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Abstract 

 We have numerically investigated the dependence of pedestal properties such as the pedestal 

height and the pedestal width on various global parameters using the EURO-DEMO as reference 

equilibrium. We have used EPED, a predictive model of the edge pedestal. Among global parameters 

we have chosen to vary, the triangularity, δ, the elongation, κ, and the poloidal beta, βp, have larger 

effect on the pedestal properties. Improvement of pedestal properties can be achieved for more shaped 

plasma boundary. However, the increase in the pedestal height and the width with δ saturates around 

δ~0.6. Also, the pedestal width saturates and the pedestal temperature starts to decrease for κ > 1.9. 

Improvement of the pedestal properties due to δ is larger at higher poloidal beta. The pedestal width 

slightly increases with the electron density at the pedestal top and the effective charge number. 

   

 

 

1. Introduction 

The next step in the development of fusion energy after the ITER project currently under 

construction in France, is the so-called DEMO reactor that will demonstrate the production of 

electricity from fusion power. The general guidelines in the design of DEMO are outlined in previous 

studies [1, 2]. A more specific design for European DEMO (EURO-DEMO1) is presented in Ref. 3. 

One of the key requirements for any DEMO design is reasonably high energy multiplication factor Q, 

i.e. the fusion energy produced divided by the energy used heating the plasma. The main effect on Q 

comes from plasma confinement; The better the confinement is, the easier it is to reach high value of 

Q. The confinement in H-mode can be divided into two components, the confinement in the core 

region, which is dominated by turbulent transport that restricts the temperature gradient ∇T/T below 

a critical value due to so-called stiff transport and the confinement of the pedestal near the edge where 

the density and temperature gradients can be significantly steeper than in the core due to suppression 

of turbulent transport. Instead of turbulence, the H-mode pedestals are ultimately limited by the MHD 

instabilities such as peeling-ballooning modes (PBM) [4]. In the EPED model [5], the PB stability 

criterion is combined with a criterion for the kinetic ballooning modes (KBM) to give a prediction for 

the pedestal temperature. 
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In this paper, we investigate the parameter dependencies of the EURO-DEMO1 design [3] in the 

EPED1 framework, which first creates a series of equilibria with the pedestal height and width (Δped) 

being tied by the condition, Δped = 0.076√βp,ped, where βp,ped is the poloidal β at the top of the 

pedestal. Then the pedestal prediction is the equilibrium corresponding to the crossing of the stability 

boundary for PBMs. The equilibria are solved including the self-consistent bootstrap using the model 

by Sauter [6] implemented in HELENA code [7]. The stability of the equilibria is solved using the 

MISHKA-1 code [8]. 

The design parameters are the following; Major radius (R0): 9.1m, minor radius (a): 2.9m, plasma 

current (Ip) 19.6 MA, toroidal magnetic field at geometrical axis (Bt): 5.7 T, elongation at the plasma 

boundary (): 1.78, triangularity at the plasma boundary (δ): 0.45, global poloidal β (βp): 1.1, 

electron density at the top of the pedestal (ne,ped): 6.8 × 1019/m3, effective charge (Zeff): 2.58 and 

the charge of the main impurity, Xenon (Zimp): 54. We vary these parameters around the nominal 

values and perform EPED predictions. To gain insight on the physics behind the effects on EPED 

predictions, we then investigate more in detail how the changes in EPED predictions are related to the 

changes in equilibrium and PBM stability. 

