core parameters.

two formulations similar to what was seen for the edge pressure pedestal case. Crucially,

the bootstrap current densities prescribed by the Sauter formulation and the Shaing-Callen

formulation in the helical-core region are visibly different. We proceed to investigate the

origins of the difference between the two bootstrap current prescriptions in the helical core

region.

The Sauter bootstrap current density depends on the values of I(s), and the coefficients

L31, L32 and L34. From the Eqs. (1)-(4), it can be immediately noticed that the L-coefficients

are dependent on the trapped fraction ft. An approximation for the trapped fraction21 in

terms of the triangularity δ, the inverse aspect ratio ε is given by

εeff = 0.67 (1− 1.4 δ |δ|) ε, (23)

ft,approx = 1 − 1− εeff
1 + 2√εeff

√
1− ε
1 + ε

, (24)

ft,approx = min(1 , ft,approx(Eq.(24)). (25)

Now since s = (r/a)2, r and a being the minor radius and maximum minor radius respec-

tively, and thus r/R being the aspect-ratio of the flux-surface in concern, we compute the

approximate axisymmetric trapped fraction ft,approx, through the values of ε and δ obtained

from the VMEC equilibria. In addition, it is also possible to calculate the exact flux-surface

averaged trapped fraction for the given axisymmetric VMEC equilibrium using Eq. 6. A com-
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FIG. 17. The bootstrap current profiles obtained from the Sauter and Shaing-Callen formulations

respectively (above), depicted for the ι-profile (below).

parison between the exact trapped fraction and the approximate trapped fraction can be

seen in Fig. (18). The two axisymmetric trapped fractions follow each other quite closely as

expected. Importantly, the exact trapped fraction ft for the 3D helical core (Fig. (18)), ft
does not approach zero towards the magnetic axis, and it is for this reason that the Sauter

model yields non-zero bootstrap current on the axis (see Fig. (16)). For the 3D VMEC helical

core equilibrium, the skewed magnetic axis has a variation in the radial R and azimuthal Z

directions. This causes a variation in the absolute magnetic field |B|, and therefore allows

for the formation of a local magnetic well on the magnetic axis where the particles can get

trapped. By following the same approach as Ref. 22, and taking into account the movement

of the magnetic axis in (R,Z), we arrive at the following approximation for the trapped
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FIG. 18. A comparison between the exactly calculated trapped fraction ft for the 2D and 3D

equilibrium and the trapped fraction ft,approx calculated from Eqs. (23)-(25).

fraction on the magnetic axis

ft,approx,hel =
(

2∆rhel
R0

)1/2

(26)

where ∆rhel is the the displacement of the magnetic axis. From the equilibrium data,

we find ∆rhel ≈ 0.18, which makes the trapped fraction on the axis ft,approx,hel ≈ 0.66,

which is consistent with what we observe in Fig. 18. The disparity in the 2D and 3D

exact trapped fractions is very low in the axisymmetric mantle and therefore the agreement

between the Sauter and Shaing-Callen formulations outside of the helical core region still

remains of the order observed in Figures (16) and (17). It must also be mentioned that the

collisionality towards the magnetic axis is typically not negligible, and the trapped fractions

should realistically be reduced by the order of the collision frequency of the species3. This

would help drive the trapped fraction to a lower value near the magnetic axis for the 3D

case, which would in turn modulate Sauter bootstrap current density to a lower value at

the axis. However, this wouldn’t affect the shape of the current density curve away from

the magnetic axis, and the difference observed among the two bootstrap models will remain

significant as the current case collisionless case considered.

As for the Shaing-Callen bootstrap current density formulation, the coefficients again
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FIG. 19. The geometrical factor Gb for the Shaing-Callen model. The geometrical factor goes to

zero on the magnetic axis, and it exhibits the resonances observed in the axisymmetric mantle.

depend on the neoclassical viscosity coefficients and the trapped fractions. However, as

we have seen earlier, the trapped fractions do not approach zero, and from Ref.17, the

viscosity coefficients are constants. Therefore, the key contribution to the modulation of

the form of the bootstrap current density curve arises from the geometrical factor Gb, a

factor that is not accommodated for in the Sauter model. From Fig. (19), the geometrical

factor approaches zero towards the magnetic axis. The geometrical factor Gb, as evidenced

from Eqs. (6) and (9)-(12), depends on the flux-surface averaged coefficients 〈g2〉 and 〈g4〉,

which subsequently depend on B.∇B and B.∇g1 respectively. For axisymmetry, the value

of |B| on the magnetic axis is constant along the poloidal angle θ and the toroidal angle φ.

