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Abstract. In this paper we describe a method for training a neural network to
approximate the full model Bayesian inference of plasma profiles from an X-ray
imaging diagnostic measurements. The modelling is carried out within the Minerva
Bayesian modelling framework where models are defined as a set of assumptions,
prior beliefs on parameter values and physics knowledge. The goal is to use neural
networks for fast ion and electron temperature profile inversion from measured
image data. The neural network is trained solely on artificial data generated
sampling from the joint distribution of the free parameter and model predictions.
The training is carried out in such a way that the mapping learnt by the network
constitutes an approximation of the full model Bayesian inference. The analysis
is carried out on images constituted of 20x195 pixels corresponding to binned
lines of sight and spectral channels respectively. Through the full model inference,
it is possible to infer electron and ion temperature profiles as well as impurity
density profiles. When the network is used for the inference of the temperature
profiles, the analysis time can be drastically reduced, up to the scale of tens of
microseconds for a single time point compared to the ≈ 4 hours long Bayesian
inference. The procedure developed for the generation of the training set does not
rely on diagnostic-specific features, and therefore it is in principle applicable to
any other model developed within the Minerva framework. The trained neural
network has been tested on data collected during the first operational campaign
at W7-X, and compared to the full model Bayesian inference results.
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1. Introduction

Neural networks (NNs) are a powerful tool when it
comes to speed and approximation of complex functions.
Universal approximation theorems have been shown to
be valid for neural networks under different assumptions,
as in [1], [2] and [3]. The real time capabilities of
neural networks have also been shown in different fusion
experiments, e.g., ion temperautre profile inference
and disruption prediction at JET as in [4], [5] and
[6] and at ASDEX Upgrade [7]. Neural networks
have also been used for the reconstruction of plasma
parameters from diagnostic data as in the case of
charge exchange spectra automatic analysis at JET for
reconstruction of ion temperature, rotation velocity and
impurity density [8] and [9], and in the case of electron
temperature from a soft-x-ray system at NSTX [10]. In
this paper, we focus on an application of neural network
algorithms on X-ray Imaging Crystal Spectrometer
(XICS) measurements and we will describe an approach
based on a different paradigm of neural network training
and reconstruction suitable when the physics model of
the diagnostic is available. In particular, we will make
use of the Bayesian implementation of the model within
the Minerva modelling framework [11].

Neural networks applied to diagnostic data are
typically trained on real measurements and the
corresponding quantities of interest in situations where
a model of the problem is missing. Such approach
has the advantage of providing the neural network
with actually measured data, but it also has the
limitation of depending on a fixed and restricted
amount of training samples, the feature of which
depends on the performed experiments, and on a
limited parameter space. An exception is described
in [9], where synthetic data has been introduced in the
training set by sampling from the joint distribution
of the physics parameters reconstructed from those
inferred from the measurements, and by synthesizing
the data with a forward model. The way we try to
overcome these limitations is by training the network
solely on data synthesised through the Bayesian model
specified within Minerva, the same that is used for the
standard inference [12]. The physiscal parameters used
to produce the data are sampled from the corresponding
prior distributions and the synthetised observations are
sampled taking into account the error model. This gives
control over the features we put in the training set and,
consequently, the features the neural network will be

learning and will be sensitive to when evaluating on
measured data. Also, an advantage of this approach
concerns its generality and the possibility of performing
automatic data analysis based on physics models, which
comes as a consequence of the sampling procedure
described in the following chapters. This becomes of
greater relevance as the scale of fusion experiments
grows larger and the duration of plasma shots becomes
longer. During the first operation campaign (OP 1.1,
see [13]) of the W7-X stellarator several diagnostics
([14], [15]) were involved in the measurements, and
the number increased during the second one (OP
1.2a). Together with the number of diagnostics, a
large proportion of which are currently implemented
in the Minerva framework, e.g. [16] [12] [17], also the
duration of the plasma shots increased. All of this makes
fast and automatic data analysis very desirable. The
technical implementation of our approach only makes
use of features shared between all models in Minerva,
and thus it is easily transferable and applicable to other
diagnostics modelled in the framework. The paper will
describe the modelling within the Minerva framework,
the basics features of the XICS diagnostic at W7-X, the
neural network architecture and training set creation
scheme. We will conclude comparing the evaluation of
the neural network on OP 1.1 measured data to the
Bayesian inference result traditionally carried out in
Minerva and discussing the results mentioning possible
further improvements.

2. The method

In order to describe the method we used to generate
training data from Minerva models, we will first describe
the basic features of the XICS diagnostic installed at
W7-X and the corresponding model implementation
within the Minerva framework. Afterwards we will
illustrate the training set creation scheme.