 

 

2. Results 

 

2.1 Effect of plasma boundary shaping parameters  

 

The geometric characteristic of plasma boundary is usually defined by triangularity and 

elongation. Since δ and κ can change various plasma parameters such as the safety factor, current 

density and pressure gradient not only in the core but also at pedestal region, they can strongly affect 

MHD instabilities including PBM in edge region. As a result, pedestal structure may strongly depend 

on the plasma shape. To find the effect of the plasma shaping on the pedestal properties, we calculated 

the height and width of the edge pedestal by changing δ and κ separately from the reference 

equilibrium. The results are shown in Fig. 1. From this figure, it can be seen that Δped and Tped 

(Tped is the temperature at the top of the pedestal) vary considerably with κ and δ, for low to 

moderate values. Both Δped and Tped increase as both shape parameters increase. These results 

agree well with various experiment findings [9-13]. Fig. 1(a) shows that Δped increases by 70%, 

while Tped increases threefold, as δ changes from 0 to 0.5. When κ varies from 1.4 to 1.8, Δped 

and Tped improve by 60% as shown in Fig. 1(b). The reason for improved pedestal structure turned 

out to be the increased stabilization of PBM, as manifested in Fig. 2 which shows the stability 

boundary of PBM on jϕ − α space, where α = −(2μ0q
2/ϵBT

2)(∂P/ ∂ρ) [14] is normalized pressure 

gradient, and jϕ is edge current density. Both jϕ and α values are their maximum near the center of 

the edge pedestal region. Here, q is safety factor, ρ is normalized radius, ϵ is inverse aspect ratio, 

P is plasma pressure, and BT is toroidal magnetic field at magnetic axis. As δ and κ increase, 

stability region widens and it allows plasma equilibrium to move diagonally to the region of larger α 
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and jϕ. This will lead to improved pedestal structure, due to the fact that α and Δped are correlated 

under KBM condition [5,15] in the EPED model, where the following Eq. (1) is satisfied,  

 

Here Pped is plasma pressure at pedestal top. Therefore, larger α will make Δped wider and Tped 

higher. Also, Tped increases faster than Δped because Tped ∝ Δped
2 . As a consequence, both Δped 

and Tped can increase as the stability boundary widens when δ and/or κ increase to moderate 

values. This is consistent with previous studies of shaping effect on PBM [16-19].  

 Large improvement in pedestal properties with plasma boundary shaping observed for low to 

moderate κ and δ values cannot be sustained as shaping becomes stronger. In Fig. 1(a), it can be 

seen that Δped and Tped saturates at δ > 0.6. The saturation of pedestal structure with δ is related 

to the behavior of trapped fraction, ft. At pedestal region, the toroidal current is dominated by the 

bootstrap current, jbs, which is proportional to pressure gradient (∝ α) and ft [6]. The trapped 

fraction does not change much with δ when δ is small, so both critical jϕ and α can increase at 

the same time in jϕ − α space if the stability boundary widens. But, for large δ, ft considerably 

decreases [20], and jbs cannot grow further even if α increases. Fig. 3(a) shows how reduction in ft 

can affect the movement of the critical equilibrium. In Fig. 3(a), the critical equilibrium point moves 

up diagonally (i.e., both critical jϕ and critical α increase with δ) nearly following the nose of 

stability boundary for δ ≤ 0.6  because ft  remains almost same. When δ > 0.6 , however, jbs 

decreases since ft decreases as δ increases. The critical equilibrium point then moves downward 

accordingly (i.e., critical jϕ decreases while critical α does not vary much with δ). Therefore, even 

though the stability boundary still improves for δ > 0.6, the improvement cannot be fully utilized 

because jϕ decreases. As a result, Δped and Tped begins to saturate near δ ≃ 0.6 . Comparison of 

ft(δ) with jϕ α⁄  (∝ jbs ∇P⁄ ) as a function of δ for the critical equilibrium points as shown in Fig. 

3(b) shows consistency of this explanation, such that the saturation of Δped and Tped in large δ is 

mainly due to ft. 

  Figure 1(b) also shows that Tped  starts to decrease when κ > 1.9  while Δped  steadily 

increases with κ. When κ changes from 1.9 to 2.3, Δped increases by 10% and Tped decreases by 

10%. This phenomenon can be understood from the expression of Tped with κ. Under the KBM 

constraint, Tped and ∂Tped ∂κ⁄  can be described by Eqs.(2) and (3) when κ variation is allowed, 

where Ip is plasma current and L is the perimeter of plasma boundary. As shown in Fig. 1(b), Δped 

increases rapidly with κ for κ ≤ 1.9. Therefore, ∂Δped 𝜕⁄ 𝜅 is larger than Δped 𝜅⁄  in this range. 

