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Abstract—The joints deformation contribute significantly to

final end-effector displacement of a manipulator, especially when
the manipulator is in the form a serial kinematics with long links.
When the manipulators employed in the DEMO are under the
heavy payload, the deformation of manipulator is inevitable and
the magnitude is significant. In order to maneuver the large object
through several via points with high positioning accuracy in the
remote handling process of DEMO, the real-time computation of
manipulator deformation has to be conducted, which is crucial to
the DEMO adaptive position control system for the displacement
compensation. Three computation-effective deformation modeling
methods are proposed in the paper, which are parametric
modeling method, non-parametric deterministic artificial neural
network modeling method, and non-parametric Bayesian artificial
neural network modeling method, respectively. A specific joint in
a boom equipped in a telescopic articulated remote mast is taken
as the study object in the paper. A nodal deformation in the joint
are investigated by three modeling methods, respectively. The
parametric deformation model are derived by using the structural
mechanics, whose parameters are identified by using the Markov
chain Monte Carlo method; the deformation model of
deterministic artificial neural network is trained by using the
Levenberg-Marquardt method; and the deformation model of
Bayesian artificial neural network is trained by using the Markov
chain Monte Carlo method. The results show that the parametric
model from the structural mechanics is linear and is incompetent
in the deformation modeling when the non-linearity presents; both
the deterministic and Bayesian artificial neural networks are
capable of model the nodal deformation of joint. The performance
of both the deterministic network and Bayesian network cannot
rival for one another in the application scenario of paper. The
training of Bayesian network can provide the criterions for
estimation of possible ranges of the modeling outputs from its
probabilistic distribution curves, and the judgement of proper size
of network.

Index Terms—Artificial neural networks, Bayes methods,
DEMO, deformation model, flexible Manipulators, Markov chain
Monte Carlo method

I. INTRODUCTION

nside the DEMO machine, heavy duty manipulators are
foreseen to be widely employed. A hybrid kinematic

manipulator (HKM) is being designed at RACE (Remote

This work has been carried out within the framework of the EUROfusion
Consortium and has received funding from the Euratom research and training
programme 2014-2018 under grant agreement No 633053. The views and
opinions expressed herein do not necessarily reflect those of the European
Commission.

Applications in Challenging Environments) of UKAEA (UK
Atomic Energy Authority) to handle the large breeder blanket
segments for DEMO [1]. The payload of this HKM is around
80 tonnes, and its trajectory requires stringent position accuracy
as it passes key points, in order to manoeuvre the blanket into
and out of position in the vacuum vessel. The TARM
(Telescopic Articulated Remote Mast) at RACE is also under
upgrading, and it is necessary to investigate its’s deformation
displacement due to its massive weight and the payload [2].

From the past experience of heavy duty robotic machines, it
is noticed that deformation of the manipulator joints contribute
significantly to the end-effector displacement [3-4]. In order to
compensate such end-effector deformation displacement in the
control system in real-time, it is necessary to develop
computation-effective deformation model of the flexible joints,
which can then be integrated and form a deformation model of
the whole manipulator. In addition the deformation model of
manipulator can be further utilized to optimize the end-effector
trajectory by using the iterative algorithms.

In order to support the large payload, the joints of the
manipulator are complex, making it unreasonable to employ the
truss and beam simplifications from the structural mechanics.
In addition to an abstract joint structure, the integrated
mechanical transmission and drive system makes the joint
deformation model even more complex. The finite element
analysis (FEA) method can estimate the deformation of a
complex structure with high accuracy given the payload,
however, its computation consumption makes it prohibitive to
apply to the control system in real-time and in the iterative
algorithms.

The paper proposes three approaches to model the joints
deformation, which calculate the deformation in a computation-
effective way: a parametric stiffness model identified by the
Markov Chain Monte Carlo (MCMC) method, a deterministic
non-parametric artificial neural network (ANN) model and a
non-deterministic ANN model trained by using the MCMC
method. All the models are identified or trained off-line using a
dataset obtained in advance from the finite element analysis
(FEA) on an abstract target joint without transmission and drive
system. In practice, the proposed methods can be applied to
model the deformation of joints incorporating the transmission
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mechanisms and drive system, based on the real on-site
measurement data, instead of using the FEA dataset on an
abstract joint. The constructed models compute the deformation
of joint in real-time, which is necessary in the control system.

