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Abstract

Artificial neural networks (NN) are computational tools that learn tasks from a large amount

of data without task-specific programming. It has been shown in [1] that NNs are able to find

connections between heat load pattern and plasma edge properties of the nuclear fusion exper-

iment Wendelstein 7-X. Continuing the previous work, the impact of the data pre-processing

is investigated systematically with respect to the NN performance on sparse experimental data.

With the considered pre-processings, training with simulated data only does not lead to su�cient

plasma parameter estimation. Also in contrast to NN training restricted to experimental data only,

NNs show a significantly improved performance on the same, exclusively experimental test set

when trained with simulated data supported by a very limited amount of experimental data. This is

of great practical relevance because simulation and experiment data sets show discrepancies. The

NNs are able to focus on pattern occurring in both, the simulated data as well as the experimental

data. The results presented herein support real time plasma control which is an important step en

route towards a nuclear fusion power plant.
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1. Introduction

In machine learning, the size of the data set on which an artificial neural network (NN) is trained

is crucial for a good performance. However, there are many cases where the cardinality of real

(measured) data is limited. This dilemma may be resolved by complementing the available

data with simulations. The underlying model for a simulation typically neglects some aspects of

reality. Often it is necessary to simplify the simulation model to have numerically stable equations

describing the considered process that can be solved in a reasonable amount of time. Or some

underlying principles are just not fully understood so they can not be modeled. Thus, simulation

and experiment often show systematic differences in certain properties. On the other hand, it can

be assumed that, even with underlying simplifications, some properties with a su�ciently small

discrepancy can be found.

Based on the example of the nuclear fusion research reactor Wendelstein 7-X (W7-X) [2], this

work aims to find suitable NN architectures as well as input parameterizations. The focus lies on

retrieving NNs that, trained on simulated data, eventually supported with a very limited number

of experimental data, generalize onto experimental data. More specific, this is demonstrated

by training a NN on simulated and experimental observations of W7-X heat load patterns to

reconstruct the plasma edge property ι-. Practical application of this NN will be the support of a

real-time control system, ensuring the safety of all W7-X plasma facing components.

In the next section we briefly explain the essentials regarding W7-X, heat load pattern retrieval

from infra-red cameras and a proper formulation of ι-, followed by a definition of the data set

composition. The two used NN architectures are described and the parametrizations introduced

before the NN performance is presented and analyzed.
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2. Methods

2.1. Physical Background

Thermal energies required for nuclear fusion imply the reactants to be in the plasma state. W7-X

follows a new approach to confine the plasma with 70 modular, superconducting, electromagnetic

coils. All coils are based on five non planar and two planar, unique coils (cf. red and blue coils in

Figure 1b respectively) that define one submodule. Two submodules assembled in a point mirrored

way (cf. Figure 1b) make up one of five symmetric modules shown in Figure 1a. The non planar

coils give rise to a poloidal magnetic field component. Together with the toroidal magnetic field,

generated by the non planar as well as the planar coils “A” and “B”, it gives rise to a twist of the

magnetic field lines which is essential for stable plasma confinement. This twist is denoted ι- and

can be easily modified by changing the electric current in the planar coils.

The ι- at the magnetic edge strongly influences the heat load pattern resulting from the contact of

the edge plasma with the plasma facing components, i. e., the components limiting the plasma

spatially. In a special experiment series conducted in March 2016, the normalized current of the

planar coil "B", IB, can be used as a substitute for ι- (cf. [1, Section 2.3]). IB is the target for the

NNs here. Post processing the infra-red videos of the so called "DIAS" diagnostic, we retrieve the

heat load on the triangulated CAD (computer-aided design) representation of the primary plasma

facing component, the so called ’limiter’ (cf. Figures 1a and 1c).

This heat load pattern is considered the NN input in a further processed form. The reconstruction

of ι- and further plasma properties in real-time will support the protection of the plasma facing

components of W7-X.

For details regarding the underlying physics and data origin (experimental as well as synthetic)

we refer to [1]. Figure 2 shows an exemplary heat load pattern on the limiter from W7-X module 5

for vacuum field line diffusion simulation (Figure 2a) as well as infrared data (Figure 2b) at the

same magnetic configuration. The right half of the limiter is shadowed from the infrared camera

view. Some elementary characteristics are similar, e. g. the maximum heat load is located at the

third limiter tile. However, in detail, the structure of the infrared observation can not be covered.
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FLIR

DIAS

module 1

module 2

module 3

module 4

module 5

(a) Top-down CAD view of the W7-X inner vessel, show-

ing sight lines of the IR camera system for the limiter

setup with cutaways in modules three and five as

used in the first experimental campain. On this scale

and view, the limiters are small (green). One seg-

ment of the total 50 modular (blue) and 20 planar

coils (black) is overlaid in modules 1 and 2.

