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In the inside engineering of DEMO, the robotic machines and manipulators are envisaged to be widely
employed, which often have to deal with the demanding working conditions. The construction of the dynamic
model of the robot and manipulator can be incorporated into the control system design to gain the adaptive control
performance. A method of constructing the dynamic model with the unknown parts is proposed. The method can
identify the unknown parts of the dynamic system by incorporating a BP neural network that will eventually
substitute the unknown parts in the system dynamics after the well training. A modified Levenberg-Marquardt
algorithm is developed for the training of BP neural network, which can back propagate the errors between entire
actual system and the constructed dynamic model into the training process of the neural network. An example of
constructing the dynamic model for a general Stewart structure mechanism is presented, in which the unknown
parts, as well the entire dynamics are successfully identified. The proposed method can be extrapolated to the
dynamics modeling of the blanket transporter in DEMO design, as well as the other general manipulators.

Keywords: robot, multi-layer neural network, system identification, dynamical model, Levenberg-Marquardt, demo

1. Introduction manipulator are deliberately omitted due to the

In the inside engineering of DEMO, the robotic
machines or manipulators are foreseeable to be widely
employed, and the manipulators often have to deal with
the demanding working conditions, and meanwhile
respect the stringent positioning tolerance in the
handling process. For example, the blanket transporter
for handling the multi module segment (MMS) in
DEMO concept has to handle the payload up to 80 tons
while respecting tens of millimeter positioning accuracy.
To meet these demanding requirements, the design of the
adaptive positioning control system for the robot or
manipulator has to be introduced. Herein, the dynamic
modeling of manipulator plays a significant role to
design the adaptive positioning control systems. Many
researchers have been carrying out the research in
utilizing the dynamical model of the robot in the
adaptive control system design [1]. Additionally, the
construction of the dynamic model of the manipulator
can also benefit the performance evaluation and
optimization work in the early design stage.

In practice, it is rather difficult to construct
accurately the analytical dynamic model for the robots
and manipulators. The reasons behind include, but not
limited to, lacking the physical insight of some dynamic
phenomenon, the inaccuracy or infeasibility of the direct
measurements, the deviation of some dynamic properties
after the robot and manipulator’s assembly and
deployment etc. For examples, it is difficult to construct
the joint friction model individually in the parallel
kinematic mechanism undergoing the deformation; it is
also difficult to obtain the accurate inertial matrix as well
as the geometrical mass center information for the
structural complex manipulators. Quite often some
components in the dynamic analysis process of the
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identification complex, which results in the inaccuracy.

This paper proposes a method to construct the
dynamic model of robots and manipulators that contain
unknown components in the dynamics, which
meanwhile can't be measured directly. The back
propagation (BP) artificial neural network (ANN) is
adopted to approximate and substitute the dynamics of
the unknown components [2-4]. A modified Levenberg-
Marquardt (LM) algorithm is developed, which can take
advantage of the measurement data of the front-end input
and output of the entire robotic system to train the BP
neural network. In such a way, the direct measurement
of the unknown components in the dynamics can be
avoided since in practice the measurement of such
unknown components for the ANN training is infeasible.

The proposed method in the paper is envisaged to be
used to construct the dynamic model of a blanket
transporter that will be applied in the DEMO remote
maintenance (RM). Fig.1 shows the blanket transporter
concept proposed in the work package WP RM by
RACE in CCFE.

Fig.1 Concept of blanket transporter by RACE in CCFE

As an initial result, the parallel kinematic mechanism is
considered as a highly potential choice being adopted in
the blanket transporter design in the DEMO. Since the



design of the blanket transporter is still a live process
and the detailed concept is still undergoing evolution, for
the general demonstration of applying the proposed
method, a more general parallel kinematic mechanism —
Stewart-Gough structure — is taken as the study object in
the paper. To validate the proposed method, the inverse
dynamics of the Stewart structure is constructed, in
which the joint friction are taken as the unknowns and
are identified and incorporated into the entire multi-body
dynamics. The consideration behind is that the friction
force in the joints of the potential blank transporter is
envisaged to be significant due to the great payload and
structural deformation, and thus can’t be neglected in the
dynamic modeling process. Moreover, the friction force
in the joints of parallel structure presents the characters
of highly non-linear, highly coupled and highly time-
variant, which also render it infeasible to construct the
model individually or measure it directly.