The comparative results of applying proposed deformation
models on a joint of heavy duty manipulator, namely TARM,
are presented in the paper. The validation of parametric model,
deterministic ANN model and non-deterministic ANN model
are conducted, individually, by using different payload dataset
and the deformation data obtained from FEA. The study can
provide a good premise for constructing the real-time or
computation-effective deformation model of entire
manipulators that will be employed in the DEMO.

II. DEFORMATION ANALYSIS OF JOINT

Normally a joint of manipulator contains sub-joints structure,
thus the matrix structural analysis (MSA) is employed herein to
derive deformation kinematics of the joint, with the sub-joints
structure is taken as the basic analysis element, which applies
the  same principle  as  FEA but  in  larger  scale  with  much less
nodes [5]. The advantage of applying the MSA in such scenario
is its computation efficiency, whereas its weakness of less
accuracy can be improved by deriving an accurate node
stiffness matrix of each elementary structure. To present the
application of MSA, the last second joint of a boom equipped
in TARM is taken herein as an instance. Fig.1 shows the
assembly of TARM, and Fig.2 shows the last second joint A4
of boom in TARM.

The joint A4 consists of two sub-joint structures, the upper
and  down  joints  in  Fig.2,  whereas  applying  the  MSA,  the
corresponding nodes are represented by numbers 1, 2 and 3,
respectively, and the elementary beams are represented from
number 1 to 4 with a circle.

The analytic deformation model of this composed joint is
expressed, as in
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where
1F ,

2F  and
3F  represent the external load acting on the

nodes 1, 2 and 3;
1D ,

2D  and
3D  represent the nodes’ resultant

deformation, respectively; the elementary item inside the big
stiffness matrix (the first bracket part on the right side of (1)) is
the individual nodal stiffness matrix and can be generalized in
the form of n

ijK , where the subscripts i and j denote the node
numbers, and the superscript n denotes the beam, to which the
nodes are attached. Physically the node stiffness matrix n

ijK
represents the needed equivalent force acting on node i of beam
n while the node j undergoes a unit deformation.

In the joint deformation analysis, we concern more the
deformation of the end-tip of joint, namely node 3 in this
example. Since the external load only acts on the node 3 from
its consecutive link, and the loads acting on the nodes 1 and 2
are assumed to be zero (neglecting the self-gravity effect), the
stiffness model of node 3 can be derived from (1) and be
expressed as

12
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112122 KKKKK --= , (2)
where K represents the stiffness matrix of node 3, and
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In order to obtain the accurate stiffness model K of node 3,
each elementary item n

ijK  inside the equations from (3) to (6)

must be derived accurately. There are three methods feasible to
construct n

ijK : a) simplifying the node structure into the beam

and truss mechanism and using the structural mechanics to
compute  a  stiffness  matrix;  b)  using  the  FEM  to  analyze  the
nodal structure and deriving a stiffness function from the FEM
dataset; c) conducting the loading experiment and deriving a
function from the measurement data. The first method is less
accurate when the joint structure is complex; the second method
is used in the paper, whereas the stiffness function is
approximated by both parametric model and non-parametric
ANN models; the third method will be used in future on-site.

In the paper, the stiffness n
ijK  are approximated, respectively,

using a parametric stiffness model whose parameters are
identified by using the MCMC method, a deterministic ANN

Fig. 1.  TARM in-situ (left) and its schematic representation (right)

a. Applying random payload      b. Meshing     c.  Analyzing deformation
Fig. 3.  Obtaining data by using FEM in Solidworks COSMOS

Fig. 2.  Joint A4 in the boom of TARM and its deformation schematics
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model trained by Levenberg-Marquardt (LM) algorithm [6],
and a non-deterministic Bayesian ANN model trained by using
the MCMC [7-8].

III. MODELLING METHODS OF FLEXIBLE JOINT STIFFNESS

For demonstration, the stiffness modeling of upper joint
(node 1 in Fig.2) is presented in the paper as an example. In
order to obtain the training dataset used by the proposed three
modelling methods, the CAD model of the joint are loaded into
Solidworks (version 2017), and the FEA in its COSMOS
package is employed to carry out the analysis. Fig.3 shows the
procedures of generating the necessary data. A coordinate
reference frame is set in the geometric center of the bearing face
in node 1, with z axis pointing upwards along the bearing face
geometric axis, x axis vertical to base plane of joint structure,
and y axis determined by applying the right hand rule.

