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We make use of a Bayesian description of the neural network (NN) training for the calculation of the uncer-
tainties in the NN prediction. This allows to have a quantitative measure for trusting the NN outcome and
comparing it with other methods. The NN has been trained with the purpose of inferring ion and electron
temperature profile from measurements of a X-ray imaging diagnostic at W7-X. The NN has been trained in
such a way that it constitutes an approximation of a full Bayesian model of the diagnostic, implemented within
the Minerva framework. The NN has been evaluated on measured data and the corresponding uncertainties
have been compared to those obtained with the full model Bayesian inference.

I. INTRODUCTION

In nuclear fusion research, neural networks (NNs) have
been used for tasks such as prediction of disruption
events from plasma parameters', and for diagnostic data
analysis?. A special effort is often put in the develop-
ment of real time systems®. In most of the applications,
the output of the NN models are single 'best guess’ pre-
dictions, obtained with values of the adaptable parame-
ters found minimizing a given cost function. We believe
that, in order to have trust-worthy outcomes, uncertainty
should be taken into account and delivered as part of
the final predictions. In this paper we will describe and
make use of a Bayesian framework for the treatment of
uncertainties, where the neural network model is seen as
a Bayesian model and the training procedure is seen as
an inference problem*®. Applications of such framework
are scarcely encountered, although it posits a principled
picture of neural network modelling. Its implementation
relies on the calculation of the second derivative of the
neural network’s cost function with respect to the net-
work weights, i.e. the Hessian matrix. This is an opera-
tion that scales with the square of the number of weights,
i.e. as O(W?), where W is the number of weights. It is
therefore a computational expensive calculation. How-
ever, the Hessian matrix needs to be calculated only once
per training, as it is fixed at evaluation time, when the
network is evaluated on the measurements. In section 11
we will illustrate the salient points of the Bayesian NN
training from a theoretical point of view, and we will get
to three different procedures for the calculation of the
uncertainties: we will get to the first one without con-
sidering noise in the NN input (WO.), the second one
accounting for the noise (W.), and the third one using a
non linear multi-Gaussian approximations. In section IIT
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we will describe the specific application of the method
to X-ray imaging crystal spectrometer (XICS) diagnos-
tic data at W7-X, where the NN has been trained for the
inference of electron and ion temperature profiles from
XICS measurements. In section IV we will compare the
three different procedures with each other, and with the
full model Bayesian inference; in section V we will com-
ment on the results.

1l. BAYESIAN NEURAL NETWORKS

We shall describe now the salient points of the
Bayesian perspective on NN training which will allow us
to calculate uncertainties in the prediction. The nota-
tion used here is mostly taken from®. The neural net-
work is conceived here as a function f, which maps a
generally multidimensional input vector x to a generally
multidimensional output vector y. The function f is also
parametrized with a set of free parameters or weights w,
whose values are adapted or learned during the training
procedure, so that it can be written that y = f(x, w). In
the specific case of this study, the input vector x would
be an XICS measurement, and y would be either a elec-
tron or ion temperature profile, T, or T; respectively. In
the analytical treatment that follows, we shall assume
a one dimensional output y for the sake of clearer no-
tation. The generalization to multi-dimension output is
straightforward. According to the traditional view, the
NN training is the procedure employed to find a set of
weight values wyp that minimizes a given cost function
S(w). In regression problems, the cost function is often
chosen to be the sum-of-square error between the NN’s
output y and the target training data t:

N
Liw) =Y (y" —1")* +v(w) (1)

where N is the number of training samples and v(w)
is a regularizing term which constrains the weight



values to small values. The NN function found in
this way is smooth in w with improved generalization
performances®. The set of weight values found is then
used to make predictions at evaluation time. Using this
approach, the outcome of the NN function is a single
value estimate, given by f(x, wyp).

