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A hybrid deformation modeling method is proposed to model the deformation physics of manipulators used in
DEMO. The deformation of individual joint assembly is modeled by neural network and the hybrid deformation
model is constructed by integrating joint assembly’s deformation with the concurrent kinematic pattern of
manipulator. The Markov Chain Monte Carlo method is employed to identify weight parameters of artificial neural
network. A complex joint assembly of a boom used for JET maintenance is taken as an example of applying the
proposed method, which is treated as a simple one degree of freedom mechanism. The finite element method is used
to generate training data for hybrid model, as well as a benchmark for the verification of the trained model. The
comparison results presented in the paper indicate that the hybrid modeling method is competent to model the
deformation physics of mechanisms assembly, which is kinematic dependent, under the sole force payload.

Keywords: manipulator, deep neural network, modeling, Bayesian inference, DEMO

1. Introduction
For the remote maintenance of DEMO, it is envisaged

that large-scale heavy-duty manipulators will be widely
employed. The payload manipulators are extreme, for
instance, the multi blanket module segment (MMS)
weights up to 80 tons, the divertor also weights up to 10
tons, whereas the positioning tolerance of maneuvering
process of these heavy components is considerably tight,
limited to 20 millimeters, compared with the large scale
of 10 meters height of manipulators and the handled
components [1]. From the experience of using heavy duty
manipulators and robots, as well as the preliminary finite
element method (FEM) simulation of conceptual DEMO
manipulators, it suggests that heavy payload deforms the
manipulators, and the deformation is significant in serial
elongated kinematics [11]. The large deformation on one
hand deviates the actual trajectories of manipulators far
away from the desired positions, which may incur, in a
limited space, collisions of heavy components with the
surroundings, which would be catastrophic to both the
surroundings and manipulators. On the other hand, the
significant deformation also exert extra resistance force to
the joints due to the deformed geometric profile and in
worst case may degrade completely the DOF (degree of
freedom) of joints, which damages the joint’s drive
system due to significant overload.

In order to handle the consequences of deformation, it
is necessary to develop computation efficient deformation
modeling methods for heavy duty manipulators. The
model can predict deformation accurately in a less sensory
environment, and can be incorporated into real time
control system for deformation compensation. From
literatures, the stiffness model of a manipulator is often
developed for the deformation computation. Two main
methods, namely the matrix structural analysis (MSA)
and finite element analysis (FEA), are widely employed
to derive a stiffness model of the objective manipulator,
with their pros and cons [2-4]. In MSA, the structure of a
mechanism is simplified as elementary beams, which are

connected by nodes. The computation efficiency of MSA
is high, however, with the compromise of accuracy, thus
it is often used to evaluate qualitatively the stiffness
performance of a structure or in an iterative optimization
algorithm [5-7]. The FEA based method can yield
accurate stress, strain and deformation results, given exact
payload. However its high computation cost makes it
prohibitive to apply directly for the manipulators in
DEMO scenario, since the control system, as well as the
iterative algorithms, require real time performance.
Additionally, both methods depend on the idealized CAD
model of target, and assume same material is used for all
the components. By contrast in practice the manipulator
assembly consists of different components, e.g. bearings,
bolts, weldments, transmissions etc., as well as contains
backlashes, therefore it is virtually impractical to develop
the accurate deformation model from merely CAD data.

The paper proposes a hybrid deformation model for
manipulators, which can utilize on-site position and
payload measurements from end-effector. The joints
deformation models are identified by artificial neural
networks (ANNs) based on supervised training, and the
hybrid model is constructed by incorporating the ANNs
and concurrent kinematics of manipulator. As a matter of
fact, the ANN herein represents deformation model of a
virtual lump joint, which is an equivalent model of actual
synthetic deformation of the joint, its fore link and
backlash. The ANNs are trained by using measurements
obtained on the end-effector, thus it incorporates all facts
that affect final deformation outputs. The trained hybrid
deformation model only consists of multiple feedforward
networks and forward kinematics of manipulator, its
computation can be implement in real time.