2.1. XICS diagnostic

The X-ray Imaging Crystal Spectrometer system
collects x-rays emitted in atomic processes involving
ion impurities and plasma electrons, occurring in the
bean shaped cross section of the W7-X stellarator. The
concept behind the diagnostic is described in [18]. A
sketch of the view is shown in Figure 1a, where the
plasma cross section and the line of sight span is shown.
The system is equipped with a spherical bent crystal and
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the light is collected onto a CCD detector producing 2D
images similar to the one shown in Figure 1b. The two
dimensions in the image represent energy and spatial
resolution respectively. The diagnostic is sensitive to
the energy region of He-like Argon emission lines. The
main emission lines constituting the spectrum are shown
in Figure 1c and they are the w, x, y and z for the n = 2
to n = 1 transitions in addition to numerous n >= 2
dielectronic satellites, e.g. the k lines for n = 2. A study
of the spectrum and the atomic processes involved can
be found in [19], [20] and [21]. The detector covers the
wavelength range from ≈ 3.94 Å to ≈ 4.00 Å along the
central line of sight (LOS).

In order to interprete the measured data, a forward
model of the diagnostic is implemented within the
Minerva framework [12], [22]. Here we will describe
the atomic processes taken into account in the model,
while we will discuss Bayesian inference and Minerva
modelling in the next section. A detailed description
of the calculation of the emission intensity for the
different lines can be found in [19]. In Table 1 we
show the processes involved in the calculations relevant
to this paper together with their dependence on plasma
parameters.

The intensity of all lines depends on the electron
temperature Te through the corresponding effective
rate coefficients, a calculation of which can be found
in the Appendix of [19]. The dependency on the
ion temperature Ti comes as well into the calculation
of all of the line shapes as Voigt profiles V (λl, λ),
which is the convolution of a Gaussian and Lorentzian
shape, accounting for Doppler broadening and natural
broadening, respectively. The photon emission of each
process also depends on the electron density ne, and on
the density of Argon ions in one of the ionization stages:
nArHe for Ar16+, nArLi for Ar15+, and nArH for Ar17+.
All of the quantities in Table 1 are defined on a 3D
Cartesian coordinate space, so that they are dependent
on the position x. The emission intensity I(λ) at a given
λ is then calculated performing an integration along
the line of sight paths L, as in the following equation:

I(λ) =

∫
L

n2
e(x)

∑
l

V (λl, λ,x) il(x) (2.1)

The quantity il(x) is defined according to:

il(x) =
∑
j(l)

nj(x)klj(Te(x)) dx (2.2)

It denotes the overall contribution from different
ionization stages j to the emission line l. In the
equations, λl denotes the wavelength for the given line,
klj denotes the effective rate coefficient of the line l in
the ionization stage j, and nj denotes the density of
ions in the ionization stage j.

The contributions to the overall He-like Argon
spectrum arising from the different atomic processes

and ionization stages are shown in Figure 2. In the
spectrum depicted, the lines q, r, and a, are also visible.

2.2. Bayesian modelling and inference in Minerva

When developing a Bayesian modelling and inference
scheme, the first step is the definition of the model
free parameters, w, and observed data, d. Probability
distributions are assigned to both quantities, and
they take the name of prior distribution, P (w), and
likelihood function, P (d|w). The prior distribution
represents the a priori knowledge that we have about
the free parameters before taking the observations into
account. The likelihood distribution represents instead
the model uncertainties in the prediction of the data.
The inference is the process of knowledge acquisition
when new data are observed. According to Bayesian
probability theory, it can be described as an update
process of the a priori distribution. This process is
formally expressed through Bayes formula:

P (w|d) =
P (d|w)P (w)

P (d)
(2.3)

The term P (w|d) is called posterior distribution
of the free parameter w given the observed data d, and
it represents the new state of knowledge on the model
free parameter as new data are collected. The quantity
P (d) is called evidence or prior predictive and, as first
interpretation, it plays the role of normalization factor:

P (d) =

∫
P (d|w)P (w) dw (2.4)

The hidden relevance of this term becomes evident
when we switch from Bayesian inference for parameter
estimation to Bayesian model selection, see for
example [23]. Since the integral in equation 2.4 is
a marginalization over the free parameters of a given
model, we see that P (d) is the distribution of all the
data that the model can describe, quantifying how
likely each data point is to be generated under the
assumptions of the model. Once it is evaluated on a
data point d∗, the evidence P (d∗) defines how likely our
model is as an explanation of such data point. The value
of this probability depends on the prior distributions
of the parameters and the uncertainties attributed to
our model prediction in the likelihood term. The
dependency is such that broader prior distributions,
or prior distributions defined over higher dimensional
parameter spaces, i.e. more complex models, will be
penalized, and the overall probability will always be
a compromise between model complexity and good fit
to the data. This is indeed an application of Occam’s
razor principle. An illuminating explanation of how
Bayesian model selection naturally embodies Occam’s
razor is given in [24].