91 set of random loads are exerted on the bearing face of node
1, with magnitude ranging from 1000 to 5000 Newton, each of
which consists of force along the z axis of the bearing face and
normal to the bearing face, according to the practical loading
scenario of this joint. All the force are distributed around the
bearing face. The resultant deformation data of the bearing face
geometrical centre is recorded consequently. The whole
procedure is realized by a program written in VisualBasic
which interfaces with the Solidworks COSMOS API [9], and
automates the whole deformation data obtaining process. Part
of the obtained data are presented in Table 1.

A. Parametric Model by Markov Chain Monte Carlo Method
According to the structural mechanics, if the nodal structure

in the joint is simplified into beam, the parametric stiffness
model of node 1 can be expressed as
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where E represents the Young’s modulus of the beam;
zI  and

yI  are the quadratic moments; and L is the length of the beam.
Taking the diagonal items in (7) as the unknown lumped

parameters [ ]321 lllq =  which need to be identified by
MCMC, a linear model, with independent and Gaussian noise
e , can be presented in the form of

eq +D= 11
1
1111 )(KF , (8)

where the
11F  and

11D  are the acting force and resultant
deformation measurements, and vector q  is the unknown
parameter being identified.

The corresponding Bayes formula is given, as in
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where )(qp  is the prior distribution of the unknown parameters;
)|( 11 qFp  is the likelihood function that gives the probability

distribution of the observation
11F  when given parameters value

q . The most likely values of the unknown parameters are those

that give high values of the posterior distribution )|( 11Fp q .
It is assumed that the residuals e  between the observed data

11F  and the model outputs
11

1
1111 )(ˆ D= qKF  are normally and

independently distributed with zero mean and constant variance
Fs , thus , the likelihood function is given by:
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When estimating the posterior of the parameters, it is
common to ignore the evidence term )( 11Fp , and (9) can be
further written in the form of proportionality

)()|()|( 1111 qqq pFpFp µ . (11)
The adaptive Metropolis (AM) algorithm in MCMC is used

to generate a sequences of random variables q  [10], whose
empirical distribution can asymptotically approach to the
posterior distribution )|( 11Fp q . The distinguished character of
the AM is that the proposed prior distribution is updated based
on the estimated posterior covariance matrix of the unknown
parameters, whereas the posterior covariance matrix is
computed at each simulation based on past simulations, thus,
the proposed prior distribution is updated on the knowledge
learnt so far from the posterior distribution. The proposal
covariance matrix

iC  can be computed, as in
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where the covariance
iC  has a fixed value

0C  for the first
0i

simulations;
ds  is a scaling parameter, and often computed by

dsd /)4.2( 2= , where d is the dimensionality of parameter q ; e
is a small parameter used to ensure the non-singularity of

iC ;
dI

is the d-dimensional identity matrix.
For

0ii > , the computation of covariance at simulation i+1
satisfies the recursive formula as in

TABLE I
DEFORMATION DATA OBTAINED USING FEM

Data No. loads (unit: KN) deformation (unit: mm)

31 1.1852 -0.3176 -1.9860 -1.09 -3.3 -93.19
32 2.6665 0.7646 -2.3600 0.521 10.571 -110.37
33 1.8033 -0.5171 -0.7240 1.547 -6.31 -33.14
34 1.2145 0.3713 -1.8250 -0.72 5.347 -85.57
35 1.1074 -0.3386 -0.9170 0.274 -3.96 -42.51
36 1.7766 0.5772 -2.0830 -0.36 7.983 -97.37
37 1.0195 -0.3312 -1.2380 -0.21 -3.7 -57.67
38 1.0391 0.3578 -2.4670 -1.88 5.33 -116.21
39 1.5317 -0.5274 -2.3500 -1.11 -5.85 -109.82
40 2.2853 0.8318 -1.1410 1.489 10.931 -52.88
41 2.6311 -0.9577 -1.0880 2.084 -11.73 -49.51
42 2.7345 1.0497 -0.6070 2.882 13.452 -27.6
43 1.9437 -0.7461 -0.6170 1.702 -9.09 -27.73
44 1.4149 0.5716 -0.8640 0.66 7.461 -40.05
45 1.8507 -0.7477 -1.6020 0.113 -8.67 -73.7
46 2.5388 1.0776 -1.2480 1.555 13.876 -57.66
47 2.3418 -0.9940 -2.0490 -0.021 -11.54 -94.02
48 1.9093 0.8501 -2.4230 -0.82 11.424 -113.03
49 1.0889 -0.4848 -1.4510 -0.49 -5.54 -67.32
50 2.3446 1.0933 -1.8890 0.2057 14.1234 -87.28

aThe payload consists of force along x, y, and z axis in the reference frame,
and the units are kilo Newton.