For demonstration of the proposed method, the
deformation modeling of a complex joint assembly is
taken as the study object in this paper, which is part of a
boom used for the inside maintenance of JET, and can be
deemed as a simplified 1 DOF manipulator. For training
of the hybrid model, the Markov chain Monte Carlo



(MCMC) method is employed, which can identify high
dimensional parameters of neural network. To present the
conducted research, the paper is organized as follows:
section 2 introduces concept of a hybrid deformation
modeling for generic manipulators, mathematics and
training procedure; section 3 presents application of
hybrid modeling for a complex joint assembly; section 4
presents the modeling results and discussions; and section
5 brings forward conclusions and future research.

2. Hybrid Deformation Modeling of
Manipulators with ANNs

Artificial neural networks (ANNs) have a vast
applications in modeling of linear and non-linear systems
[8-10]. It has been applied to model deflection of
hydraulic  boom  structure  as  a  black  box  in  [11].  The
deformation modeling performance of both deterministic
and Bayesian ANNs for single structural-complex joint
has also been analytically investigated in [12]. The ANNs
has also been widely applied to model the hot deformation
of metallic alloy in material physics [13-14]. For a
supervised network modeling a target system, the
conventional way is to train the network under a set of
input and output data, which are the actual input-output
measurements of a target system. The challenging part of
applying this method is the selection of the proper size and
type  of  networks  for  a  complex  system,  when  the
sufficient knowledge of the system is not available — if
the network is constructed too small, it may be insufficient
to  represent  the  physical  insight  of  the  system;  on  the
contrary, if the network over fits the problem, it may
approximate all the noises and errors of measurements,
which disguises the underlying physics. Both imperfect
networks result in a poor generalization performance in
the untrained domain.

Nevertheless, in practice we often have obtained
comprehensive knowledge of major parts of a complex
system,  with  only  some  parts  of  unknowns.  In  such
scenario, a rational way to model a complex system is to
use networks to identify merely unknown parts, since it is
much easier to tune a network for a smaller system. A
hybrid  model  of  a  complex  system  can  be  derived  by
integrating the network models with obtained knowledge.

In the deformation process of a heavy duty
manipulator with elongated kinematics (which is likely
the kinematic pattern of DEMO manipulators), the final
end-effector displacement under payload is the result of a
synthetic effect of deformation of individual joints and
links, backlashes of assembly, and manipulator
kinematics pattern. It is intractable to speculate a proper
large size of neural network to model the deformation of
whole manipulator as a black box, since it contains too
many components and uncertainties. However, it is
feasible to develop a proper size neural network for the
deformation  of  a  single  joint  assembly,  whereas  the
network approximates an equivalent virtual and lump
deformation model of the joint, its fore-link, and the
transmission backlashes. Each joint can be modeled by
such a single neural network, and these concurrent
networks can then be integrated with the kinematics of
manipulator to form a hybrid deformation model. Fig.1

shows the scheme of hybrid deformation modeling
method.

Fig.1 Hybrid deformation modeling of manipulator

Block 1 represents realistic manipulators or robots,
with external payload F exerted on its end-effector, whilst
the resultant end-effector positon y is measured. Small
size ANN in block 2 is adopted herein for modeling
lumped deformation of individual joint, addressing the
synthetic effect of multi facts (highly nonlinear geometric
profiles and backlashes) on the deformation physics.
Herein the inputs of ANN consist of the force Fi vector
acting  on  the  joint,  which  can  be  obtained  through  the
inverse computation of end-effector payload F.

The measurable data for training of hybrid model only
consists of end-effector pose vector y and payload F, thus
it avoids the need of measuring directly the deformation
pose of joints and links, which is impractical in hostile
environments. The hybrid kinematics model of
manipulator which incorporates deformation models of K
components (joints) is represented in block 3  by Eq. (1),

( )
( )

, (1)

where

) (2)

represents the equivalent translational and orientation
deformation vector of each joint i, which is the output of
ANN. In Eq. (1) ŷ  represents the predicted end-effect
position and orientation of hybrid model;  represents
the geometric vector of joint’s fore-link i,  which  is  a
function of joint’s orientation vector ; 1iJ  represents
orientation deformation vector of the previous joint i-1;

For the training of hybrid model, the Bayesian
inference approach is developed as in block 4  and 5 ,
whereas the errors between model prediction ŷ  and the
actual observation y, in Fig.1, are taken as the model
residual  taking form of independent and Gaussian
noise, and the hybrid model with residual error can be
represented as in

),(ˆ wFHyy , (3)

where ),( wFH  is hybrid kinematics function described by
external loads and joints ANNs; w represent the weights
vectors that characterize ANNs in hybrid model.



