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Abstract
One of the main goals of Wendelstein 7-X (W7-X) is to demonstrate the fast particle confinement properties

of the quasi-isodynamic stellarator concept. Fast particle populations will be produced either by Neutral Beam
Injection (NBI) or by minority Ion Cyclotron Resonant Heating (ICRH). A fraction of these particles are expected
to be lost (even without collisions), despite the optimisation procedure used for the W7-X design. Confinement
properties of NBI particles in W7-X were presented in the paper of M. Drevlak et al Nucl. Fusion 2014. A
detailed study is presented here where the loss patterns of an NBI population are described. In particular,
focusing on a high-mirror equilibrium, the confinement of fast ions with varying energy injection is studied under
collisional conditions. It is found that collisions are not only responsible for classical transport losses but also
enhance drift induced losses caused by the finite orbit width of trapped particles. Moreover, an asymmetry is
found in the toroidal position of particle losses which can be explained by local variation in the equilibrium field.
The effects of a neoclassically resolved radial electric field are also investigated. Fast particle confinement is
significantly improved by the associated E × B drift. In particular, an increasing radial electric field helps to
reduce and even stop the losses due the 3D equilibrium structure for times comparable to slowing down time.

1 Introduction
Wendelstein 7-X (W7-X) is a large superconductor
stellarator presently under commissioning at IPP-
Greifswald, Germany. One of the main objectives of
this machine is to demonstrate the good confinement
of fast ions in a quasi-isodynamic stellarator. In fusion
reactors, alpha particles should provide a substantial
source of plasma heating, and it is therefore essential
to confine these particles over their slowing down time.
The W7-X design was based, amongst other criteria, on
an optimisation procedure aiming at good confinement
of fast particles at high β. The experimental proof of
the confinement capacity of a quasi-isodynamic stellara-
tor therefore requires the generation of a fast particle
population within 50keV to 100 keV and therefore the
mechanisms responsible for losses of such particles in
W7-X must be understood.
Losses of alpha particles will be of primary concern

for a future fusion reactor. Of most concern will be
of collsionless losses of particles still at, or near their
birth energy. Monte Carlo simulations of alpha parti-
cles in quasi-isodynamic and quasi-symmetric configu-
rations were first presented in Ref. [1] and showed that
the quasi-isodynamic design appears to be the best can-

didate for a reactor design. Additional efforts for under-
standing the collisionless dynamics of fast ions in quasi-
isodynamic equilibrium have been carried out. Losses
induced by collisionless stochastic diffusion of fast ions
was introduced in Ref. [1] and further developed in
Ref. [2]. In addition, favourable conditions for uncon-
fined collisionless orbits were discussed in Ref. [3]. The
magnetic field curvature was shown to contribute sig-
nificantly to the radial excursion of trapped particles.
However, collisionality must also be considered in fast
ion confinement studies since it is known to contribute
to neoclassical transport of particles in general [4]. Re-
cently, further numerical studies on fast ion confinement
in W7-X configurations were presented in Ref. [5]. The
latter work showed the effect of various magnetic equi-
librium configurations on fast ions generated by neutral
beam injection (NBI) at 〈β〉 = 2%. It was concluded
that NBI may not be an efficient way to produce a fast
particle population mostly because of rather poor beam
penetration and rapid loss of injected particles. In the
present paper, an understanding of the loss channels
acting on a fast particle population produced by NBI
is exposed. The particle guiding centre orbit solver
VENUS-LEVIS and its dedicated NBI module [6] are
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used to generate and evolve an NBI relevant population
in a W7-X high mirror equilibrium. The distribution of
lost particles is carefully analysed in order to identify
the contribution of each of the loss channels previously
discussed.
This paper is organised as follows. The MHD equi-

librium used in this work is described in Section 2. The
particle orbit classes and the bounce averaged motion
of trapped particles in W7-X are discussed in Section 3.
In Section 4, several particle loss channels are identified.
NBI simulations with VENUS-LEVIS are described in
Section 5. It is shown that mostly trapped particles are
radially redistributed and potentially lost. In Section 6
the effects of a radial electric field on the fast particle
orbits are described and it is shown that the particle
confinement is significantly improved.