A B B A
1 2 235543 4 1

Control Coil

(b) Coils contained in one module with modular coils

1−5 (red) and planar coilsA,B (blue). One module

is point symmetrical towards its center. Adapted

after [3]

(c) Side view of the W7-X limiter in module 5

Figure 1: Overview of essential parts of W7-X regarding the first experimental campain
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(a) Heat load, represented

by strike point density

from a field line diffu-

sion simulation

(b) Heat load, calculated

fromDIAS camera data

Figure 2: Front views of heat load representations

on limiter in module 5 at discharge

“20160309.007”. The right side of the lim-

iter is rejected since it is largely shadowed

from the camera view.
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2.2. Data Sets

The investigated data sets result from experimental and simulated ι- scans of W7-X (cf. [1, Sec-

tion 2.3]). The simulation set Swas created by field line diffusion in vacuummagnetic configuration

with |S| = 3993 (cf. [1, Section 2.4.2]).

The experiment set of processed infrared data I depends on 16 available experiments of the

desired ι- scan with six dissimilar IB (cf. [1, Section 2.4.1]). Each infrared video corresponding

to one experiment contributes in average 20 frames to the same value of IB, leading to a total

cardinality of |I| = 319. A mixed set is defined as M = S ∪ I. To determine NN quality, the set is

divided in disjoint subsets, namely training set, validation set and test set. Any test set contains 6

values of IB from I and each of corresponding video frames of the experiment.

2.3. NN Architectures

Two promising NN architectures are compared that only need a feasible amount of free parameters

to avoid overfitting, since the data set size is limited. The first one is mainly based on convolutional

layers [4] as seen in Figure 3. Three consecutive convolutional layers are followed by two fully

connected layers. The second NN architecture starts with an inception module [5] followed by

pooling [6], a convolutional layer and two fully connected layers (as shown in Figure 4).

Weights are initialized randomly as recommended in [7] and biases are initialized as zero. The

NNs weights and biases are iteratively improved by the adam optimizer [8] during the training

process. All activation functions except for the last layer are rectified linear units (ReLU). Because

the NNs are designed to solve a regression problem, the activation function of the last layer is the

identity. The implementation is done in tensorflow [9].

2.4. Parametrization

The heat load is given on an unstructured triangular grid that represents the CAD structure of

one limiter. This data is transformed a�ne from cartesian coordinates to an orthogonal ξ, η, ζ-

coordinate system, where ζ points in the direction of the mean of the normals of all triangles

Page 6 of 20



input

5× 5

smaller if dim < 5

3× 3

smaller if dim < 3

3× 3

smaller if dim < 3 fully

connected

fully

connected

output

Figure 3: Structure of NN with three convolutional layers: The grey elements represent convolutional layer

with associated kernel size.

input

1× 1

1× 1

pool

5× 5

3× 3

1× 1

1× 1

pool 1× 1

fully

connected

fully

connected

output

inception

Figure 4: Structure of NN with inception module: The grey elements represent convolutional layer with

associated kernel size. The blue elements are max-pooling layer and the white elements are fully

connected layer.
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Table 1: Dimensions of the used partitionings and total number of elements

nξ 2 4 9 9 15 18 27 36 72 144

nη 1 1 1 5 6 8 10 12 15 30

nξ · nη 2 4 9 45 90 144 270 432 1080 4320

forming the limiter. Only triangles within a tight bounding box around the limiter are considered

for the parametrization.

2.4.1. Partitioning

The ξ, η- space is then divided by various 2D grids with sizes described in Table 1 and shown for

simulations and experiments in Figure 5a and 5b respectively. There are no divisions in ζ direction.

The first three columns in Table 1 show one dimensional partitionings. The inception NN is applied

for inputs of dimensionality of at least 5× 5 only. However, for the one-dimensional inputs the

convolutional kernel dimensionality is reduced from that presented in Figure 3 such that it does

not exceed the input dimensionality.

2.4.2. Extracted Characteristics

For each element p of the partitionings, characteristic values can be extracted. One is the spatial

mean

~µp(ξ, η, ζ) =
1∑np

i=1Aiqi

np∑
i=1

Aiqi~κip, (1)

with number of triangles per partitioning np, triangle areas Ai, triangle heat load qi and triangle

centroids ~κip = (ξi, ηi, ζi)
T
p . Another statistical characteristic is the spatial standard deviation ~σp

calculated complementary to ~µp. The direction vector ~δp(ξ, η, ζ), calculated as the eigenvector corre-

sponding to the largest eigenvalue λmax to the covariance matrix of Ξp =
(
~κ1p, · · · , ~κip, · · · , ~κnpp

)T
weighted by Aiqi, can be characteristic as well. The weighted covariance matrix is defined as

Cov(Ξp) =

(∑np

i=1Aiqi (Ξijp − µjp) (Ξikp − µkp)(∑np

i=1Aiqi
)2

)
. (2)
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This parameter is inspired by divertor heat load patterns which show a more versatile shape [10].