The rest structure of the paper is organized as
follows: section 2 introduces the concept of the dynamic
model identification of system with unknowns by using
the BP ANN; section 3 describes the mathematics of the
modified LM algorithm for the training of the BP ANN;
section 4 demonstrates an example of the dynamic model
identification of a parallel kinematic mechanism; section
5 brings forward the conclusions.

2. Concept of Dynamic Model Identification of
Systems with Unknowns via ANN

For a general mechanical system, comprehensive
knowledge of most parts of the dynamics is commonly
available, while only a small part of dynamics present as
unknowns which lead to the inaccuracy in the dynamics
modeling process. Quite often the unknown parts are
embedded in the dynamics and coupled with the systems
fore and aft, which makes it difficult to measure the
unknown components directly. In such scenario, the
paper proposes to use the ANN to approximate the
unknown components by using the front-end input
output data from the entire dynamic system, and the
scheme of the concept is shown in Fig.2.

1

1

1 . Vo, " N

1| Fore parts of — Aft parts of Cutgiits ¢
Inputs 1 dynamic e, dynamic WEpMSio

u 1 L own A
~ system Srmone system

1 Xpre = Fppe (X pett) | ¥ sub-systems 7 |Far = Fop s Y ore

- Gl prest) PP 9= %) [P0 =GuGiyy

]

Derived aft
parts of
dynamic

Derived fore -
parts of
dynamics ¥ | BPneul |3
= Fy (xpeu) [ MW k >t %,
V= F oo (X)

¥ Moditied LM 15
The derived TRAINING L5 Algorithm based
dynamic system on indirect errors s
w=T(y.0".e) [Error back

Fig.2 Neural network as an approximator for part of dynamic
system
For generalization, the actual system with unknowns
is expressed in the paper by the state space Egs. from (1)
to (4), which are derived from the fore and aft parts, as
well as the unknowns respectively:

Xfore = Ffore(xfore’u)’ (1)

yfore = G fore(xfore’ U) , (2)
where u is the input of system, x__ is the state of the
fore parts of system, and y __=ly " X' ]T is the

output of the fore parts, in which X is the input to the
unknown system and y, . is the variable coupling the

fore and aft parts; F,__and G, are the system matrix

and output matrix of the fore parts respectively.

Similarly, the state space of the aft parts of entire
dynamics is expressed as:

Xaft = aft(xaft’ yfore,l’ y) , (3)

Ol = Gaﬂ(xaﬂ! yfore,l’ y) , (4)

where x_. is the state of the aft parts of system, y is the

output of the unknown system, and o' is the output of
the system; F_ and G, are the system matrix and

output matrix of the aft parts respectively.

The unknown components/sub-systems are expressed
as:

y= Funknown(i) , (5)

which is the identification object of the BP neural
network.

A modified LM algorithm is developed in the paper
to train the ANN, which can utilized the data that are
from the entire dynamic system output, the derived
dynamics of aft parts, along with the outputs of neural
network. The training process is presented in Fig.2 by

Eq. (6):
W:T(y,al,e). (6)

By using the modified LM algorithm the direct
training data for the unknown components are not
needed, which can avoid the difficulty of measuring the
unknowns. After the output error between the derived
dynamics and the actual system converges to minimum,
the unknown components are deemed as identified and
the dynamics of entire system is deemed as constructed
successfully.

3. Modified Levenberg-Marquardt Algorithm

This section first introduces briefly the original LM
algorithm, then elaborates the modified LM training
algorithm.

3.1 Levenberg-Marquardt Training Algorithm

The neural network training process by the original
LM, which is evolved from Gauss-Newton algorithm,
can be expressed by Eq. (7),

W, =W, ~H,J'E,, (")

where the k and k+1 represent the current iteration and
the next iteration; w, and w, , represent the weight



vectors including all the individual weights of neural
network; H, is Hessian matrix representing a second

order partial derivatives of the neural network output
errors with respect to the neural network weights; J, is

Jacobian matrix representing the first order partial
derivatives of the neural network output errors with
respect to the neural network weights; g, is output error

vector between neural network and the target system;

To avoid the computation of the second order partial
derivatives, the Hessian matrix is approximated in the
LM algorithm by Eq. (8),

H =373, +ul, (8)

where (¢ is a positive combination coefficient; and 1 is

the identity matrix that is introduced to guarantee the
invertibility of the Hessian matrix.

Substituting Eq. (8) into (7) gives weights updating
rule for LM iteration training expressed as:

W, =W, — (]I, + ) I E, ©)

If the coefficient u is very small, the Gauss-Newton

algorithm dominates the Eqg. (9) to give the advantage of
speed; if the updating error and the combination
coefficient u increase, the steepest descent method

dominates the Eq. (9) to guarantee a correct convergence
training direction.