The aim of Bayesian training is to infer the weights
posterior probabilities, given the observation data. The
corresponding Bayesian formula is represented by

dwwpFwypFyp
wpFwypFywp

)(),|()|(
)(),|(),|( , (4)

where )(wp  is the prior weights distribution, ),|( Fwyp  is
the likelihood function that gives the probability
observation of y when given the parameters value w and
input F; The most likely values of the ANNs weights w
are those that give high values of the posterior distribution

),|( Fywp . Since the prior distribution on the observation
)|( Fyp  which doesn’t depend on w, is a constant, Eq. (4)

can be further represented in the form of proportionality

)(),|(),|( wpFwypFywp . (5)

The Gaussian likelihood function which incorporates the
hybrid model information is represented by

N
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with zero mean, variance 2
y
 and dimensions N.

To generate the high probability sequence of random
weight variables w, whose empirical distribution can
asymptotically approach to the posterior distribution

),|( Fywp , the adaptive Metropolis (AM) algorithm is
used in MCMC [15]. The advantage of AM herein is that
the proposed prior weights distribution is updated
according to the estimated posterior covariance matrix of
ANN weights, whereas the posterior covariance matrix of
each simulation is computed from the past simulations,
thereafter, the proposed prior distribution is updated on
the knowledge learnt so far from posterior distribution.
The proposal weights covariance matrix

iC  can be
computed, as in
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where the covariance
iC  has a fixed value

0C  for the first

0i  simulations;
ds  is a scaling parameter, and computed

by dsd /)4.2( 2 , where d is the dimension of parameter w

; e is a small parameter used to ensure the non-singularity
of

iC ;
dI  is the d-dimensional identity matrix.

For
0ii , the computation of covariance at simulation

i+1 satisfies the recursive formula as in
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where i
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0
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The detailed procedures of implementing the AM
algorithm in MCMC are described as follows:

1). Initialize the algorithm with an arbitrary set of weights
0w , and an arbitrary

0C  is obtained in the form of

0

0
, (9)

where
1w
,…,

dw
 are standard deviations of the weights,

which are initially set to certain arbitrary positive values;

2). Compute
iC  for current simulation;

3). Generate a candidate vector *w  for w, from candidate
distribution ),()|( 11

*
iii CwNwwp ;

4). Calculate the acceptance probability, , of proposed
candidate:

)()|(
)()|(,1min
11

**

ii wpwyp
wpwyp ; (10)

5). Generate ]1,0[~ Uu , if u , accept *wwi , otherwise,
set

1ii ww ;

6). Repeat from step 2 for next simulation until the
designated simulation iterations K has been reached.

The identified value of w  is calculated as a mean by
K

ki iwkKw
1

)/(1 , (11)

where k represents the initial simulations that need to be
discarded to diminish the effects of initial distribution.

3. Application of Deformation Modeling for a
Joint Assembly

For demonstration of the proposed method, the
deformation model of a complex joint assembly of a
heavy duty manipulator has been developed and presented
in this section. Fig.2 shows the manipulator prototype,
named TARM, which has been developed in RACE,
UKAEA, for remote maintenance of JET.

Fig. 2.  TARM in-situ (left) and its schematic
representation (right)

The second last joint A4 and its fore and aft links of
the boom equipped on the TARM are taken as the study
object due to its typical representation. Fig.3 shows its
CAD assembly as well as the analysis under the FEM.



a) CAD model

b) Mesh

c) Deformed configuration
Fig.3 CAD model of A4 joint assembly and its analysis

A global coordinate reference frame XYZ is set in the
centre of base plane of assembly. All the measurements
thereafter are expressed in this frame. The external load is
exerted on the loading face of loading ring (Fig.3a),
whereas the next link and joint’s driving unit are attached
actually through evenly distributed bolts. The kinematic
pattern of this assembly is expressed by the angles (in
radian) between the YZ plane of global frame and the
loading face plane, as in Fig.3b.