The last examined parameter is the relative heat load

ρp =
q̂p∑m
p′=1 q̂p′

(3)

with

q̂p =

∑np

i=1Aipqip∑np

i=1Aip
(4)

defined as the absolute heat load.

Three combinations of those parameters are studies as NN input: (µ, σ), (µ, δ) and ρ exclusively.

In Figure 5 ρ is shown for simulation and experiment of the same physical condition. Note that the

input dimension of the NNs is batch size× nξ × nη × input channels, with input channels beeing

6 for the cases (µ, σ) as well as for (µ, δ) but 1 for ρ.

A short notation for the NN settings is defined as

f(training set, validation set, test set)parametrization
partition, architecture , (5)

with an arbitrary function f applied to the NN output. For example rmse(S90,S10, I)ρ9×5,inception

refers to the root mean square error of an inception NN trained as well as validated on samples

from set S and tested with experimentally observed infrared data I, requiering a 9× 5 input of

relative intensities ρ. S90 ⊂ S and S10 ⊂ S with S90 ∩ S10 = ∅ refer to two disjunct sets for training

and validation consisting of 90 % and 10 % of the samples within S respectively. Given a single

term in the brackets implies that training, validation and test data sets are disjunct and subset of

the same super set. If one describing parameter is omitted, the entirety of all possible parameters

of that kind is referred to. So (S)ρ9x5 describes all NNs parametrized by ρ and partitioned into 9

times 5 parts with both of the two considered architectures. They are trained, validated and tested

on subsets of S. The set I{ = I \M with |I{| = 190 is defined as a NN test set.
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9× 5 18× 8 72× 15 144× 30

(a) Simulation

9× 5 18× 8 72× 15 144× 30

(b) Experiment

Figure 5: Comparision of relative heat load for four exemplary partitions between simulation and experiment.

The color scale ranges from 0 to the maximal value of each plot respectively.
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3. Results

The NN performance for all tested settings is shown in Figure 6. These two graphics depict the

rmse dependence on the partitionings defined in section 2.4.1. The NN performances measured in

terms of the rmse are divided into 10 groups representing the partitioning. Within each group the

parameter and NN architecture choices are shown. To avoid false conclusions by statistical outliers,

an ensemble of 27 NNs trained with the same settings has been calculated. Variations are the

randomness of the weight initialization and the mini batch sampling as well as different learning

rates and batch sizes. Markers and bars indicate the mean rmse (rmse) and the associated 95 %

confidence interval for the mean respectively. The confidence interval has been calculated by

bootstrapping [11]. The true possible values of IB range between −0.05 and 0.18. To emphasize

the NN reconstruction quality, 10 % of the total IB range is marked by the dotted, green line. NNs

with rmse below 10 % IB range are showing a reasonable ability in IB targeting. The figures 7, 8,

9, and 11 depict subsets of the outcomes shown in Figure 6 to clarify the observations.

3.1. Simulation trained NNs

The results of the NNs trained on S are shown in Figure 6a. It can be seen, that (S)ρ performs

well with both NN architectures for partitionings up to 36 × 12. The rmse is minimal at the

partitioning 9× 5 and increases with finer as well as coarser resolution. The NNs (S)µ&σ and the

(S)µ&δ perform especially good for the coarse partitionings between 2 × 1 and 9 × 5. For finer

partitionings the performance decreases gradually. This can be understood contemplating the

decreasing information content per section with shrinking section size.

On the basis of Figure 6a we investigate the performance of NNs characterized by (S) vs (S90,S10, I).

A good performance of the NN (S90,S10, I) would be advantageous since it would indicate appli-

cability to new, never conducted experiments. Although it would be preferable, the evaluating

indicates that this is not the case.

We observe not only that rmse(S)� rmse(S,S, I), but also that rmse(S,S, I) significantly exceeds

the 10 % IB range. The NNs (S90,S10, I) are specialized onto patterns of S. Those patterns are not

suitable to determine IB from experimental data. The fundamentally different magnitude of the
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(a) Logarithmic representation of rmse(S) and rmse(S90,S10, I)
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(b) Logarithmic representation of rmse(M90,M10, I{) and rmse(I)

Figure 6: Average rmse with 90% confidence level for various parametrizations, limiter partitionings and NN

architectures. In case of smaller rmse than 10% of the IB range a sufficient reconstruction of IB has

been achieved.
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width of the rmse confidence intervals CI(S, S, I) as compared to CI(S) points towards the same

reason.