The numerator in Equation 2.3 corresponds to
the joint distribution P (d,w) of observed data and
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Figure 1: (a) Sketch of XICS system view on the bean shaped cross section at W7-X. (b) A measured raw image
detected on the CCD detector. The typical curved feature is due to the spherical bending of the crystal. (c)
He-like Argon spectrum measured along one of the central line of sights of the image in Figure (b). The main
emission lines are marked with their names.

Atomic process Plasma parameter dependency

(1) excitation from ground state of He-like ions ne, nArHe, Te, Ti

(2) di-electronic recombination of He-like ions ne, nArHe, Te, Ti

(3) recombination of H-like ions ne, nArH, Te, Ti

(4) inner shell excitation of Li-like ions ne, nArLi, Te, Ti

Table 1: Atomic process description and corresponding plasma parameter dependency.
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Figure 2: A He-like Argon spectrum calculated with the
forward model for Ti = 1 keV, Te = 1.2 keV, ne = 1013

cm−3, nArHe = 108 cm−3, nArLi = nArH = nArHe/8.
The numbers in the legend refers to the atomic processes
listed in Table 1

free parameter, P (d,w) = P (d|w)P (w). The Minerva
framework relies on graphical models [25] in order to
express the conditional dependence between random
variables in the model. For each model implemented in
the framework, a graph object is created that describes
the joint distribution of the free parameter and the
measurements according to the forward model. A
simplified version of the XICS model graph is shown
in Figure 3. In the graph the coloured nodes are
probabilistic nodes, where orange denotes the free
parameters and blue denotes the observed quantities.

In the case of the XICS forward model, the free
parameters can be the plasma parameter summarised
in Table 1, right column, and the observed data are
the images constituted of spectra like the one shown in
Figure 2, calculated accounting for the atomic processes
described in Section 2. All the distributions in the graph
are chosen to be normal distributions. Note that the
likelihood function is then a normal distribution centred
at the model prediction, obtained with the given set of
free parameter values:

P (d|w) =
1√

2πσ2
exp

(
− (d− y(w))

2σ2

)
(2.5)

where we used y(w) to denote the forward
model function y dependent on the free parameter
values w and d to denote a measured data point.
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Figure 3: A simplified sketch of the XICS model graph. Coloured nodes are probabilistic nodes, where orange
denotes the free parameters and blue denotes the observed quantities. White nodes represents deterministic
calculation nodes. The white GP nodes represent a Gaussian process prior, and the symbols σf , σx and σy
denotes the parameter in the expression of the squared exponential covariance function. The data source node is
used to fetch diagnostic specific information and measurement from the W7-X Archive. The arrows represent
direct or indirect dependencies in the probabilistic relations between the quantities in the probabilistic nodes.

The white squared nodes in the graph of Figure 3
represent deterministic calculation nodes, and the cloud
node is used to denote a data source, i.e. a node
that communicates with a database, here the W7-X
ArchiveDB, where information about the diagnostic, e.g.
geometry setup etc., are stored together with measured
and analysed data. The arrows represent dependencies
between nodes rather than a computational flow. For
example, all arrows from the free parameters reach,
directly or undirectly, the observed node, i.e. the
probability distribution for the observed quantities (d)
should be conditioned on the value of the free parameter,
P (d|w). The joint probability distribution represented
by the whole graph can be factorized and written as:
P (w, d) = P (w)P (d|w).

The Te, Ti and nk profiles, where nk stands for
Argon ion or electron density, are functions of the
normalized effective radius ρeff =

√
ψ/ψLCFS. Thus,

an equilibrium code, in this case VMEC [26], called
from the corresponding node, is required to carry out
the mapping to the 3-D Cartesian coordinates. The

impurity emission can then be calculated locally and
integrated along the line of sight. A background
emission, is also added to the spectrum as a line of
sight integrated quantity. In order to calculate the
detector pixel response, the instrumental function and
the wavelength dispersion on the chip are also required.
Note that the data source node is used to provide the
observed data for the inference and the l.o.s. geometry.
The smoothness of the profiles is controlled by a zero
mean Gaussian Process (GP) prior [27] with a squared
exponential covariance function, as defined in:

covij = σ2
f exp

(
− (ρi − ρj)2

2σ2
x

)
+ δijσ

2
y (2.6)