Therefore, from Eqs. (12)-(13), g2, g4 and their flux-surface averages on the axis remain zero,

leading the geometrical factor Gb to a null value. In the 3D case, exploiting the symmetry

in θ, the RHS of Eq. (10) and Eq. (11) on the magnetic axis can be written as

B×∇Φ.∇ → gψφBθ√
g

∂

∂φ
(27)

where √g is the Jacobian, gψφ is the metric element ∂R/∂Φ and Bθ is the covariant θ

component of the magnetic field. The Jacobian √g is symmetric with φ, and Bθ is constant

with φ. However the metric element gsφ (and equivalently ∂R/∂φ) is anti-symmetric with

φ for the 1/1 internal kink mode magnetic axis. Therefore, the overall product of gψφ, Bθ,

and 1/√g is anti-symmetric toroidally, leading to the integrals for g2 and g4 to be toroidally
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FIG. 20. A focus on the bootstrap current density in the helical core region. Also plotted are the

trapped fractions and the geometrical factor for the Sauter and Shaing-Callen bootstrap current

prescriptions against the causal factors.

anti-symmetric. This leads to the flux-surface averages 〈g2〉 = 0 and 〈g4〉 = 0, thus ensuring

that the geometrical factor Gb goes to zero on the magnetic axis. Thus, the geometrical

factor Gb for the Shaing-Callen model will always approach zero at the magnetic axis for

a 1/1 saturated internal kink mode, giving a significantly different result from the Sauter

model.

The summary of this comparison can be seen in Fig. (20). It is evident that drastic drop in
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the Sauter bootstrap current density between s = 0 and s = 0.1 follows the trapped fraction

ft profile. In contrast, the Shaing-Callen bootstrap current density follows the modulation

offered by the geometrical factor. Thus the 3D model provides a physical resolution that

the axisymmetric model falls short of.

We can thus conclude that, for a helical-core case which avoids resonant surfaces, it is

important to choose the bootstrap model carefully. The difference between the Sauter and

Shaing-Callen models, along with the possibility to choose non-resonant ι-profiles, make

the helical core a useful and important application in which the Sauter and Shaing-Callen

models can show significantly different bootstrap current density profiles in the helical core

region, a strong intrinsic 3D effect.

V. CONCLUSIONS AND THE OUTLOOK AHEAD

We investigate the bootstrap current in MAST-like equilibria with an iterative self-

consistent procedure in which the total current and the Ohmic current profiles are kept

fixed. The bootstrap current is calculated from a given VMEC equilibrium and is adjusted

into the toroidal current profile keeping the total current constant. This is iterated until

convergence to specified tolerance. The bootstrap current profile is evaluated using using

two known models: the Sauter and the Shaing-Callen models. We first began with a MAST

equilibrium presenting a steep edge pressure pedestal as is observed in H-modes. For the

axisymmetric test case considered, we observe good and rapid convergence. Being satisfied

with the convergence and the self-consistency of the scheme in axisymmetry, we proceeded

to examine 3D equilibrium with an edge pressure barrier with the two models. The 3D equi-

librium presents severe current sheets at q-rational flux-surfaces, prompting an investigation

into methods to minimize these resonances. First, when applying resonance detuning, we

notice that the resonance detuning parameter ∆ has a very narrow range of optimal values

where the resonant q-rational surface currents are minimized without affecting the overall

bootstrap current density curve. But the minimization of the parallel currents are still not

enough to extract any useful physics from this case. In order to investigate ways to exter-

nally minimize the q-rational resonances, we proceeded to reduce the toroidal field ripple by

increasing the number of TF-coils. We observe that toroidal ripple plays little effect when

choosing more than 12 toroidal-field coils, implying that the axisymmetric model performs
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better than the 3D model in terms of avoiding the burden of parallel sheet currents caused

on q-rational flux surfaces. In addition, we increase the sampling in the radial direction

in order to minimize the width of the resonant current spikes. However, we observe that

the increased sampling provides no significant improvement to the values of the resonances

observed, leading to another negative result. In order to see whether some useful physical

effects would still be salvageable from this particular 3D case, we apply RMPs, varying the

current in the RMP coils. At the edge, where bootstrap current is the maximum for the

edge pressure barrier based equilibrium, we observe virtually no change. This implies that

the bootstrap current does not change its order of magnitude under RMPs. However, any

significant effects caused by RMPs in the mid-radius region are again masked by severe

current spikes. We conclude that the Shaing-Callen model is not useful for discerning any

3D effects on the bootstrap current density arising from toroidal field ripple or RMPs for

the edge pedestal case.

In the remaining study, we choose to focus on choosing a q-profile that leads to a very

strong 3D equilibrium in the core region. This application is relevant to Long Lived Modes

in tokamaks10. We derive through VMEC, a finely tuned equilibrium with a helical core,

by imposing a q-profile that avoids low order resonances in the helical core region. In the

helical core region, we observe a significant difference between the Sauter and Shaing-Callen

formulations. We conclude that these differences happen on account of the differences in the

physical model, and that the 2D and 3D models do indeed present significantly distinguished

results without resonance effects, making helical core studies an ideal candidate for bootstrap

current research using the self-consistent iterative method.
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