3.2 Modified LM Training Algorithm

In Eqg. (9), the error vector is computed as the
difference between the unknown system output and the
neural network output. However, if the unknown system
is a part of large system, and its outputs cannot be
measured directly, as shown in Fig. 3, then the Jacobian
matrix of Eqg. (9) cannot be computed and the original
LM algorithm is not applicable.
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Fig.3 Neural network training by indirect error propagation

To train the neural network in such a scenario, a
modified LM training algorithm is developed, where the
new Jacobian and Hessian matrices are developed to
represent the partial derivatives of the entire system
output errors with respect to the neural network weights.
The following notations are employed in this section:

o' - the ith output of the actual entire dynamic system;

o : the ith output of the constructed dynamic model;

g, the ith error between o' and o, e, = 0! -0, ;

E,: the error vector of all the errors ¢, in the kth

iteration;
y,: the ith output of the neural network;

w : the ith weight of the neural network;
M, : the partial derivatives of the entire dynamics system

output errors with respect to the neural network outputs
in the kth iteration expressed as:

a0-0) oo-0) Ac-0)] [aw o ] (10)
6(0;_02) 6(0;_02) 6(0;_02) & & &

M=l o ¥ N ¥
00y —0,) 0(0h-0,) (0% —-0,) o, o,  do,

Jy - the Jacobian matrix between the neural network
outputs and the weights expressed as:

¥ oW ¥ .
ow, ow, T ow | (11)
Y ¥ ¥

‘]Vk: a‘{"l 3\{\/2 awu

2 T dnxi

As a result, a modified LM algorithm for the neural
network weights updating rule are expressed as:

Wy =W, (3, ", +u) 3, "E, (12)

where J, is the new Jacobian matrix that is developed
by applying the chain rule on Egs. (10), (11) and is
expressed by Eq. (13),

Jo, =My, - (13)

It should be noted that Jacobian matrix J, in the
modified LM algorithm is different from the one J, in
original algorithm: the j, is the derivatives of the

neural network outputs with respect to the neural
network weights, while the j, is the derivatives of the

neural network output errors with respect to the neural
network weights.

To boost the training efficiency, the batch training of
the modified LM algorithm can be implemented, and the
updating rule of the neural network weights are realized
by augmenting the Eq. (12) on both error vector E, and

Jacobian matrix J, in the column direction, expressed as
Eqg. (14):

Wiy =W, —(Jg " Jg +ul) 35 " Eg (14)
where E, and Jg are the corresponding augmented error
vector and the Jacobian matrix;

[, (15)

e, =8 B

[, (16)

Yo =9 ]



where the superscript p is the index of data samples in a
batch data.

4. Application of Dynamic Model Identification
of Parallel Kinematic Mechanism

Fig.4 shows the schematic representation of the
Stewart-Gough structure:

z Base

Limb actuator

End-effector

Fig.4 Schematic representation of Stewart structure

For the inverse dynamic modeling, all the obtained
geometric parameters of this structure are assumed to be
accurate. The friction models from the end-effector
joints and limb actuator joints are deemed as the
unknown systems. The friction models in the base joints
are neglected in this study due to its minor effect.

4.1 Dynamic modeling of Stewart Structure with
Friction Being Unknowns

By applying the Lagrangian formulation on the
parallel structure, the inverse dynamics is obtained in

Egs. (17) and (18) with the friction force F_, . being the
unknown variables:
¢, zd[at]_at_ F, (17)
¢ dt\oQ, ) aQ
i:g i _i_c -Tl_Ffriction, (18)
dtloQ ) aQ *

where A=[A, A, A, A, A A,]' represents the

Lagrangian multipliers; L represents the kinematic and
potential  energy of the parallel structure;

Qd :[qdl Ug2 Gus Qs Ugs qu]T the 6 coordinates
of end-effector reference frame X,v,z, in the global base

frame x,v,z,, Which are the dependent coordinates in
the Lagrangian equations; (o the kinematics constraint

equations taking the partial derivatives with respect to
the dependent coordinates; Fq the external force exerting
on the end-effector; Q =[g; o, Qs G Gs el
the length vector of the driving limbs in the Stewart
structure, which are the independent coordinates in the
Lagrangian equations; Cy the kinematics constraint

equations taking the partial derivatives with respect to
the independent coordinates; F =[f, f.]' the force
vector that is needed from the limb actuators;
Fricio=Lfu f..]' the friction force vector in the

limb actuators, which are an equivalent friction effect of
the combined action of friction in the end-effector joints
and limb actuator joints.