The quantity covij denotes the elements of the
covariance matrix, ρi and ρj denotes the location of
any two profile points labelled with i and j, and the
quantities σf , σx and σy denote the function variance,
the length scale and the noise variance of the profiles,
respectively. Note that the quantity covij corresponds
to the covariance between any two points in the profile,
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as function of the location ρeff . The length scale σx
describes how smooth a function is. Small length scale
value means that function values can change quickly
in its domain, whereas large values describe function
that change slowly. The function variance σf is a
scaling factor and determines function value variations
around the mean. Large values will allow again for
bigger variation, smaller values will describe less varying
function. It also determines, together with σy, the value
of the covariance matrix elements along the diagonal,
where i = j. The noise variance σy is used to allow for
noise present in the data and it specifies the amount of
noise expected to be present in the data.

As data are measured, Bayesian inference can
be carried out to extract information about the free
parameters. The target of Bayesian inference is the
posterior distribution of the parameters, P (w|d). In the
practical implementation within Minerva, when a single
value solution is desirable, a Maximum A Posteriori
(MAP) optimizer can be used to find the maximum of
the posterior distribution. The full Bayesian answer to
the inference problem is nevertheless provided by the
full posterior distribution, the spread of which expresses
the uncertainties on the inferred quantities. In order to
provide this information, a Markov Chain Monte Carlo
(MCMC) sampler is usually adopted to generate the
posterior samples. The samples can then be stored and
used in further, independent, calculations providing full
non-linear uncertainty propagation. Profiles inferred
using XICS data can then be used, for example, in
impurity transport studies, see [28] and [22].

2.3. Generation of the training set

The model depicted in Figure 3 represents a quite
sophisticated inference problem: first of all, the
images fed to the inversion routines go through a
preprocessing stage, occurring in the data source node,
where they are (1) straightened, and (2) binned along
the line of sight direction in order to reduce the
computational effort. At this point, the inversion
problem consists of simultaneously fitting an image
of 20x195 pixels along the LOS direction and the
wavelength dispersion direction respectively, and doing
a tomographic inversion of different plasma profiles.
The full Bayesian inference takes from 1 to 4 hours for
each measured image. A neural network trained on the
problem of inferring plasma profiles from preprocessed
observed images can process data at a time scale of
tens of microseconds in good implementation conditions
(e.g., on a GPU). In this paper we will focus on the
inference of ion and electron temperature profiles.

In order to generate the neural network training set,
we will only make use of the Minerva model. In Bayesian
modelling, a model is defined by (a) its functional form,
which in this case includes all the calculations based

on the physics knowledge we have put in the forward
model, and (b) two probability distributions: the prior
distribution of the free parameters, P (w), and the
likelihood function of the observed data P (d|w). Indeed,
all the features of a model are reflected in its joint
distribution P (d,w) = P (d|w)P (w): the distribution
of the variables (d,w) depends on the functional form
of the forward model, appearing in the likelihood term
P (d|w) as y(w) (Equation 2.5) and which expresses the
dependence of d on w, the uncertainties on the model
prediction and the prior distribution P (w). As our goal
is to create a (approximated) copy of the original full
Bayesian model, we must provide the neural network
with training data having the same properties: this
is achieved by generating the training set data from
samples of the full model joint distribution. Practically,
such training set can be obtained by iterating over the
following three steps:

i draw and store a sample from the joint prior
distribution of the free parameter: P (w) =
P (Te, Ti, nk, bg) = P (Te)P (Ti)P (nk)P (bg), where
bg denotes the background l.o.s. integrated emission
profile

ii run the forward model in order to calculate a
synthetic observation with the given free parameters

iii store a number of samples drawn from the likelihood
function of the synthetic observations, P (d|w),
which is fully specified by the given set of sampled
free parameter and the model uncertainties

The sampling procedure taking place at step (iii) will
introduce noisy samples in the training set since the
likelihood distribution expresses the uncertainties of
the model prediction. This will help making the neural
network stable against small perturbations in the input
data when evaluated on measured images. This is
equivalent to the technique known as data augmentation,
[29] and [30]. The modifications we inject into the
samples are based on the noise model that has been
assumed for the problem, in this case a Gaussian
noise model. The neural network is then trained on
the mapping from the images to the ion and electron
temperature profiles. Training on other profiles is also
possible and straightforward, since it is just matter of
choosing and storing another set of samples among those
stored at step (i). As a consequence of such sampling
procedure, the portion of the training set corresponding
to the to the model prediction d are samples from the
evidence term P (d) of Equation 2.3.

A sketch of the procedure is illustrated in Figure
4. The size of the input images is 20 pixels along the
LOS dimension and 195 pixels along the wavelength
dimension. The target ion and electron temperature
profiles are defined with 15 points equally spaced along
the effective radius. The training set is made of 500 000
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samples. A test set made of 10 000 samples is used to
check the generalization capabilities of the NN during
training and it is generated in the same way as the
training set.