Currently in this paper, the deformation modeling has
merely been conducted in simulation environment due to
realistic limitations (the TARM prototype is still under
upgrading), whereas the payload effect on deformation is
investigated. Nevertheless, the simulation results can still
be used to verify the feasibility of proposed modeling
method, whereas the FEM data are taken as benchmark.

To obtain training data for deformation modeling, 91
set of random load vectors are exerted on the face of
loading ring of assembly (Fig.3), whilst the assembly is in
91 different kinematic patterns, and the ranges of x, y, z
component of each load vector are [-1000, 1000] N, [-
1000, 1000] N and [-500, -3000] N, respectively. The
FEM analysis is conducted in Solidworks COSMOS
package by a program written in VisualBasic which
interfaces with COSMOS API and automates assembly’s
kinematic pattern reconfiguration, random force loading,
meshing, analysis and measuring process. In the FEM
analysis, the 1060 aluminum alloy is adopted, considering
the materials adopted in the realistic structure. Global
contact bonded is adopted for all the contacting
components in assembly, and the joints are connected
according to realistic situation, whilst the base plane of
assembly is rigidly fixed. Curvature-based solid mesh is
conducted with following parameters: the minimum
element size equals 7.6 millimeter (mm); the maximum
element size equals 38 mm; minimum element number in
circle is 8; and growth ratio is 1.6. After the program has
run, the mean displacement of all the nodes in loading
face is used as the model deformation. Part of deformation
measurements obtained under different loads are
presented in Table 1.

In order to design the proper size of neural network,
the deformation model of this joint assembly needs to be
analyzed. The deformation kinematics of joint assembly
is represented schematically in Fig.4.

Fig.4 Schematic representation of joint assembly

The realistic complex joint connections are modeled
by a virtual joint 1.  and  represent the geometric
vectors of fore and aft links;  and  the translational
and orientation deformation of joint 1;  the

TABLE I
DEFORMATION DATA OBTAINED USING FEM

aKinematics
(unit: rad)

bLoads (unit: kN) cDeformation (unit: micrometre)

1.3090(No.31) -0.4590 0.3820 -0.9090 8.7898 31.6618 -57.6449
1.3265(No.32) -0.9780 0.8740 -0.9020 19.7714 82.9644 -55.9991
1.3439(No.33) -0.0240 0.5450 -0.9620 20.0673 74.8784 -59.2806
1.3614(No.34) 0.8950 -0.7430 -1.9610 -20.4327 -83.0682 -125.5333
1.3788(No.35) -0.0320 -0.9000 -0.7150 -38.3505 -141.0755 -48.9571
1.3963(No.36) 0.4250 -0.8010 -1.0090 -23.2071 -109.8341 -66.0743
1.4137(No.37) -0.2800 -0.6860 -2.4150 -28.3082 -125.2850 -153.3982
1.4312(No.38) 0.8790 0.9000 -2.7950 31.5201 155.3869 -170.0306
1.4486(No.39) -0.9720 -0.0800 -1.9770 -10.9289 -49.7806 -126.1084
1.4661(No.40) -0.0720 -0.9050 -1.2430 -26.4049 -147.4567 -79.5736
1.4835(No.41) -0.4350 0.1850 -2.1580 -0.7249 9.2359 -133.4439
1.5010(No.42) 0.4330 0.1120 -0.5920 4.0367 22.4432 -36.0642
1.5184(No.43) -0.3420 -0.6280 -2.7020 -14.6491 -116.5216 -171.8733
1.5359(No.44) 0.0640 0.1550 -2.9320 0.8434 13.2269 -182.1910
1.5533(No.45) 0.0430 0.2190 -2.6920 0.4063 23.7218 -166.3915
1.5708(No.46) 0.6200 -0.0420 -2.3450 0.5121 -12.1161 -144.9308
1.5882(No.47) -0.5470 -0.5420 -2.3810 -7.3022 -100.9476 -151.0883
1.6057(No.48) 0.8340 -0.6840 -2.2480 -1.2594 -115.6858 -141.5370
1.6232(No.49) -0.8460 0.3560 -0.8520 -0.7426 51.4096 -51.4821
1.6406(No.50) -0.0290 0.9670 -1.7240 0.5587 148.5470 -103.8747