2 High-mirror equilibrium
W7-X has been optimised in part to confine energetic
trapped particles over their slowing down time scale.
Confinement is expected to be best for a high 〈β〉 MHD
equilibrium. In such configurations, a given particle
trapped in one of the five magnetic toroidal mirrors will
mostly drift poloidally, the radial drift being low due to
small geodesic curvature. The flexibility of the coil sys-
tem on W7-X grants access to a broad range of magnetic
equilibrium configurations, which are characterised by
a mirror ratio value [5, 7] defined as :

mr =
Bϕ=0 −Bϕ=π/5

Bϕ=0 +Bϕ=π/5
. (1)

A high-mirror magnetic configuration with mr = 8.7%
was reconstructed by a fixed boundary equilibrium
calculation using the VMEC/ANIMEC code [8, 9].
Poloidal cross sections of this equilibrium are displayed
in Fig. 1 and show the toroidal variation of the equi-
librium magnetic field amplitude. The central den-
sity and temperature were respectively set to n0 =
1.55 × 1020m−3 and T0 = 4keV in order to obtain a
converged equilibrium with 〈β〉 = 4%.

Figure 1 – Poloidal cross sections of W7-X equilibrium
used. Colors indicate the amplitude of the equilibrium
magnetic field.

3 Trapped particle precession
drift in W7-X

The magnetic field inhomogeneities in magnetically con-
fined fusion plasmas generate a diversity of particle tra-
jectories. Classification of particle orbits has been car-
ried out for tokamaks [10] and stellarators [11, 12]. In
tokamaks, particle orbits fall into two main categories:
passing and trapped. Depending on the magnetic field
configuration trapped particle orbits may be charac-
terised as banana, potato or tear drop type. In mirror
machine type stellarators such as W7-X, a classification
of the particle orbits can be made following the particle
trajectory in a given toroidal period. If the particles
parallel energy is sufficiently high it will overcome the
local magnetic well and travel to the next toroidal pe-
riod. Such particles are referred to as locally passing.
The counterpart of this particle population are the lo-
cally trapped particles. More generally, particle orbits
can be classified on the basis of their trajectory around
the whole torus. The notion of critical magnetic field
for particle reflection Bref is introduced in order to un-
derstand this classification. This quantity defines the
value that the ambient magnetic field must reach so
that a particle is reflected. The particle energy E and
magnetic magnetic moment µ, in the approximation of
slowly varying fields, are constant along the free guiding
centre trajectory. It is recalled:

E = 1
2m

(
v2
‖ + v2

⊥

)
, (2)

µ = mv2
⊥

2B . (3)

If a particle is locally trapped then its parallel velocity
v‖ vanishes at the bounce points. Bref is the magnetic
field amplitude at the bounce point. Therefore the par-
ticle energy at this location is:

E = 1
2mv

2
⊥,bounce = 1

2mv
2
⊥,bounce

Bref
Bref

= Brefµ. (4)

It then follows:
Bref = E

µ
. (5)

Bref is a function of constants of motion, therefore it is
suited to classify orbits in stellarators. The terminology
introduced in Ref. [11] will be used. Three types of
orbits are identified.
Passing particles: These particles are able to com-

plete a full toroidal revolution around the machine with-
out ever being reflected (assuming no collisions). Pass-
ing particles are characterised by a Bref value higher
than the maximum value of the equilibrium magnetic
field on the particle trajectory.
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Localised or toroidally trapped particles: Depending
on the mirror ratio value, there can exist a popula-
tion of particles that will remain locally trapped by the
toroidal magnetic mirror and can never travel to the
next toroidal period. In this case, the particle trajec-
tory is toroidally bounded by two isosurfaces B = Bref .
These isosurfaces are poloidally closed and are located
between two consecutive bean shaped cross sections in
the case of W7-X.
Blocked or helically trapped particles: These particles

are located in the region of phase space near the locally
trapped-passing boundary. These particles may be re-
garded as locally trapped for a few bounces but they
are able to de-trap collisionlessly. A blocked particle’s
trajectory is not restricted to a single toroidal segment
but extends to neighbouring sections. Such particles
are also called transitioning [2]. An illustration of these
three types of orbits and a comparison with particle
orbits in an axisymmetric plasma is given in Fig. 2.
Orbits are drawn in a full torus and in a poloidal cross
section.
In stellarators, the confinement of energetic trapped

particles is of special concern because their radial drift
may cause them to escape the last closed flux surface
(LCFS) before de-trapping occurs. For thermal parti-
cles the collision frequency would be sufficiently high to
de-trap particles and change their orbit topology to a
confined configuration. However since the typical colli-
sion time of fast particles like alphas in a reactor is large
compared to their confinement time, their confinement
mainly relies on minimising the bounce averaged radial
drift. The drift optimisation is based on the calculation
of the longitudinal adiabatic invariant J . This quantity
is a function of phase space and one way to represent it
is to consider the radial and poloidal locations (ψb, θb)
of the bounce or transit points for fixed E and Bref :