Given the previously mentioned sampling proce-
dure, an insightful interpartion can be given to the
neural network mapping. A well known result [31]
in the neural network field states that, under the as-
sumption of a sum-of-squares error loss function as in
Equation 2.9, large training data set and successful opti-
mization, the neural network mapping f is given by the
conditional average of the target data yi, conditioned
on the input vector xi:

f(xi;w) = 〈yi|xi〉 (2.7)

In the specific contest of our study, the network’s targets
and input are the ion and electron temperature profiles
and the synthetic XICS images. Given the fact that
the training set is generated sampling from the join
distribution of the XICS Bayesian model, as described
in Section 2.3, the distribution of the target data t given
an input vector x, p(t|x), in the limit of large training
data set, correspond to the posterior distribution of
the ion or electron temperature profile of the full
Bayesian model. Therefore, we can state that the neural
network mapping, in ideal circumstances, is given by
the mean of the full model posterior distribution. In real
world circumstances, the data set size is finite, and the
optimization is never perfect, so that we can say that,
in this sense, the inversion provided by a neural network
trained in such a way, constitute an approximation of
the full model Bayesian inference.

2.4. Neural network input, output and architecture

It is worth to summarise here what the neural network
input and output are at the different stages. At
training time:

• input : synthetic images, generated with the
XICS forward model and the sampling procedure
described in Section 2.3. These images supposedly
closely resemble the actual XICS measurement
(after few pre-processing operation, i.e. row
binning and straightening, see next bullet point and
Figure 5). They are made of 20x195 pixels/values.

• target : the ion or electron temperature profiles
used to generate the corresponding images. These
are made of 15 points, along the effective radius
ρeff =

√
ψ/ψLCFS, where ψ is the magnetic flux

and ψLCFS is the flux at the last closed flux surface.

At evaluation time:

• input : the pre-processed, actual XICS measure-
ments. The measured images, originally showing

the curved feature shown in Figure 1b, are straight-
ened according to the detector and crystal geom-
etry. Afterwards, the original 1475x195 pixels of
the image are binned along the largest dimension,
which corresponds to the spatial resolution, where
neighbouring line of sights overlap significantly.
The binned images are made of 20x195 pixels. An
example of a binned image is shown on the leftmost
side of Figure 5.

• output : the estimated ion or electron temperature
profile. In case of successful training, it will match,
within uncertainties, with the profile inferred
through the full Bayesian model.

Essentially, two neural networks, identical for all the
features except for the target profiles, have been trained
and tested independently: one for the inversion of ion
temperature profiles and the other for the inversion of
the electron temperature profiles.

Since the network’s input are 2-D images, the
network architecture has been inspired by the LeNet-5
Convolutional Neural Network (CNN) [32] and is shown
in Figure 5. This kind of architecture has been shown
to be particularly effective when the input present a 2-D
structure. It has been successfully used in many image
recognition problems, achieving state-of-the-art results
[33], [34]. Here we expect to recurrently find across the
image the features induced in the spectrum by the ion
or electron temperature profiles, which affect line width
and intensities, respectively. Two convolutional layers
C1 and C2, each one followed by one sub-sampling layer,
are used in a hierarchical feature extraction structure. A
convolutional layer apply a convolution filter or kernel
to the input image, extracting information that are
recurrent accross different location in the image (for
more details see [32]). The kernel dimension sizes used
in the convolutiona layers are respectively: (3, 16) and
(2, 5), where the first and second dimensions refer to
the LOS and wavelength dispersion dimension of the
input images. The number of feature maps, i.e. sets of
units whose weights are constrained to be identical [35]
and [36], is set to 30 for both convolutional layers. The
sub-sampling layers use max pooling with a resolution of
2 by 2. Two fully connected layers M1 and M2 made of
20 and 18 units respectively, constitute the final layers,
which will produce the desired 15 points ion or electron
temperature profile output. The activation function
in the convolutional layers is the Rectified Linear Unit
(ReLU):

f(x) = max(0, x) (2.8)

whereas in the fully connected layers it is the hyperbolic
tangent function.

Convolutional neural networks are also especially
suitable for parallelisation on GPUs, which applied to
our case made the training 30 times faster than on CPUs.
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Figure 4: A sketch to illustrate the sampling procedure for the training set creation described in Section 2.3. A
sketch of the Minerva model of the XICS diagnostic and the neural network are shown on the left and on the
right, respectively. The NN takes as input images sampled from the likelihood function of the model, given a set
of sampled free parameters. The blue nodes of the neural network denotes the input pixel of the image and the
two red nodes at the top denotes the output points of the ion temperature profile.