2×
1
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1
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× 8

27
× 1

0

36
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72
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30

Resolution
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10−1

rm
se

rmse(M90,M10, I{)Convρ

rmse(S)Convρ

10% of IB range

Figure 7: The development of rmse(S)Convρ and rmse(M90,M10, I{)Convρ are compared for the increasingly

refined partitionings. Especially for coarse and extremly fine partitionings the behavior is similiar.

Both parametrizations including µ show a decreasing performance with growing resolution. Only

a marginal difference between rmse(S)µ&δ and rmse(S)µ&σ can be observed. The rmse (S) range

seems independent of the architecture.

3.2. NN trained with simulation and experiment

Since S based training did not lead to su�cient NN performance for application to I, some samples

from I are provided during training and validation, i. e., M and I{ as defined in Section 2.2 are

used. With this procedure, we intend to force the NNs to consider patterns present in both, S

and I during training. The performance of the NNs (M90,M10, I{) is compared to NNs trained,

validated and tested with the small amount of available experimental data only, i. e., (I37, I4, I{).

Note, that the performance is tested with the same set I{. Figure 6b depicts this comparison. The
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Figure 8: The development of rmse(M90,M10, I{)Convρ , rmse(M90,M10, I{)Convµ&σ and rmse(M90,M10, I{)Convµ&δ

are compared for the increasingly refined partitionings. Over all partitionings µ & σ and µ & δ

behave similiar while ρ performces clearly better for fin partitionings.
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Figure 9: The development of rmse(M90,M10, I{)Convρ and rmse(I)Convρ are compared for the increasingly

refined partitionings. Especially for partitionings between 9× 5 and 27× 10 the mixed training leads

to a clearly better NN.
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Figure 10: For the median of rmse(M90,M10, I{)
18×8,Conv
ρ the fitting performance on the validation set (red

circles) and test set I{ (blue triangles) is shown. On the x-axis are the target values and on the

y-axis are the NN reconstructions. An ideal result would be the identity, shown by the dashed line.

upper end of the occurring rmse range is reduced by two orders of magnitude in this Figure as

compared to 6a. As in the case of NNs trained with S, the parametrizations by ρ yield the best

rmse for partitionings between 9× 5 and 36× 12 while the µ based parametrizations are best for

one dimensional partitionings decreasing in performance with growing resolution as visualized in

Figure 8.

For two dimensional partitionings, we observe in Figure 9 rmse(M90,M10, I{) < rmse(I), as

intended by training on M. In the case of coarse partitioning, the opposite behavior is found, i. e.,

training with M has no advantages above direct training with I.

Themost impressive results were found for resolutions between 9×5 and 36×12, for (M90,M10, I{)
ρ
conv.

In order to display the good reconstruction quality, we choose a representative rmse, namely

median rmse, of the NNs (M90,M10, I{)18×8,Conv
ρ , as seen in Figure 10. The rmse is 0.008 which is

3.5 % of the IB range, so the median rmse is clearly below the 10 % IB range threshold. Changing

the NN architecture to an inception model seems to slightly improve the performance for finer

partitioning as seen in Figure 11.
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Figure 11: The performance between the convolutional NN and the inception NN is compared by examine

the rmse(M90,M10, I{)
15×6,Conv
ρ with rmse(M90,M10, I{)

15×6,inception
ρ . The inception NN performs

better for finer partitionings.
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The results outperform the NN in [1], where the best rmse is 0.029.

4. Conclusion and Future Work

It was shown here that it is possible to reconstruct a relevant property of the W7-X magnetic edge

from limiter heat load patterns. The main challenge was to deal with sparse experimental data

given. Good performance for NNs trained with synthetic data created by vacuum field line diffusion

simulation were found. A naive approach to apply NNs trained and validated with synthetic data

to experimental data showed good performance only in a minority of cases. Mostly the patterns

chosen by the NN in the training process were not present in the experimental observations.

With this found, it was tried to train and validate NNs on a mixture of experimental and synthetic

data. This approach resulted in convincing NN performance for certain NN input processing.

Partitioning the limiter with resolutions between 9×5 and 36×12 and defining the NN input as the

heat load in each part divided by the maximum heat load of all parts results in better performance

compared to NNs trained, validated and tested with experimental data only. The low number

of experimental results probably leads to overfitting in these nets but the added simulation data

diminished these effects. This means, that we created NNs that extract relevant patterns from

experimental as well as from synthetic data sets to reconstruct the magnetic edge parameter. With

this systematic approach NNs were found to outperform the results found in [1].

The updated W7-X geometry with installed divertors will be the next object of interest. It is

sensible to start the investigation with a parametrization based on a two dimensional partitioning

of the heat load. Favoring one of the two examined NN architectures a priori and excluding

the other is not possible because neither consitently outperforms the other. The reached results

are satisfactory, however it remains future work to investigate other methods such as generative

adversarial nets [12] to enhance the reconstruction performance when dealing with simulated

and experimental data.
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