J (ψb, θb, E,Bref ) =
∮
v‖dl. (6)

where the integral path is taken along a particles com-
plete bounce(trapped) or transit(passing) trajectory.
This quantity can also be expressed in the magnetic co-
ordinate system (ψ, θ, ϕ) using an adiabatic expansion:

J (ψb, θb, E,Bref ) ' J0 (ψb, θb, E,Bref ) (7)

As in Ref [12], at the lowest order in the guiding cen-
ter approximation, J is more conveniently calculated
along the field line path. In an action-angle variable
formalism, J0 contains information such as the bounce
or transit time, but also the radial and poloidal devia-
tion of the bounce or transit points from the field line.
Therefore the bounce or transit time is simply:

T = ∂J0

∂E
. (8)

(a) Passing (blue) and trapped (red) particles orbit in an
axisymmetric equilibrium

(b) Passing (blue), blocked (green) and localised (red) particles
orbit in a W7-X high-mirror equilibrium. An unconfined deeply

trapped particle orbit is shown in black.

Figure 2 – Examples of the main orbit topologies in an
axisymmetric versus a W7-X high-mirror equilibrium.
The dashed line represents in each case the last closed
flux surface. ρ =

√
Φtor/Φtor,edge and corresponds to a

radial variable.

The change in the variable ψ and θ after a complete
bounce or a transit are then respectively:

∆ψ =
∮
bounce

dϕdψ
dϕ = ∂J0

∂θ
, (9)

∆θ =
∮
bounce

dϕ dθ
dϕ = −∂J0

∂ψ
. (10)

The average radial and poloidal drift over a periodic
motion straightforwardly reads:

〈ψ̇〉 = ∆ψ
T

= −
∂J0
∂θ
∂J0
∂E

, (11)

〈θ̇〉 = ∆θ
T

= −
∂J0
∂ψ

∂J0
∂E

. (12)

In an optimised stellarator such as W7-X, the longitudi-
nal adiabatic invariant is almost a flux surface quantity
for most of the trapped particles: ∂J0

∂θ ' 0. Therefore
the radial drift along the bounce averaged motion of
trapped particles vanishes to lowest order. In this ap-
proximation these particles mostly drift poloidally and
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remain confined on time scales larger that the typical
slowing down time. In W7-X, drift optimised magnetic
configurations are ensured by high thermal pressure.
The expression for J0 for trapped particles is:

J0 =
∮
bounce

mv‖dlf

=
√

2mE
∮
bounce

√
1− B

Bref
dlf . (13)

Here dlf is an infinitesimal field line element length
which can be written from the field line equation:

dlf
B

= dϕ
B · ∇ϕ

. (14)

As the toroidal magnetic flux is given by:

Φtor (ρ) =
∫ ρ′=ρ

ρ′=0

∫ θ=2π

θ=0

∫ ϕ=2π

ϕ=0

√
gB · ∇ϕdρ′dθdϕ,

(15)
in a straight field line flux coordinate system, the field
line element length reads:

dlf = √gB dϕ
Φ′tor

. (16)

It then follows:

J0 =
√

2mE
∮
bounce

√
1− B

Bref

√
gB

dϕ
Φ′tor

(17)

= 2
√

2mE
∫ ϕ2

ϕ1

√
1− B

Bref

√
gB

dϕ
Φ′tor

. (18)

where ϕ1 and ϕ2 are the toroidal position of the bounce
points. From this expression it is possible to numeri-
cally evaluate the contours of J0 for different 〈β〉 and
for Bref = 2.42T for the high mirror configuration
described in the previous section. Fig. 3 shows the
poloidal closure of J0 over most of the cross section for
〈β〉 = 4% which leads to a reduction of trapped parti-
cle radial drifts. 〈β〉 = 1% shows poor closure of J0.
However it is impossible to ensure poloidal closure of J
for all ranges of trapped particles, and over the entire
plasma volume. As a consequence particle loss channels
still exist and are described in the next section.