Due to the unknown equivalent friction models in the
actuators, the computable inverse dynamics model can't
be derived from Egs. (17) and (18), which, in the sense
of solving the linear equations, means the vector variable
F; that is the driving force needed from the actuator can't
be computed thereby.

In order to obtain the computable inverse dynamic
model of the Stewart structure, the BP neural network is
used to approximate the equivalent friction models based
on the input-output data set obtained by carrying out the
control experiments on the Stewart structure. Fig.5
shows the experimental set-up for obtaining the training
data of the neural network. As a convention, all the
symbols denoting measured data or training data in the
paper is capped by a tilde, hereafter.
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Fig.5 Experimental set-up for obtaining the training data set

In the experiment, the prescribed trajectories should
cover domains of interest that the robot will be used for
in practice. The accuracy of the trajectory tracking is not
the focus herein, since the data set ‘1(511,5[1, =| of the

o)
position, velocity and payload of the end-effector and the
data set {ﬁi } of force from the actuators are the concerns.
After the experimental data set are obtained, the BP
neural network can be trained by utilizing the modified
Levenberg-Marquardt ~ algorithm. ~ The  training

implementation is shown in Fig 6.
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Fig.6 Neural network training by indirect error propagation

Although the direct training data set bﬁm | for the

neural network of friction models are not available due
to the immeasurability of friction in the joints, the errors
E.i between the £ from experiment (Fig.6.1) and the F,

from the constructed dynamic model (Fig.6.11) can still
be utilized to train the neural network indirectly, because
the errors herein are caused by the inaccuracy between
the ANN model and the friction models. The modified



LM training algorithm is applied for the neural network
training, which is represented by Eq. (14) in Fig.6.

4.2 Experimental Results

For demonstration, the Stewart structure dynamics
modeling result is presented based on a specific end-
effector trajectory where the end-effector moves along a
trajectory in z direction with a speed of 10 mm/second.
The motion of the limbs in this scenario is identical.

A multi-inputs-outputs neural network with a single
hidden layer was employed for friction models of each
limb, where the velocity vector of each limb comprises
the 6 inputs of the neural network, while the friction in
the limb is the output. 20 neurons are used in the hidden
layer. For the training process, 2000 set of samples are
used from actuator driving force and the corresponding
end-effector positon and velocity.

Results for the training process and the constructed
inverse dynamics model in the given trajectory is shown
in Fig.8.
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c) Comparison of the actual drive force with the derived
force of inverse dynamics with ANN friction models

Fig.8 Inverse dynamic modeling results by incorporating the
ANN friction models

Fig.8 (a) shows the convergence status of the friction
model approximation, where the training converges fast,
and reaches the best at epoch 12, and finished at epoch
18. The reason for the big mean squared error is the
neural network is not fitting every training samples since
the number of training samples are significant large. This

is reasonable because the overfitting of neural network
should be avoided.

Fig.8 (b) shows a piece of segment in the comparison
of the actual drive force with the computed drive force
from the derived inverse model without considering the
friction, where the purple diamond line represents the
actual drive force, and the rest lines represent the
computed force of limbs from the inverse dynamics, and
the mean error value of comparison in the entire
trajectory is -1.330e+02.

Fig.8 (c) shows comparison of the actual drive force
with the force from constructed inverse dynamic model
with the ANN of friction, where the purple diamond line
represents the actual drive force, and the rest represent
the computed force, and the mean error value is 3.8723e-
01. The results demonstrate that the construction of the
inverse dynamic model for the given trajectory is
successful by taking into account the unknown friction
with ANN. It should be noted that, in Fig.8(c) there is
still, to some extent, the mismatch between the actual
drive force and derived drive force. The reason is the
inertial matrix and mass information in the constructed
dynamic model is slightly inaccurate from the practical
machine. However, this is out of the discussion of this
paper, and will be the future research work.

5. Conclusions

The dynamic model will notably benefit the control
system design of manipulators in DEMO RM. The paper
proposed a method using the BP ANN to approximate
the unknowns in the dynamics with the comprehensive
knowledge of the rest part of system. A modified LM
algorithm is developed for the training of ANN. The
method is applied successfully in the dynamics
modelling of a parallel structure with unknown friction
models. The method is general for the dynamic systems,
and is envisaged to be extrapolated to the manipulators
applied in DEMO.
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