The neural network was implemented within Theano, a
Python framework for fast symbolic computation [37].

The training was stopped either according to
an early stopping criteria, i.e. when the network
performance on the test starts degrading, or when the
decay rate of the loss function is small enough. The loss
function that the NN is trained to minimize is defined
as:

S(w) =
β

2

N∑
n=1

(yn − tn)2 +

L,Nk∑
k,i=1

αkw
2
k,i (2.9)

where w denotes the network weight vector, the first
term on the right-hand side is the sum-of-square error
between the network output yn and the target tn and
n is an index that goes through the N samples in the
training set. The second term on the right-hand side
is a regularizing term, where wk,i denotes the network
weight of unit i at layer k. The parameter β and αk are
scale parameter which control the relative importance
of the two terms. An insightful interpretation, based
on a Bayesian view of the neural network training [24]
[38], can be provided to such expression and can be
useful in the choice of the values of β and αk. The
values of β = 10 and αk = (αC1=68.00, αC2=58.33,
αM1=576.67, αM2=5.83) were used. More details about
Bayesian neural network training in the context of this
study can be found in [39].

2.5. Training set comparison

The features of the set of measurable images Dm are
determined by the properties that the plasma profiles
have during the experiments. An absolutely free,
unconstrained sampling of the 15x7 points in the plasma
profiles introduced in Table 1, will produce a set of
synthetic data D which likely will have little in common
with Dm. Most of the samples in such a training set
will have little use to our purposes, since they would not
belong to the domain of the mapping that we want the
neural network to learn. In order the neural network
to be able to accurately predict temperature profiles
from measured images, the Dm space has then to be
covered densely enough by the training data set: we are
not interested in generating all possible 15-dimensional
output vectors, but only those which represent realistic
ion or electron temperature plasma profiles. This is
accomplished by refining the prior distributions in such
a way that sampling from them will generate a data set
of synthetic images which densely encloses Dm.

In principle, the full distribution of the data
described by a given model is determined by the prior
predictive distribution, equation 2.4. As we have seen
in section 2.3, the training images constitute samples
from such distribution, therefore they can be used to
estimate how closely a training set resemble the actual
measurements.

Several methods can be used to study the adequacy
of the training set to the coverage of the Dm space of the
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XICS image Convolutional layer

Sub-sampling layer Convolutional layer

Sub-sampling layer

Fully connected layers

Te/Ti profile

Figure 5: Architecture of the NN used. The input layer at the leftmost side is followed by a convolutional layer
and a sub-sampling layer, which are followed again by a couple of convolutional and sub-sampling layers. Two
fully connected feed forward layers follow up to the output layer. Each blue plane represents a feature map, where
all the units share the same weights.

measured images. Here we will describe an approach
which relies on the k-nearest neighbours algorithm (k-
NN). This algorithm is used to find a number k of
data points in the training set that are the closest to
a given observed data point, according to a metric
measure. In this case the Euclidean distance has been
used. We expect that the distance of a measured
image from the samples in the training set to be larger
in the cases where the measurement is not properly
described by the training set samples compared to the
distance of the test set samples, on which the neural
network we know perform well, from the same training
samples. Distance based methods are often used in
the framework of outlier and novelty detection and
similar methods are presented for example in [40] and
[41]. An application in our study is shown in Figure
7, where we have compared two training sets obtained
with two different models. The difference in the models
is in the prior distribution of the plasma profiles: in
one case, labelled as W/O, the temperature profiles
were left unconstrained in the region of the Last Closed
Flux Surface (LCFS), being allowed to assume any value
between 0 keV and 10 keV; in the other case, labelled as
W., the profiles were constrained to assume low values in
the LCFS region (0.1 keV +- 0.5 keV) at ρeff = 0.99), a

feature that is typically expected in such plasma profiles.
Such a constraint enters the Minerva model as a so
called virtual observation: at the level of the Minerva
graph, this corresponds to a standard observed node
connected to the profiles which states that the value of
the profiles at the given position xp has been ”virtually
measured” to have value vp with error εp, as shown in
Figure 6. The only difference with the other observed
nodes in the graph is that it does not correspond to
an actual measurement. Its role is to constrain the
profile shape, and this is what observations in Bayesian
models do: they constrain the solution found for the
free parameters. In Figure 6, the dashed arrow and
box represent the connection to the rest of the model
of Figure 3. The computation node on the left of the
dashed one, represents the evaluation of the Te profile at
the ρeff = 1.0 position, which corresponds to the LCFS.
This node is finally connected to the virtual observation,
the blue circle, whose normal distribution is specified in
term of its mean and standard deviation. If we exclude
the graph represented in this figure from the rest of
the model, and we then calculate the covariance matrix
of the posterior distribution of the plasma profile, in
this case Te, given the virtual observation, we will find
a covariance matrix which can be used later on to
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sample profiles which will feature the desired constraint.
This has been done in order to obtain more realistic
plasma profiles, and the effect of this on the training
set is described in the next paragraph. Specifically,
the virtual observation was implemented as a normal
distribution with mean value of 0.1keV and standard
deviation of 0.05keV at ρeff = 0.99, for the ion and
electron temperature profiles.