4 Loss channels
4.1 Stochastic diffusion losses
Stochastic diffusion of fast ions in optimised stellara-
tors has been described in [2]. This diffusion process
concerns transitioning particles, described in 3. The
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Figure 3 – Contours of constant J0 for Bref = 2.42T
and two values of 〈β〉.

stochastic diffusion mechanism is as follows: a particle
is able to change its orbit class (locally passing to lo-
cally trapped or vice-versa) if it crosses the phase-space
separatrix between libration (locally trapped) and rota-
tion (locally passing). This separatrix crossing implies a
non adiabatic change in the particle motion [13]. How-
ever, an adiabatic treatment of the particle motion is
still valid as long as the particle remains sufficiently far
from the separatrix. In that case the particle motion
can still be characterised by a parallel adiabatic invari-
ant J during both the locally trapped and the locally
passing motion. After multiple separatrix crossings, the
adiabatic invariant associated with, for instance, the li-
bration motion accumulates random jumps ∆J which
ultimately causes a stochastic diffusion in J -space. In
Ref [2] it was noted that each jump in J causes a ra-
dial displacement ∆ψ = ∆J ∂ψ

∂J . This associated radial
diffusion time is usually rather long compared to other
loss mechanisms. Therefore it is expected that stochas-
tic radial diffusion will account for losses of initially well
confined weakly collisional transitioning fast particles.

4.2 Drift induced losses
Inspection of eqs. (11) and (12) shows that reducing
trapped particle losses can be achieved by ensuring that
these particles avoid regions where 〈ψ̇〉 is enhanced com-
pared to 〈θ̇〉. The unfavourable regions can be identi-
fied in terms of equilibrium parameters. Considering no
radial electric field and a static equilibrium field, the
guiding centre of a particle of mass m and charge q will
drift perpendicularly to the magnetic field line with a
drift velocity:

vD = b×
(
µ

q
∇B + v‖ρ‖Bκ

)
/B∗‖ . (19)

Where ρ‖ = mv‖/qB, b = B/B, B∗‖ = b ·(
B + ρ‖∇×B

)
and κ = −b× (∇× b) is the magnetic

field line curvature. The latter can be used to relate the
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equilibrium configuration to the particle losses pattern.
The field lines lie on curved magnetic flux surfaces, and
in particular [14], the field line curvature is composed
of a normal and a geodesic curvature. The field line
curvature can be written :

κ = κn
∇s
|∇s|

+ κg
B ×∇s
|B ×∇s|

. (20)

Where s = Φtor/Φtor,edge is a flux surface label and
serves as radial coordinate in the magnetic coordinate
system (s, θ, ϕ). From the definition of κ and assuming
MHD force balance and nested flux surfaces, one can
show that:

κ = ∇⊥B
B

+ µ0
p′∇s
B2 , (21)

with p′ = dp
ds , so that the bounce averaged radial drift

depends only on κg:

∮
bounce

vD ·
∇s
|∇s|

dt =
∮
bounce

−
(
µ

q
+ v‖ρ‖

)
B

B∗‖
κgdt,

(22)

κg = 1
√
gB2√gss

(
∂B

∂θ
Bϕ −

∂B

∂ϕ
Bθ

)
. (23)

It appears clearly (as is well known) that particles with
bounce trajectories mostly located in regions with nega-
tive geodesic curvature drift radially outwards and even-
tually escape the plasma. Examples of such unconfined
orbits are illustrated in Fig. 4. There are various types
of "bad" curvature regions in W7-X. As seen in Fig.
4b, certain isosurfaces of B may exhibit narrow tubes
with large radial extension and encapsulating a volume
of negative curvature. In that case a trapped particle
may fall into one of these tubes along its bounce trajec-
tory and would quickly drift out of the plasma volume.
Those tubes can be regarded as leaks in regions of phase
space which mostly contain well confined particles. The
avoidance of such tubes would mitigate this loss channel
and might be worthwhile to be considered as an addi-
tional criterion in stellarator optimisation with respect
to fast particle confinement.

(a) Unconfined trapped particle running along lowest ϕ value of
the Bref = 2.22T .

(b) Unconfined trapped particle running along lowest ϕ value of
the Bref = 2.4T surface.

Figure 4 – Examples of unconfined localised particle
orbits. The particle guiding centre drift trajectory is
traced in each case and is seen to bounce between sur-
faces of constant B = Bref . The color of the trajectory
is representative of the local magnetic geodesic curva-
ture sign (blue: κg < 0, red: κg > 0).