Consequently, Tped increases with κ from Eq.(3). On the contrary, ∂Δped ∂⁄ κ become smaller than 

Tped ∝ βp,pedIp
2 L2 ∝ Δped

2 Ip
2/(κ2 + 1) . (2) 

∂Tped ∂κ⁄ ∝  ∂Δped ∂⁄ κ− Δped/κ. (3) 

α ∝ Pped/Δped ∝ βp,ped Δped⁄ ∝ Δped ∝ Tped
1/2

. (1) 
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Δped 𝜅⁄  for large κ, because stabilization effect of κ saturates at large shaping. In this range, 

∂Tped ∂κ⁄  becomes negative when κ > 1.9  and therefore, Tped  decreases as κ  increases. This 

explains the behavior of Tped in Fig. 1(b) as a function of 𝜅. 

 

2.2 Effect of the poloidal beta 

Poloidal beta, βp , is one of major global parameters in tokamak plasma that indicate the 

performance of plasma confinement. Since βp  has strong dependence on pressure profile and 

poloidal flux distribution, it affects PBM and pedestal structure. Especially, a previous study found 

that βp induces Shafranov shift, Δsh, [21] and that it stabilizes the edge instability via Shafranov 

stabilization effect [4, 5, 22]. We performed βp scans and results are shown in Fig. 4. In this figure, 

Δped and Tped are shown to increase as βp increases. This agrees fairly well with the expectation 

from Shafranov stabilization and also with experimental results [23-27]. 

Improvement in Δped and Tped with βp is larger at higher δ than at lower δ. As shown in 

Fig.4, a change in Δped when βp varies from 0.8 to 1.3 is almost negligible (less than 1%) when 

δ = 0.2, while it becomes larger by more than 15% for δ = 0.5 in the same range of βp. This 

indicates that effect of βp on pedestal structure can be enhanced by strong shaping. A similar trend 

has been found in experiment [28].  

This behavior turned out to be due to higher stabilization effect of βp more dominantly on pure 

ballooning mode than on the pure peeling mode. Fig.5 shows the edge stability boundaries for two 

different βp values (0.8 and 1.1) for δ = 0.4. It can be seen that the stability generally improves for 

larger βp, more predominantly in the large α direction. The nose of the stability boundary moves 

upward only by 10%, while moving to the right in large α direction by 25%, which indicates the 

stabilization of the ballooning mode. Larger critical α allows the growth of the pedestal structure 

(Δped and Tped), according to Eq. (1). Horizontal distance between noses of different βp values in 

jϕ − α space increases as δ increases. The increase in α is only 10% for δ = 0, while it reaches 30% 

for δ = 0.6, when βp is varied from 0.8 to 1.1. Therefore, difference of pedestal structure in two βp 

cases is enlarged for higher δ. It can be concluded that the stabilizing effect of δ on edge pedestal is 

enhanced with βp, and vice versa. The mechanism that describes the synergetic stabilization effect of 

βp and δ on PBM still remains as a question.  

 

2.3 Effect of electron density and effective charge number  

 

The effect of electron density at the pedestal top, ne,ped, and effective charge number, Zeff, on 

pedestal properties has also been investigated. The effect of ne,ped is shown in Fig. 6(a) for two 

different values of δ (δ = 0.45 and δ = 0.65). A mode structure of a critical equilibrium with 