a. Kinematic parameter represents angle between joint’s fore and aft links, and No.x
represents the sequence number in 91 random load and kinematic pairs;
b. Loads consist of force along x, y, and z axis in the reference frame, and the units
are kN;
c. Deformation consists of deformation along x, y, and z axis in the reference frame,
and the units are micrometre.



translational deformation of the end-effector. Applying
superposition principle, the analytical deformation model
of joint assembly is expressed by Eq. (12), (13) and (14),
according to hybrid deformation modeling methodology
described in Section 2:

, (12)

where

( ), (13)

and

( ). (14)

Since the acting force F1 in joint 1 equals
approximately to F2 acting on the end-effector of
assembly, a hidden layer neural network can be used to
represent  the  synthetic  effect  of  Eq.  (13)  and  (14).  An
extra hidden layer are needed to represent the mathematic
model of Eq. (12), considering ,  and  as its
input variables. Consequently, a small size of deep neural
network (DNN) with two hidden layers is used herein to
model the deformation physics of the whole joint
assembly. A full connected feedforward network structure
is adopted, and its scheme is presented in Fig.5.

Fig.5 Deep neural network for joint assembly deformation

The DNN contains four inputs, which are the three
dimensional load vector acting on the loading face of
assembly and the orientation (kinematic pattern) of the
joint, whist the three outputs consist of mean deformation
displacement vector of all nodes in the face of loading ring.
30 neurons are adopted in each hidden layer, which is
chosen through the accuracy comparison in several
training tests in different neuron numbers. The sigmoid
activation function is used for the neurons in hidden layers,
and the linear activation function is used in the output
layer. It should be noted that we can’t conclude the 30
neurons herein in hidden layers are the optimal choice for
the  application  in  the  paper,  since  how  to  choose  and
optimize the neural network size is another research topic
and we didn’t exhaust all possible options.

4. Results and Discussions
The constructed DNN deformation model is trained by

the method (procedures) developed in Section 2. In
training process, the deformation model is first trained by
Levenberg-Marquardt (LM) algorithm through back
propagation. The training criterions are set as: a) the root
mean square errors (RMSs) reaching 0.001 or b) the
training iterations reaching 1000. In the training, we

observed the RMSs become stable after 100 iterations,
and the training stopped at the maximum iteration setting.
The LM training can provide an initial guess of DNN
weights and the weights covariance matrix, which
correspond to  in Eq. (9) and is important to guarantee
fast convergence of MCMC. Although it is likely the
initial weights fall into local optimum, the MCMC based
Bayesian inference can explore high probability weights
in global region.

Fig.6 shows the prediction results of deformation
model trained by MCMC in the trained domain, which
stopped after it has generated 10000 samples in Markov
chain.

Fig.6 DNN prediction of assembly deformation in trained area

The squares in figure plots stand for the deformation
data (as a benchmark) obtained by FEM, with the unit in
micrometer,  under  91  set  of  random  loads,  whereas  the
continuous lines stand for the deformation model
predictions under the same loads and kinematic patterns.

After convergence of training, the root mean squares
(RMSs) of errors between predictions and benchmark
data are, 0.0555, 0.0970, 0.1037, respectively, along x, y
and z direction of reference frame. In the Fig.6a, the joint
deformation along x axis under random payload from
No.41 to 65 is relatively smaller, presented as a relatively
flat curve, which indicates a higher stiffness of joint
assembly in x axis. The reason is that the joint’s fore and
aft links are in a nearly aligned kinematic patterns from
No.41 to 65, which provides a stiffer pattern than others
along y and z axis. Fig.6b and Fig.6c indicate that the joint
assembly deformation is more affected by the loads along
y and z axis, with less effect of kinematic patterns.