aThe deformation consists of deformation along x, y, and z axis in the
reference frame, and the units are millimeter.
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The procedures of implementing the AM algorithm in
MCMC are described as follows:
1) Compute iC  for current simulation, according (12), (13);
2) Generate a candidate vector *q  for q , where the candidate

distribution ),()|( 11
*

iii CNp -- = qqq ;
3) Compute the acceptance probability, a , of the proposed
candidate:
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where )|( 11 qFp  is the likelihood function, )(qp  is the prior
distribution of q ;

4) Generate ]1,0[~ Uu , if a<u , accept
*qq =i , otherwise, set

1-= ii qq ;
5) Repeat step 1 for next simulation until the designated
simulation iterations K has been reached.

The identified value of q  is computed as a mean by

å +=
-=

K

ki ikK
1

)/(1 qq , (15)

where k represents the initial simulations that need to be
discarded to diminish the effects of initial distribution.

After obtained the stiffness matrix, the nodal deformation
prediction can be computed by multiplying the inverse of
stiffness matrix (which is called compliance matrix) with the
vector of applied load.

B. Non-parametric Model by Deterministic ANN
When the underlying joint deformation model presents

nonlinearity, the linear parametric model is no longer accurate,
instead, a deterministic ANN model can be constructed based
on the obtained FEA dataset or the on-site experiment data,
which to some extent can reveal the underlying deformation
physics when the scale of network is selected properly and the
network is well trained. Fig.4 shows the general topology of a
single hidden layer feedforward neural network.

M represents the number of inputs; N the number of neurons
in hidden layer; P the number of outputs;

iI  the ith input of
network;

kO  the kth output of the network;
ijw ,
 the weight of ith

input of neuron j;
0,jw  the bias weight of neuron j;

jn  the net

value of all inputs of neuron j, and
jy   the output neuron j which

is computed as in
)( jjj nfy = , (16)

where
jf  is the activation function of neuron j,

jn  is the sum of

all inputs of neuron j, and expressed as
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The output
kO  of neural network is computed by
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where
kf  is the linear activation function of the output K.

In this paper, a feedforward neural network, with a hidden
layer  of  twenty  neurons,  is  employed  to  model  the  nodal
deformation in the boom joint, of which the load vector

11F  is
taken as three inputs and the resultant deformation vector

11D  is
taken as three outputs. A sigmoid activation function is adopted
in the hidden layer and a linear activation function is adopted in
the output layer.

The Levenberg-Marquardt algorithm is utilized to train the
network due to its high efficiency, which is represented by

k
T

kk
T
kkk EJIJJWW 1

1 )( -
+ +-= m . (19)

where the subscripts k  and 1+k  represent the current and next
iteration, respectively;

kW  the weights vector of network;
kJ  the

Jacobian matrix of network outputs error with respect to the
weights; m  the combination coefficient that is used to adapt LM
algorithm between the steepest decent method and Gauss-
Newton algorithm; I  the identity matrix which is introduced to
guarantee the computation invertible in (19);

kE  the error vector
of network outputs.

In the training process, the initial value of m  is set to 0.001.
When the current error increases as a result of weights update,
m  increases by multiplying a factor of 10, otherwise, m
decrease  by  dividing  a  factor  of  10.  When m  reaches the
minimum value 10e-5, it keeps the value constant until the error
increases. The maximum training iteration in this example is set
to 1000. In fact, the training process converges fast in this
example, and has converged in around 60th iteration.

C. Non-parametric Bayesian ANN Model trained by MCMC
Compared with the single optimal weights vector of

deterministic ANN, the ANN weights obtained from Bayesian
inference typically performs better in the model prediction
since the weights are selected widely by the overall information
contained in the observed training data.