4.3 Effects of Coulomb collisions
In the presence of collisions, acting as pitch angle scat-
tering as well as slowing down process, fast ions are
expected to undergo collisional transport that redis-
tributes them radially. Additionally, as fast ions slow
down by colliding with the thermal ions and electrons,
they also experience pitch-angle scattering. Therefore a
rearrangement of the distribution of particles in phase
space occurs that leads to collisional trapping and de-
trapping. Deeply trapped particles are expected to be
generated by this process and before this particular frac-
tion of the particle population can de-trap, they might
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experience a significant net outward radial drift because
of the mechanism described in the previous subsection.
In that sense, collisions give favourable conditions for
drift induced losses. This mechanism will be clearly
identified by simulations results in Section 5.

5 NBI simulations with VENUS-
LEVIS

In this section, VENUS-LEVIS simulations of fast ions
generated by the dedicated NBI module [6] are pre-
sented. The simulated particles are deuterium ions at
60keV, 30keV and 20keV. It is important to mention that
it is not intended to model an NBI experiment which
would involve continuous injection of fast ions. Instead,
special attention is given to the dynamics of fast parti-
cles with energy representative of a neutral beam pop-
ulation. Furthermore, it is not intended that the model
used should reproduce the W7-X NBI system in its ex-
act geometry. However the injection angles were set
so that the initial distribution in pitch-angle λ = v/v||
is relevant with the normal and tangential PINIs in-
jecting in the co- and counter direction with respect to
the equilibrium toroidal magnetic field, as seen in Fig.
5a. An important feature of the initial population for
the loss channel analysis is shown by the distribution
in µ/E = 1/Bref plotted in Fig. 5b: the fraction of
deeply trapped particles, i.e. with 1/Bref > 0.4 is al-
most vanishing. It is reminded that the locally passing-
trapping boundary depends on the considered drift sur-
face. As the initial marker distribution spans radially
across the whole plasma volume, it is not possible to
identify a unique passing-trapped boundary. However,
an adequate way to estimate the proportion of deeply
trapped and deeply passing particles is to consider the
inverse of the minimum and of the maximum of the mag-
netic field amplitude in the bean shaped cross section.
These values are plotted in Fig. 5b by the two dotted
lines. Collisional trapping effects described in 4.3 will
be easily emphasised simply by comparing the initial
and the final fraction of particles with 1/Bref > 0.4,
i.e. 1/Bref > 1/minϕ=0B.
This marker population is evolved under slowing

down and pitch angle scattering conditions. In VENUS-
LEVIS these processes come from the interaction be-
tween the fast ions and the background species, i.e no
self collisions of the fast ions are considered. The simu-
lation comprises only the confined plasma volume, and
as such a marker is recorded as lost as soon as it crosses
the LCFS. Fig. 6 shows the cumulative number of lost
markers over time. The loss history is similar for the
three investigated initial energies. Markers that cross
the LCFS before t = 1ms correspond to first orbit losses
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Figure 5 – Initial pitch angle and 1/Bref distribution.
The dotted lines display the values corresponding to the
minimum (left) and the maximum (right) of the mag-
netic field amplitude in the bean shaped cross section.

while losses after 1ms arise from a combination of the
collisional and drift induced losses. The latter losses ap-
pear to be continuing steadily even after times compara-
ble to the slowing down time of the fast ions. As we will
see later, these thermalised particles are ultimately con-
fined with the addition of a radial electric field. These
distinct loss regimes can be also distinguished in Fig. 7
which displays the toroidal position at which a marker
is lost with respect to its confinement time. These two
types of losses are described separately.
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Figure 6 – Particle losses over time for different in-
jected energy. Two loss regimes appear: first orbit losses
(<1ms) and collisional/drift losses (>1ms).

First and multiple orbit losses. Fast particles born
sufficiently close to the last closed flux surface and with
a sufficiently large orbit width may escape the confined
plasma volume during their bounce or transit motion.
First orbit losses are observed when particles leave the
confined volume before completing their bounce motion.
In a mirror machine such as W7-X, one may also define
multiple bounce (but early) losses since injected trapped
particles can have a positive bounce average radial drift
and leave the plasma only after bouncing a few times.
First and multiple orbit losses can be seen by the stripe
pattern in Fig. 7 and illustrated in Fig. 8. Multiple or-
bit losses are typical for stellarator machines and cannot
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Figure 7 – Toroidal position of lost markers over time in
collisional conditions. First orbit losses clearly appear
and display a different pattern for co- and counter- in-
jected particles. After many bounce (or transit) times,
the same loss pattern is observed in each toroidal period
for a given energy injection. Dashed lines correspond to
the boundaries between each toroidal period.

be observed in tokamaks because of the orbit symmetry.