To verify the generalization ability of trained
deformation model of joint assembly in untrained region,
another 91 set of random loads are exerted to the assembly
in 91 different kinematic patterns, and the corresponding
comparison between measurements of FEM analysis and
model prediction is presented in Fig.7.



Fig.7 Prediction of assembly deformation in untrained domain

The squares in figure plots represent the deformation
data along x, y and z directions obtained by FEM, whereas
the continuous lines with asteroids represent the
deformation predictions, respectively. The RMSs of
errors between the predictions and FEM benchmark along
x, y and z directions are 10.9744, 8.6666, and 5.4346,
respectively. The RMSs herein are higher than those in
the trained domain, nevertheless, it is still inside the
rational acceptable range, which indicates that the
deformation model is well developed and reveals
underlying deformation physics of this joint assembly.
The error difference of the DNN model in the trained
domain and untrained domain is interpreted as a normal
phenomenon herein. The big difference are caused by
serval reasons: 1) the RMSs in the trained domain are
already very small, thus the big difference from the
trained RMSs doesn’t suggest the prediction of model in
untrained domain is erroneous; 2) the RMSs tend to give
a relatively high weight to large errors, whereas there are
few relatively larger errors for untrained prediction, e.g.
the errors from payload number 85 and 86 in Fig.7a; 2)
for a data set from an experiment, the neural networks are
commonly trained with 70% of its data, and the rest 30%
are used for the model verification. It should be noted that
the 30% and 70% data are all from the same experiment
domain. However, in this paper, in order to verify if the
hybrid model can identify the underlying deformation
physics, same amount of verification data to the trained
data are obtained from another new experiment, and are
all used for the testing (prediction performance
evaluation),  thus  the  RMSs  are  larger  than  those  in  the
trained domain. However, through the prediction curves
we could conclude the hybrid model performances well in
prediction. For comparison convenience, the assembly’s
deformation RMSs between predictions and FEM data, in
trained region and untrained region, are listed in Table 2.

5. Conclusions and Future Research

Through the developed deformation model and the
corresponding comparison results of a typical 1 DOF
joint’s assembly of a manipulator prototype, we conclude
that the hybrid modeling method is competent in
modeling end-effector deformation of kinematic
dependent mechanism by incorporating the kinematics
information,  which  is  under  the  force  payload  effect  in
this paper. The ANN, through limited training, can reveal
the deformation physics of kinematic dependent
mechanism under random force payload, and can
extrapolate the developed prediction model to untrained
domain. The degenerated prediction performance of
deformation model in untrained domain also suggests that
the network can be further optimized in terms of hidden
layer numbers, neuron numbers, as well as adoption of
more characterized training data.

It should be noted that the application of the hybrid
modeling is conducted on a one DOF mechanism in the
paper, whereas the number of hidden layers can be
analytically deduced to represent the whole deformation
physics. However, when the manipulators consist of
several DOF, it is suggested several concurrent ANNs
should be used to represent the joints deformation physics
individually, and should be integrated into the hybrid
deformation kinematics (Eq. (1) or (12)) to form
deformation model of the whole manipulator, rather than
using a very complex DNN to represent the whole
manipulator deformation.

The deformation modeling of manipulators and robots
used in  DEMO and future  fusion  plants  is  by  no  means
solved in current research stage. The environmental loads
that include varying thermal effect, high neutron radiation
around fusion reactor, will change the material
deformation physics in a coupled way with force loads.
The extreme force payload also introduces more complex
transmission systems applied in the mechanical design,
which bring more uncertainties in terms of backlashes,
transmission deformation etc. The convolutional neural
network will be investigated in the future research to filter
and decouple the synthetic effects of various environment
loads, and the recurrent neural network will also be
studied to model the time sequential effect of those loads.
Regarding to the difficulties of obtaining the
measurement data manually in a fusion plant
environment, the unsupervised learning will be
investigated to model and compensate the manipulators
and robots deformation autonomously by interacting with
the surrounding environments.
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