δ = 0.45 shows dominant components due to peeling mode, thus the critical equilibrium being 

located at left of the nose of the stability diagram in jϕ − 𝛼 space. On the other hand, a critical  

equilibrium with δ = 0.65 has an eigenfuction with dominant components due to ballooning mode. 
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The critical equilibrium is located at lower right of the nose. In both cases, Fig. 6(a) shows that Δped 

increases by 10% as ne,ped  changes from 3 × 1019/m3  to 7 × 1019/m3 . However, Te,ped 

decreases by more than 50% for the same change in ne,ped. This can be understood by the KBM 

constraint in EPED model, where Tped can be expressed as Eq. (4), 

We have used the relation, 

which is satisfied for a single species of impurity with the impurity charge number Zimp. Since 

variation of Δped is not large, 1/ne,ped term dominates in Eq. (4). Therefore, Te,ped decreases even 

if Δped slightly increases when ne,ped increases.  

The results of Zeff scan are shown in Fig. 6(b), where Δped increases monotonically by 5% as 

Zeff is varied from 1.5 to 4.5. From Eq. (4), Tped is expected to increase if Δped increases as Zeff 

increases for fixed ne,ped  and Zimp . As expected, Fig. 6(b) shows that Tped  also increases 

monotonically with Zeff. We assumed a flat Zeff profile in calculation. 

The electron density and the effective charge number are found to affect the edge stability through 

the electron-ion collisionality, νei. The collisionality changes resistivity and bootstrap current [29]. 

Therefore, the edge plasma current distribution will be changed and this has influence on the PBM 

stability [30, 31]. The dependence of the effective collisionality on ne,ped, Zeff, and Zimp can be 

written as Eq. (6),  

After we expressed the variations of ne,ped and 𝑍eff in terms of that of νeff, which is normalized to 

the reference equilibrium value, we have re-plotted previous results of Fig. 6 in Fig. 7. Here, νeff 

varies because either ne,ped or Zeff changes. It can be clearly seen that Δped variations are nearly 

same in both cases. However, Tped curves show different behavior for obvious reasons, i.e., due to 

Eqs. (4) and (6). If we have plotted Pped curves instead of Tped curves, they will also show good 

agreement, of course. Although we have not shown the effect of Zimp, we found from its scan that the 

behavior of the pedestal structure with Zimp can be also understood from the variation of νeff. 

Experimental results of correlation between the pedestal width and the collisionality are not yet 

clear. They sometimes reach different conclusions even in the same machine. Δped increases with 

ne,ped in DIII-D and JET [32], as predicted by our calculations. It is also shown to increase with Zeff 

in JT-60U [33] and with collisionality [34]. In other cases, Δped is shown to decrease with ne,ped in 

nped = ne,ped  2 −
Zeff − 1

Zimp
 , (5) 

Tped = Pped nped⁄ ∝
Δped
2

ne,ped
 2 −

Zeff − 1

Zimp
 

−1

. 
(4) 

νeff ≡ n
e,ped

5
2 ZeffPped

−
3
2  2 −

Zeff − 1

Zimp
 

3
2

∝ Zeffne,pedTped
−
3
2 ∝ νei . (6) 
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DIII-D [35,36] and JET [37], or they have not shown any meaningful correlations in JET and DIII-D 

[38,39]. 

The critical equilibrium points are plotted with ne,ped variation in Fig. 8 in the jϕ − α space. 

The change in stability boundaries is almost negligible unlike when δ, κ, and βp are varied. The 

result that Δped increases with ne,ped as shown in Fig. 6(a), seems to contradict our intuition when 

equilibria are located in the ballooning dominant region due to large shaping of δ = 0.65. It can be 

seen that the critical α decreases as ne,ped increases in this case, which generally means Δped 

should also decrease according to Eq. (1). This can be reconciled by considering the fact that a new 

equilibrium is constructed when ne,ped is varied, and that Eq. (1) cannot be applied for this change. A 

new equilibrium with increased ne,ped has smaller α and jϕ for the same Δped, such that it enters 

inside the stability boundary. This then allows α and Δped to increase where Eq. (1) can be applied. 

Therefore, Δped increases even if the critical α decreases compared to that of the smaller ne,ped 

equilibrium. 