(a) First orbit losses

(b) multiple orbit losses

Figure 8 – Example of first and multiple orbit losses. �:
initial positions, •: bounce tips, ×: lost positions.

Collisional and drift induced losses. Coulomb colli-
sions with the thermal ions and electrons will not only
be responsible for slowing down of particles but also for
pitch angle scattering. Therefore collisions can be con-
sidered as a source of particle trapping and de-trapping.
It is recalled that the fraction of initially deeply trapped
particles is nearly vanishing, but as seen in Fig. 9 the
population of particles lost after 1ms consists mostly of
trapped particles. Indeed, particles that can be identi-
fied as being in a deeply trapped state and being lost
after 1ms represent 53% of the total number of losses
after that time (the second peak on the dash-dotted
line in Fig. 9). This means that not only will parti-
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Figure 9 – Particle losses as a function of their pitch
angle variable µ/E.

cles undergo collisional transport (diffusion in position
space) but also wander in and out of the trapped re-
gion of phase space via pitch angle scattering (diffusion
in velocity space). During the time in which particles
remain deeply trapped they experience a net outward
radial drift as described in 4.2. Additionally, the two
peaks in Fig. 9 are retrieved at particular toroidal posi-
tions in Fig. 7 where dense clouds of points are observed
in particular locations of each toroidal segment. These
locations corresponds to local magnetic wells in which
particles are locally trapped due to collisions and where
they drift out until they exit the plasma. The losses
located in the middle of each toroidal segment can be
explained by the local magnetic variation around the
triangle cross section as seen in Fig. 1. A second loss
region appears at the entry of the toroidal segments.
However, by virtue of the stellarator symmetry [15], lo-
cal magnetic wells that are found around a (θ, ϕ) region
appear also around (−θ,−ϕ) since:

I0B (ρ, θ, φ) = B (ρ,−θ,−φ) , (24)

where I0 is the symmetry operator defined in Ref. [15].
This operator transforms the covariant components of
B, since it is a stellarator symmetric vector field as
follow:

I0 [Bs, Bθ, Bϕ] = [−I0Bs, I0Bθ, I0Bϕ] . (25)

Partial derivatives are transformed as:

I0

[
∂

∂s
,
∂

∂θ
,
∂

∂φ

]
B =

[
∂

∂s
,− ∂

∂θ
,− ∂

∂φ

]
I0B, (26)

It then follows from (23),(25) and (26) that the geodesic
curvature transforms under stellarator symmetry into:

κg (s, θ, ϕ) = −κg (s,−θ,−ϕ) . (27)

Hence, the toroidal asymmetry in the loss pattern can
be explained by the changed sign of the geodesic curva-
ture when moving from a local magnetic well location
to its sellarator symmetric location. This is confirmed
in Fig. 10 which shows the geodesic curvature map on
the LCFS and the contours of 1/B.
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Figure 10 – Lost particles position in a chosen toroidal
segment in the θ−ϕ plane (green dots). Circles empha-
sise stellarator symmetric local magnetic wells. Colors
show the geodesic curvature amplitude on the LCFS.

6 Effects of a radial electric field
In this section, the effects of a neoclassically resolved
radial electric field are investigated. A radial electric
field (Er) arises from the ambipolarity condition for the
neoclassical particle transport of background electrons
and ions adding a predominantly poloidal E×B drift to
the particles motion. Therefore it is expected that such
an electric field will increase the poloidal drift motion of
trapped particles and improve their confinement. The
E ×B induced velocity drift reads as:

vE×B = E × b
B∗‖

= Er
|∇s|BB∗‖

√
g

(Bθeϕ −Bϕeθ) (28)

Inspection of eqs. (28) and (19) indicates that the im-
provement in the particle confinement by the E × B
poloidal drift is less effective for high energy particles.
The radial electric field profile used in the following cor-
responds to the so-called ion-root regime [16] and is dis-
played in Fig. 11a. Fig. 11b shows an example of how
the inclusion of vE×B helps to confine a trapped particle
that would otherwise escape the plasma if only the drifts
(19) are resolved. The same initial fast ion population
as in the previous section was evolved in the presence of
this radial electric field. A scan in the radial electric field
amplitude was performed in order to analyse its effect
on the fast ion confinement. Fig. 12 shows the particle
loss fraction over time with varying radial electric field
amplitude and initial energy (left to right). Here 100%