In the example of joint’s nodal deformation modeling by
Bayesian ANN, the same network structure is adopted with the
previous deterministic ANN. The aim of ANN Bayesian
training is to infer an acceptable approximation of the
deformation model, which can be utilized to produce accurate
predictions when presented with the new data. The nonlinear
ANN deformation model, with independent and Gaussian
noise, can be represented in the Bayes formula by

Fig. 4.  Single hidden layer neural network architecture
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e+=D )|( 1111 wFg , (20)
where )|( 11 wFg  is the deformation function described by the
ANN, and e  is the random noise term (measurement error) with
zero mean and constant variance. The aim of the Bayesian
training of ANN is to infer the weights posterior probability,
providing the observed data ),|( 1111 Fwp D .

The corresponding Bayesian model of ANN training is
represented by

ò D=D
D=D

dwwpFwpFp
wpFwpFwp

)(),|()|(
)(),|(),|(

11111111

1111
1111

, (21)

where )(wp  is the prior weights distribution, ),|( 1111 Fwp D  is the
likelihood function, which depicts any information about w
embodied in the data. In the actual implementation of the AM
in MCMC in this paper, a Gaussian likelihood function is used,
expressed by
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where 2s  is also estimated from the training data using Gibbs
sampler (the simplest MCMC algorithm) [11].

In the multilayer ANN, the weights posterior distribution is
typically complex and presents multimodal character, thus the
assumption of a certain type of prior weight distribution is
unreasonable. Herein, the AM algorithm is still adopted in
MCMC for training ANN due to its adaptive proposal
distribution.

The detailed procedures are similar to those used in the
section A for parametric model identification, and presented as
follows with slight difference:
1) Initialize the algorithm with an arbitrary set of weights 0w ,
and an arbitrary 0C  in the form of
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where 1ws ,…, dws  are standard deviations of the weights,
initially set to some arbitrary positive values;
2) Compute iC  for current simulation;
3) Generate a candidate vector *w  for w , where the candidate

distribution ),()|( 11
*

iii CwNwwp -- = ;
4) Compute the acceptance probability, a , of the proposed
candidate:
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5) Generate ]1,0[~ Uu , if a<u , accept
*wwi = , otherwise, set

1-= ii ww ;
6) Repeat step 2 for next simulation until the designated
simulation iterations K has been reached.

IV. COMPARISON OF RESULTS

The nodal deformation model identification and training
results are presented in the Fig. 4, 5 and 6, respectively, from
parametric model, deterministic ANN model and Bayesian
ANN model.

The squares in figures represent the measured deformation
data, with the unit in millimeter, after 91 random loads are
applied, whereas the continuous lines represent the model
predictions under the same payloads.

It is observed that in the linear parametric model, the
prediction of deformation under the payload along x axis cannot
approximate the actual deformation. The reason behind is that
the actual deformation along the x axis of nodal 1 under the
contraction (tension) in this joint is highly non-linear. However,
the predictions of parametric model along y and z axis are
promising, compared with the results along x axis. It reveals
that the nodal 1 deformation along the y and z axis are
approximately linear. The root mean squares (RMS) of
deformation prediction in parametric model along x, y and z
axis under random loads are 5.5863, 27.9727 and 2.6825,
respectively.

Fig.5 and 6 both indicate that the deterministic ANN and
Bayesian ANN under the training data can predict the

Fig. 4.  Parametric deformation model identified by MCMC

Fig. 5.  Deterministic ANN deformation model trained by LM algorithm

Fig. 6.  Bayesian ANN deformation model trained by MCMC
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deformation accurately. The weights obtained in deterministic
ANN is a single vector, whereas those obtained in Bayesian
ANN present in the form of a probabilistic distribution. To
compute the model prediction under certain payload in
Bayesian ANN, the mean values of all the weights are utilized.
The RMS of deformation prediction along x, y and z axis, in the
deterministic ANN under the trained data, are 0.0498, 0.0020
and 0.0445, whereas those in Bayesian ANN model are 0.0165,
0.0088 and 0.0490, respectively.

Fig 7, 8 and 9 show the deformation predictions of parametric
model, deterministic ANN model and Bayesian model, given
the new payloads data (different from training data) in nodal 1.