In the Bayesian framework of neural network training,
the NN model is conceived as a Bayesian model, where
the weights w are the free parameters, and the target
data of the training t,, are the observed data. According
to Bayesian inference rules, a prior distribution P(w) is
assigned to the network weights before training, and a
likelihood function P(D|w) is assigned to the observed
data, where D = (¢;...tx) denotes the target data from
the training set. The training procedure is then an infer-
ence process on the network’s weights. We can then write
Bayes formula to express the posterior distribution of the
weights P(w|D) in terms of the prior and the likelihood
function:

P(D|w)P(w)
where P(D) is a normalization factor, independent of the
weights, also known as the evidence. We have omitted the
conditioning on the training input data X = (x1...Xxy) in
all the terms, for the sake of simpler notation. The full
outcome of the training, from the Bayesian point of view,
is then not only a single set of values of the network’s
weights, but the entire posterior distribution P(w|D).
At evaluation time, the spread of the distribution will
then correspond to a distribution of output, the predictive
distribution. We shall see how, under certain assumption
and approximations, we can get to an expression for the
predictive error bars.

The first step in the application of such method, is the
choice of the prior distribution P(w) and the likelihood
function P(D|w). We shall assume for both of them
Normal distributions. In the general case of a multi-layer
neural network, we shall choose a prior of the form:

P(w) o exp (—; Zaknwn%> (3)
k

where a, = 1/0} and o} denotes the variance of the dis-
tribution for the weights at the neural network’s layer
k. The choice of different o values for different layers al-
lows avoiding inconsistency with the scaling properties of
network mappings®. Concerning the likelihood function
P(D|w), we shall use an expression of the form:

[3 N
P(Diw) x exp (—2 S - t">2> (@)

n=1

where B = 1/0% and 0%, denotes the variance of the
noise in the training data. We can now use Bayes for-
mula to find an expression for the posterior distribution

of the weights. If we are interested in a single value solu-
tion, we can look for the weight values that maximize the
posterior. This is equivalent to minimizing the negative
logarithm of Equation 2, In(P(w|D)) = S(w), which,
substituting the expressions in Equation 3 and Equation
4, can be written as:

,B N L,Ny
Sw) =3 Y s ()
n=1 k,i=1

where we have omitted terms that do no depend on w.
This expression resembles closely the one in Equation
1. Indeed, this is how the Bayesian point of view and
the traditional one comes together. The first term on
the right-hand side of Equation 1 comes into Equation
5 as the choice of the Gaussian noise model on the tar-
get training data, while the second one, the regularizing
term, appears here as a consequence of the Gaussian prior
on the networks weights.

An analytical expression for the full posterior P(w|D)
can be found taking a Gaussian approximation of it
around wj;p?, where wyp is set of weight values found
minimizing Equation 5. This approximation is also
known as the Laplace approxzimation, and it leads to:

P(w|D) x exp <—S(WMP) - ;AWTAAW) (6)

where Aw = w —wjp and A = VVSyp is the Hessian
matrix of the error function in Equation 5, calculated
with respect to the weights and evaluated at wyp. This
allows us to calculate the distribution of the network out-
puts. It is obtained by marginalization over the network’s
weights:

P(t|x,D) = /P(t|x,w)P(W|D) dw (7)

The distribution P(t|x, w) is given by the noise model on
the target data, as in Equation 4. After some manipula-
tion, we get to the final expression:

P(t]x. D) = U yMP)2) (8)

1
(2ro2)1/2 P (‘ 202

where:

1 ~
0 = 5T g'A g (9)

where g = Vw¥y|wyp. The distribution of the network’s
output is then given by a Gaussian distribution, centred
at the network prediction obtained with weights wyp
and with standard deviation given by Equation 9. The
contribution to the predictive error has two components:



one arising from the noise on the target data, controlled
by 5, and one arising from the posterior width, controlled
by A. Equation 9 corresponds to the first procedure to
calculate uncertainties, and we will refer to it later on as
WO.