 

3. Conclusions and discussions 

 

With edge predictive model EPED, we determined the temperature at the pedestal top and width 

of the pedestal when plasma parameters (δ, κ, βp, ne,ped and Zeff) are varied. The plasma boundary 

shaping parameters (δ and κ) change plasma equilibrium properties and the PBM stability boundary 

considerably. These affect the pedestal structure and EPED model predicts that Δped and Tped 

generally increase with the shaping. This agrees well with experimental findings. However, Δped and 

Tped saturate or even decrease when δ and κ increase further. The degradation of the edge pedestal 

improvement for very large δ cases is due to the drop in the trapped fraction which then makes the 

bootstrap current decrease. This implies that excessive shaping is less effective as far as the edge 

pedestal structure is concerned. Large shaping also induces difficulties in plasma control and there 

exists some limit in plasma operation window. Optimum shaping parameters can be determined by 

considering both control issues and predictive modeling.  

Effect of βp on pedestal structure is also quite large. High βp is favorable because of Shafranov 

shift stabilization effect dominantly on the ballooning mode, thus changing the stability boundary by 

increasing the critical pressure gradient. This behavior also agrees well with experimental results. 

Furthermore, synergetic improvement of edge properties due to βp and shape parameter is found and 

it is expected that optimization of edge pedestal structure via shaping will be more effective in plasma 

with higher βp. 

Increasing ne,ped  and Zeff  also makes Δped  increase. But their influence is quite small 

compared to that of δ, κ and βp, because the change in the stability boundary is negligible. Effect of 

ne,ped and Zeff is shown to be mainly through effective collisionality, thus changing the bootstrap 

current.  

We have performed the parameter scans for EURO-DEMO1 reference case. But our results can 

be also applied to explanation of edge properties and optimization of edge structure in conventional 
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tokamaks. 
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Fig. 1 𝚫𝐩𝐞𝐝 (in red) and 𝐓𝐩𝐞𝐝 (in blue) as a function of (a) 𝛅 and (b) 𝛋. 

Fig. 2 Figure shows equilibrium points on 𝐣𝛟 − 𝛂 space for reference (red), smaller 𝛅 (green) and 

smaller 𝛋 (blue) case. The peeling-ballooning stability boundary for each case is also drawn. As either 𝛋 

or 𝛅 increase, the PBM stability boundary expands.  
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Fig. 4 a) 𝚫𝐩𝐞𝐝 and b) 𝐓𝐩𝐞𝐝 as a function 𝛅 for various 𝛃𝐩. Both 𝚫𝐩𝐞𝐝 and 𝐓𝐩𝐞𝐝 increase with 

𝛃𝐩 and 𝛅, and saturate for 𝛅 ≥ 𝟎.𝟔.  

Fig. 3 a) Critical equilibrium points and stability boundaries (orange) for different 𝛅 values. The critical 

equilibrium moves diagonally for 𝛅 ≤ 𝟎.𝟔. b)  𝐣𝛟/𝛂 and 𝐟𝐭 as a function of 𝛅. Good agreement can 

be found between these two curves. 
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Fig. 5 Equilibrium point and stability boundary for different 𝛃𝐩. Blue triangle corresponds to the critical 

equilibrium point for 𝛃𝐩 = 𝟎.𝟖, while red circle corresponds to that for 𝛃𝐩 = 𝟏.𝟏.  

Fig. 6 Δ
ped

 and Tped as a function of (a) ne,ped and (b) Zeff. 
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Fig. 7 𝚫𝐩𝐞𝐝 and 𝐓𝐩𝐞𝐝 as a function of 𝛎𝐞𝐟𝐟.  

Fig. 8 Stability boundary and critical equilibrium points for different 𝐧𝐞,𝐩𝐞𝐝 (in 𝟏𝟎𝟏𝟗/𝐦𝟑). Other 

plasma parameters except 𝛅 (𝛅 = 𝟎.𝟔𝟓) are same as those in reference plasma equilibrium. 