Fig.7 indicates that the parametric model presents the similar
performance in deformation prediction, given the new payload
data, compared with the scenario where the training data is
used. Herein we can conclude the actual deformation in nodal 1
along the x axis is highly non-linear, whereas those along the y
and z axis are approximately linear, and the parametric model
is incompetent to model such a deformation physics.

Given the new random payloads, Fig.8 and 9 both indicate
that the underlying deformation physics in nodal 1 of the joint

is identified successfully by both the deterministic ANN model
and the Bayesian ANN model. The prediction performance
between both models is close to one another in deformation
modeling of nodal 1 of the joint. However, the Bayesian model
can provide a probabilistic distribution of the prediction, which
provides to some extend the perspective of deformation
magnitude range. Meanwhile, the probabilistic distribution of
the  ANN  weights  can  be  obtained  from  the  MCMC  training
process, which provides an efficient way to estimate if the
proper size of the neural network is chosen. For convenience of
comparison, all the RMSs of deformation prediction of nodal 1
in the joint, by three models under both the training data and the
new data are presented in table 2.

V. CONCLUSIONS AND FUTURE RESEARCH

In order to compute the deformation of a complex joint, which
consists of sub-joints, in a computation-efficient way, the
overall  joint  deformation  model  can  be  derived  in  the
kinematics form of sub-joints’ deformation, by using the MSA
method, whereas the sub-joints are taken as the elementary
nodes by applying the same principle as in the FEA but in larger
scale. Three modeling methods are proposed in the paper, to
construct the accurate nodal deformation model in the joint,
which are parametric model, deterministic ANN model and
Bayesian ANN model, respectively. A specific sub-joint from a
joint  of  a  boom equipped in  the  TARM is  taken as  the  study
object of applying the proposed deformation modeling
methods, and the comparative results are presented. We
conclude that the parametric model of applying the structural
mechanics is incompetent in modeling the nodal deformation
when the non-linearity in deformation presents. Both the
deterministic ANN and Bayesian ANN can model the
underlying deformation physics successfully in the sub-joint
structure, providing the amount of training data. In the specific
example in the paper, the performance in both the deterministic
ANN model and Bayesian ANN model cannot rival for one
another, when the same size of network is used. The Bayesian
ANN can provide the probabilistic distribution of the model
which is useful in estimating the possible ranges of the model
magnitude. In addition, the ANN weights probabilistic
distribution can provide a perspective of estimating if the proper
size of network is adopted.

Fig. 7.  Parametric deformation model prediction given new payload data

Fig. 8.  Deterministic ANN deformation model prediction given new data

Fig. 9.  Bayesian ANN deformation model prediction given new data

TABLE 2
ROOT MEAN SQUARES OF MODELS UNDER TRAINING DATA AND NEW DATA

Under
training data

deformation
along X axis

deformation
along Y axis

deformation
along Z axis

Parametric
Model RMS

5.5863 27.9727 2.6825

Deterministic
ANN RMS 0.0498 0.0020 0.0445

Bayesian ANN
RMS 0.0165 0.0088 0.0490

Under new
Data

deformation
along X axis

deformation
along Y axis

deformation
along Z axis

Parametric
Model RMS

14.8158 30.6032 0.2154

Deterministic
ANN RMS 0.4695 0.0420 1.8766

Bayesian ANN
RMS

0.5102 0.0392 1.8745
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The  study  of  the  paper  is  only  limited  to  the  deformation
analysis of an individual abstract joint (without transmission
mechanism and drive system), and its sub-joint deformation
modeling, with the presence of only elastic deformation. When
considering the realistic application of manipulator in DEMO,
it may be not possible to conduct the measurement of an
individual joint after the manipulator is assembled and
deployed. Even the measurement data can be obtained in
advance before the assembly of the manipulator or from the
CAD  model,  it  may  deviate  from  the  actual  data  after  the
manipulator is assembled and undergoes heavy duty operations.
The backlash in the transmission mechanism of joint, the
thermal and magnetic effect of the environment, and even the
material property mutation due to the radiation, can all affect
the final deformation physics of a joint, which are not
investigated currently in the research of paper. The contribution
of the paper, however, presents the feasibility and the potentials
of applying the artificial neural network in modeling the
nonlinearity of the deformation physics.

The future research will be focused on the deformation
modeling of the entire manipulator, by integration of the
individual joints, whose deformation physics will be identified
by using the Bayesian ANN model, based on the measurement
data from the end-effector of the manipulator.
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