So far we have neglected uncertainties in the neural
network input. This is of course not ideal when the in-
put is a measured quantity with noise, as it is in our
application. It can be shown® that the new expression
for the predictive error is:

o? =02 402h"h (10)

where h = Vyxylx, and x, is the input vector. Equa-
tion 10 corresponds to the second procedure to calcu-
late uncertainties, and we will refer to it later on as W.
Three main assumptions that have been done to get to
Equation 10: the posterior distribution of the weights has
been approximated with a Gaussian distribution around
wymp, the network function y(x;w) has been approxi-
mated by its linear expansion around wyp and z, in
the calculation of o] and oy, respecitevely. Moreover,
the Laplace approximation of the weight’s posterior is
only valid around wyp. However, several minima of the
cost function are likely to exist and they can be found
training the network with different initial values of the
weights. The single-Gaussian approximation so far de-
scribed does not take them into account. In order to ac-
count for them, it is possible to approximate the posterior
of the weights by a sum of Gaussians, each one centred
on each of the minima®. This can be accomplished by
training a committee of networks, where each member is
trained with different initialization values, and carrying
out the Laplace approximation of the posterior for each
of them. The overall posterior is then given by:

P(w|D) = ZP(w|mi,D)P(mi\D) (11)

where P(m;|D) is the a priori distribution of the minima
m;, and P(w|m;, D) is the posterior distribution of the
weights corresponding to the local minima m;, which can
be approximated with the Laplace approximation. The
predictive distribution can still be written as in Equa-
tion 7, where now, the second term on the right-hand
side is obtained from Equation 11. Assuming P(m;|D)
to be uniform, we can obtain the uncertainties for a multi-
Gaussian approximation of the posterior distribution in
the following way: (i) we train a number of NNs with
different weight initialization, corresponding to the NN
functions f;, (ii) for each of them, we calculate the pos-
terior of the weights under the Laplace approximation,
(iii) we obtain samples from the predictive distribution
by randomly choosing one member of the committee, say
member 4, then, sampling a set of weight values, wip,
and an input vector x*, from the weight posterior and
the input noise model respectively, and calculating the
corresponding NN output: y; = fi(wip,x*). The whole

procedure is repeated a number of times equal to the de-
sired number of samples. The advantage of this sampling
procedure to the estimation of the uncertainties is that
it doesn’t make use of the assumption of linearity of the
NN function around wyp and the input vector x. It is
therefore more accurate. However, it requires large com-
putational time, and it is therefore not suitable in those
applications where the execution time is a concern. This
is our third procedure for calculating uncertainties, and
we will refer to it as multi-Gaussian.

I1l.  APPLICATION TO XICS DIAGNOSTIC DATA AT
W7-X

A. The XICS diagnostic at W7-X

The XICS diagnostic at W7-X is equipped with a
spherical bent crystal to image X-ray emission of Ar im-
purities. The emission is then collected on a CCD de-
tector. The diagnostic layout and initial measurements
during the first operational phase at W7-X have been de-
scribed in” !'. The collected images have spatial resolu-
tion along vertical dimension, corresponding to different
lines of sight, and wavelength resolution along the hori-
zontal one. The wavelength range is 3.94 - 4.0 A for He-
like Ar spectra. From the measured data is then possible
to reconstruct ion and electron temperature profiles. The
ion temperature affects the Doppler broadening of the
spectral lines, whereas the electron temperature affects
the relative intensities. Given the electron density pro-
file n., the impurity density profiles can be obtained®'2.
A forward model of the diagnostic” has been developed
within the Minerva Bayesian modeling framework'?, and
it is used for the inference of the plasma profiles of inter-
est.

B. Neural networks as approximate Bayesian models

In the XICS Bayesian model, a prior distribution is
assigned to the free paramters, in this case tempera-
ture, electron and impurity density profiles, and likeli-
hood function is assigned to the measured data. A neu-
ral network has been trained with the goal to approx-
imate the full model Bayesian inference. The training
scheme is described in detail in'4. The training set is ob-
tained sampling from the joint distribution of the model
P(T,I) = P(I|T)P(T): a set of free parameters is sam-
pled from the prior distribution P(T"), and subsequently
synthetic data are sampled from the likelihood function
P(I|T). The distribution P(I|T) represents the noise
model on the XICS measurements, which is given by
photon statistics in this case, and it is centred on the
forward model prediction. When sampling from the pri-
ors, all n., T,, T;, and impurity density profiles were
free to vary, but only the T; and T, profiles were used
as target of the network’s training. The set of sampled



synthetic images constitutes the network’s input during
training. Note that such a training set is made exclu-
sively of data synthesized with the Bayesian model. The
profiles are expressed with respect to the effective radius,

defined as pog = /1 /YLcrs where 1 is the magnetic flux
and Yrops is the flux at the last closed flux surface.