Er is the correct level of radial electric field according
to neoclassical calculations. It is seen that the fast ion
confinement is strongly enhanced. More precisely the
number of lost particles saturates with time for a suf-
ficiently high electric field amplitude. In particular, as
expected, 20keV ions experience a larger enhancement
in their confinement, and for a realistic electric field
amplitude the losses due to the 3D equilibrium config-
uration stop over times comparable with the particles
slowing down time.

s
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V
/
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×10
4
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0

(a) Radial electric profile Er

resolved by neoclassical
calculation.

(b) Confinement effect due
to the vE×B .

Figure 11 – Radial electric field profile and its effect on
a trapped particle orbit.
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Figure 12 – Particle lost fraction over time for various
radial electric field amplitude and injection energy: a)60
keV, b)30 keV, c)20 keV.

Furthermore, the radial deposition profile of the in-
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jected fast ions is affected by the inclusion of Er. As
seen in Fig. 13, for larger electric fields the distribution
is more peaked in the central region. Moreover, the
edge distribution tends to drop with increasing Er be-
cause of the reduced radial transport. Figs. 12 and 13
show a strong influence of the radial electric field on the
fast ions dynamics in W7-X plasmas. As a concluding
remark of this section, it should be stated that future
studies concerning fast ions confinement and generation
(in particular in W7-X) should include a realistic equi-
librium radial electric field.

s

0.2 0.4 0.6 0.8

#
 m

a
rk

e
rs

1000

2000

3000

4000

5000

6000

7000
Initial

No E
r

10% E
r

50% E
r

100% E
r

200% E
r

300% E
r

(a) 60 keV

s

0.2 0.4 0.6 0.8

#
 m

a
rk

e
rs

1000

2000

3000

4000

5000

6000

7000
Initial

No E
r

10% E
r

50% E
r

100% E
r

200% E
r

300% E
r

(b) 30 keV

s

0.2 0.4 0.6 0.8

#
 m

a
rk

e
rs

1000

2000

3000

4000

5000

6000

7000
Initial

No E
r

10% E
r

50% E
r

100% E
r

200% E
r

300% E
r

(c) 20 keV

Figure 13 – Radial deposition profile for various injec-
tion energy and radial electric field amplitude.

Summary and conclusions
The work presented here shows the particle loss pat-
terns that are expected at neutral beam injection (NBI)
relevant energies and pitch angles. Fast particle loss
channels have been identified. First the stochastic ra-
dial diffusion described in Ref. [2] is expected to play a
significant role for high energy (i.e. low collisional) par-
ticles confined for a long time. Earlier losses can be split
into two regimes. The first one involves first and mul-
tiple orbit losses. The second regime is explained by a
drift induced loss mechanism. In this regime, Coulomb
collisions will cause classical transport but more impor-
tantly will generate deeply trapped particles via pitch
angle scattering. Trapped particles generated by this
scattering process are mostly transported outside the

plasma by the drift induced loss channel. The effects
of the ambipolar radial electric field which has been de-
rived from neoclassical transport simulations have been
described. Fast ion confinement is noticeably improved
in the considered range of energies. It was observed that
the vE×B drift essentially prevent the losses due to the
3D magnetic equilibrium properties (|B| and curvature
distribution) for particles slowing down from an injec-
tion energy of 60keV. The neoclassically determined ra-
dial electric field is just sufficient to provide good con-
finement of such a population. The inclusion of these
effects may help the numerical development of fast ion
generation scenarios for W7-X. In particular, it is fore-
seen fast ion generation scenarios involving minority Ion
Cyclotron Resonant Heating (ICRH) would benefit from
the E ×B effect. Indeed, minority ICRH is based on
building a fast ion tail from a thermal ion population.
The radial electric field should enable the confinement
of ions for sufficient time for ICRH to energise the par-
ticles. However, ICRH enhances the ion velocity domi-
nantly in the perpendicular direction. For the plasmas
analysed in this paper, the resulting trapped ions can-
not be expected to reach temperatures beyond around
50keV where the benefits of the radial electric field be-
come weak.
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