The importance of sampling a realistic set of
plasma profiles, which correspond then to a realistic
set of synthetic measurements, is depicted in Figure 7.
The three plots on the top show a spectrum measured
along three different line of sights (blue line), and the 10
nearest neighbours (10-NN, grey lines) found among the
samples in a training set where the electron temperature
profiles were sampled without constraints (W/O) on
the value assumed on any of the flux surfaces. The
only constraint was a smoothness criteria induced by
the GP prior. From left to right, the line of sight of
the plots are traversing the following regions of the
machine: edge, halfway to the core and core. The
intensity on the y-axis is normalized to the brightest
pixel in the image, in this case a w spectral line along
one of the central line of sight. The three plots on the
bottom, instead, show the same measured image and
the 10-NN this time found among the samples in the
training set with constraints (W.). The effect of such
constraint on the sampled profiles is shown in Figure 8,
where 100 samples from each of the two training sets
are drawn. It is evident that when the constraint is
applied (bottom plot), the average electron temperature
through the machine is lower. This brings the training
samples closer to the measured data in two ways: (1)
the intensities measured along the edge line of sights
(see leftmost bottom plot in Figure 7) show a smaller
signal to noise ratio, (2) the ratio between different
emission lines is smaller, see middle and rightmost plots
in Figure 7. The distance of a measured data point
from the 100000 nearest neighbours in the training set
can be compared to the distance of 10 test set samples
from 100000 training set samples to get an estimation
of the proximity of the measured data with respect to
the training samples. These values are shown in Table
2 in the two cases of training set created with and
without constraints. The distance for the measured
data point drops is substantially reduced when the
constraint are applied to the electron temperature
profile prior distribution, getting closer to the value of
the test set sample. It is worth to note that, even with
the constraint, the sampled profiles are not necessarily
monotonically decreasing, as shown in Figure 8.

The improvement on the prediction capabilities
of the neural network when applied to the measured
image is remarkable and it is shown in Figure 9. The
blue line in the plot denotes the mean value of 800

Test set samples Measured data

W/O constraint 47.8 1186.1
W constraint 63.5 198.4

Table 2: The average distance from the measured
data point to the 100000 nearest neighbours in the
training set is compared to the average distance of 10
test set samples from the corresponding 100000 nearest
neighbours in the training set, in the cases where the
training set is created with (W) and without (W/O)
constraint on the Te profile prior distribution.

000 samples of ion temperature profiles drawn from
the posterior distribution, inferred within Minerva,
and the corresponding standard deviation. The
agreement between the neural network prediction and
the full Bayesian inference result is visibly better when
the constraint is applied to the plasma profile prior
distribution of the model.

3. Results

A neural network with architecture described in Section
2.3 and illustrated in Figure 5 has been evaluated on
data from plasma shots of the first operational campaign
at W7-X.

The prior distributions of the free parameters of the
model used for the creation of the training set were all
normal distribution functions with lower truncation at
0.0 keV. The Te profile prior distribution had also upper
truncation at 10 keV, whereas the other profiles had
none. The values of the parameters of the GP squared
exponential function defined in Equation 2.6 were set
to σf = 2.0, σx = 0.3, and σy = 10−3 σf for the Ti
profile and to σf = 5.0, σx = 0.3, and σy = 10−3 σf for
the Te. Moreover, the constraints discussed in Section
2.5 were applied to the temperature profiles but not
to the density profiles. The magnetic configuration
was kept fixed during the sampling procedure and
the NN was tested on data from shots with such
configuration. A comparison between the standard
Bayesian inference carried out within the Minerva
framework and the neural network inversion is shown
in Figure 10, for both ion and electron temperature
profiles. The different plots in the figure refer to
data from different shots and time points within a
shot. The profiles show a good agreement within
the uncertainties. Concerning the neural network
estimate, the predicted profiles have been obtained
from a committee of networks: a set of 10 neural
networks with same architecture, but different weight
initialization, has been trained on the same training
set. The error bars are calculated in a Bayesian fashion:
the training procedure is seen as an inference problem
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Te