IV. RESULTS

Two convolutional neural network!415 (CNN), each
one with two convolutional layers C1 and C2, followed
by one hidden fully connected layer M1 and the output
layer M2, have been trained on the inference of T; and T
profiles respectively. The training has been carried out
in the Bayesian scheme described in section II. The er-
ror bars calculated with the Equations 9, 10 and 11 have
been compared to each other. The values of § = 10 and
ar = (ac1=68.00, ac2=58.33, an1=576.67, an2=5.83)
were used. The Hessian matrix A has been calculated in
the diagonal approximation. The results of the error bar
calculation are shown in Figure 1 for 7T; and 7. in one
illustrative example, where the input images were aver-
aged in a 500 ms range. The light and dark blue lines
denotes the NN predicted profiles, together with the un-
certainties calculated with (W.) and without (WO.) ac-
counting for the noise on the input, respectively. The
orange line shows the result of the inference on the full
Bayesian model. Having an estimate of the NN uncer-
tainty allows to quantitatively carry out the comparison
with the full model inference, and possibly validates the
two methods with each other. Since both methods are
based on the same Bayesian model, further investigation
on one or the other can be carried out on the basis of
a systematic mismatch between the two. Without error
bars, any comparison would just be qualitatively. The
plot on the right of Figure 1 shows that neglecting the
noisy input source can lead to a substantial underestima-
tion of the uncertainties: indeed, the contribution from
the input noise accounts for up to 50% of the total error
bar magnitude. However, there are cases where such con-
tribution is not so substantial, as in the left plot, where,
nevertheless, the noise on the input is in the range of 10%
to 30% of the total error magnitude. Moreover, the NN
uncertainties behave similarly to the full model Bayesian
uncertainties, growing larger towards the core. This can
be imputed to the lower emissivity in the plasma core
region. No systematic deviation has been encountered
between the NN and full model uncertainty calculation.
In Figure 2 we show the uncertainties obtained sampling
from the posterior of the network’s weights, the input
noise model and a committee of 10 NNs. In total, one
million samples were taken, and one thousand are shown
in the figure (green lines). In Figure 3 we compare the
uncertainties represented by the spread of the samples to
those obtained with the single-Gaussian approximation.
The green line is the mean of the samples shown in Fig-
ure 2, and the corresponding error bars are calculated as

the standard deviation of the samples. We find that, al-
though the single-Gaussian approximation makes use of
stronger assumptions related to the linearity of the NN
function and it doesn’t account for multiple minima, it is
still a fairly good approximation. The two methods bring
results that differ at most by 10%, both in the calculation
of the mean and the standard deviation.

V. CONCLUSIONS

We have shown that the Bayesian framework for neu-
ral network training offers a principled way to calculate
the uncertainties of the NN prediction, accounting also
for noise present on the NN input. The numerical calcu-
lation of the error bars makes use of the Laplace approx-
imation of the weight’s posterior distribution, and of the
assumption of linearity of the NN function around the in-
put vector and the weight vector found by minimization
of the cost function. It is also possible to account for the
full non-linearity by sampling from the weight and input
space, and by calculating the output with the sampled
quantities. Moreover, a committee of neural networks
can be trained with different weight initializations, so
that each member will find a different local minima of
the cost function. It is then possible to collect samples
from the committee member and use them to estimate
uncertainties in a multi-Gaussians approximation of the
weight’s posterior. We have applied these techniques to
the problem of inferring ion and electron temperature
profiles from X-Ray imaging diagnostic data. Having un-
certainties in the NN output allows us to quantitatively
compare and validate the network’s predictions against
the full model Bayesian inference. Finally, we have com-
pared the single- and multi- Gaussian approximations,
finding that, the first one, when applied to the problem
under investigation, constitutes a good approximation
within 10% deviation. As it requires less computation
time to be carried out, it can therefore be implemented
as part of faster NN applications.
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