GP
(σf , σx, σy)

...Te(ρ = 1)

N (µ = 0.1, σ = 0.05)

Figure 6: A sketch of the virtual observation constraint applied to the Te profile. The blue circle represents the
so called virtual observation, which states that the Te profile has been ”observed” to have value 0.1 keV with
standard deviation 0.05 keV, at the LCFS (ρ = 1).
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the values they assume towards the edge of the machine (three top plots), (2) the Te profiles are sampled with
(W.) constraints to low values toward the edge, as described in the text (three bottom plots). The constraints are
applied to the prior probability distributions. Each plot in the three columns represents the spectrum along a
edge, half-way to core, and core line of sight, from left to right respectively.
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Figure 8: The Te profile samples from the two training
sets. Top, the profiles are sampled without (W/O)
constraints. Bottom, the profiles are sampled with
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Figure 9: The standard Minerva Bayesian inference of
Ti profile is compared to the neural network inversion in
two training cases. The orange and grey lines represent
the output of the neural network trained on the training
sets where the Te profiles are sampled with (W) and
without (W/O) constraints, respectively.

on the network’s weights, giving as result a posterior
distribution of the network’s weights approximated
with a Gaussian distribution centred on the network’s
weight vector found with the training process and whose
standard deviation calculation depends on the Hessian
matrix of the loss function with respect to the weights.
The spread in the posterior produces then a spread
in the network’s prediction, and this is the source of
the network’s error bars. This procedure has been
applied to the 10 networks in the committee. The
committee prediction is then obtained by sampling a
random member network, sampling a set of weights
from the corresponding weight’s posterior and then
feeding the network with a sample of the input vector
drawn from the XICS noise model. This corresponds

to approximating the overall weight’s posterior with a
multi-Gaussian approximation, where each Gaussian
is obtained from the single Gaussian approximation
carried out for each member of the commitee. Moreover,
in this way, the error bars shown in Figure 10 includes
also uncertainties in the XICS measured data. The
calculation of the error bar is described in detail in [39].

The full Bayesian model prediction is obtained
as the average of 800 000 samples drawn from
the posterior distribution of the corresponding free
parameter, obtained with a MCMC sampler, and the
error bars are obtained as the standard deviation of the
samples.

It is important to note that the training set has
been generated sampling with the LCFS constraints
described in Section 2.5: as a consequence, the profiles
predicted by the networks show all small variance
toward ρ = 1. This is the reason why the uncertainties
in the ANN output in Figure 10 are systematically lower
for larger values of ρeff .

It is worth to notice that the speed-up introduced
by the neural network analysis of the data is substantial:
the evaluation of one single data point takes ∼ 10µs
on a single CPU. The inference with MCMC sampling
takes a few hours in similar conditions, thus the speed-
up is of 109 order of magnitudes.

4. Conclusions

We’ve shown a Bayesian model oriented approach
to neural network training for the inference of ion
and electron temperature profiles from data measured
with an X-ray imaging diagnostic at W7-X. The
model implemented within the Minerva framework
is used to generate the training set, sampling from
the prior distribution of the free parameters and from
the likelihood function of the simulated data. This
training procedure constitutes a different approach to
conventional neural network training: starting from
the full Bayesian model we are able to generate neural
network approximation of full Bayesian models. Indeed,
machine learning algorithms such as neural networks
are applied on problems where a model describing
the data is missing, thus leaving little or no room to
the interpretation and control of the learning features.
Instead, with the approach described here, we earn
some control over the infamous black box of neural
network learning: we know, for example, that the
trained network will only be as good as our physics
model, and we know beforehand the features of the
distribution of the data in the contained training set,
which is determined by the joint distribution of the
Bayesian model.

Since we can manipulate the prior probability
distribution functions, we can also knowingly choose the
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Figure 10: The results of the NN inversion compared to what obtained with standard Bayesian inference for
different plasma shots. The left and right columns show Te and Ti profiles respectively.

model that better describe the measurements we expect
to perform. This gives us the chance to take control on
the training of the network from the privileged point
of view of the physics parameters that, through the
forward model, describe the data we expect to measure.
This is exactly what allowed us to find a better training
set for more accurate neural network predictions.

The neural network has then been tested on
measurements from different plasma shots from the
first operational campaign at W7-X and compared with
the results of the standard Bayesian inference. The
first major advantage of this approach is the speed-up
of the analysis, which can be carried out in tens of
microseconds with NNs. The second advantage is that
the sampling procedure necessary for the creation of
the training set requires only abstract, not diagnostic-
specific, features of the implemented model and thus
is in principle automatically applicable to any other
diagnostics developed within the Minerva framework.
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