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Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland

Abstract

An assessment of alpha particle confinement is performed in the European DEMO reference

design. 3D MHD equilibria with nested flux-surfaces and single magnetic axis are obtained with the

VMEC free-boundary code, thereby including the plasma response to the magnetic ripple created by

the finite number of TF coils. Populations of fusion alphas that are consistent with the equilibrium

profiles are evolved until slowing-down with the VENUS-LEVIS orbit code in the guiding-centre

approximation. Fast ion losses through the last-closed flux-surface are numerically evaluated with

two ripple models: 1) using the 3D equilibrium and 2) algebraically adding the non-axisymmetric

ripple perturbation to the 2D equilibrium. By virtue of the small ripple field and its non-resonant

nature, both models quantitatively agree. Differences are however noted in the toroidal location

of particles losses on the last-closed flux-surface, which in the first case is 3D and in the second

not. Superbanana transport, i.e. ripple-well trapping and separatrix crossing, is expected to be

the dominant loss mechanism, the strongest effect on alphas being between 100− 200 KeV. Above

this, stochastic ripple diffusion is responsible for a rather weak loss rate, as the stochastisation

threshold is observed numerically to be higher than analytic estimates. The level of ripple in the

current 18 TF coil design of the European DEMO is not found to be detrimental to fusion alpha

confinement.

∗ Present address: Princeton Plasma Physics Laboratory (PPPL), Princeton NJ, 08543-0451, USA
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I. INTRODUCTION

A variety of physical and technological aspects must be taken into account while con-

ceiving the prototype commercial fusion reactor DEMO. One important aspect in order to

maintain optimal burning plasma conditions is the confinement of fusion alphas. Confine-

ment primarily depends on the magnetic configuration, and can be evaluated in axisymmetry

by neoclassical transport theory [1] and dedicated simulation tools, e.g. TRANSP [2]. Fast ion

confinement is however significantly affected by the presence of non-axisymmetric magnetic

fields; the non-conservation of toroidal momentum and large drift orbits lead to increased

collisional and distinct collisionless loss channels. As a consequence, power deposition and

heat loads can peak at specific toroidal locations [3–6], potentially damaging Plasma-Facing

Components (PFCs).

Magnetic ripple due to the fixed finite number of Toroidal Field (TF) coils is a permanent

source of toroidal asymmetry within tokamak plasmas. The amplitude of the ripple field is

usually below 5% percent of the total field in existing tokamaks and predicted to be < 2%

in ITER. It scales with the major radius raised to the power of the number of coils N

[7, 8] and can be passively reduced by introducing Ferritic Inserts (FIs) between the TF

coils [9]. Even with these features, magnetic ripple can have a sizeable impact on fast ion

behaviour [10, 11]. At a collisionless level, the trapping of particles in toroidal magnetic

wells can lead to superbanana transport [12, 13], and the onset of the stochastic motion of

bounce tips [11, 14, 15] can occur, leading to fast vertical particle motion and early particle

loss. Collisions ease particles in and out of ripple traps and regions of chaotic bounce tip

motion, thus altering neoclassical transport regimes [16, 17]. In most studies, the ripple field

is treated perturbatively, i.e. the non-axisymmetric components produced by the TF coils

without the plasma is added to the axisymmetric equilibrium as a vacuum perturbation [18].

The approximations made on particle motion, such as zero orbit width expansions, are not

necessarily valid throughout the broad energy spectrum of fast particle populations.

In this paper, an assessment of fusion alpha confinement in the European DEMO design

is carried out. The main goal is to facilitate the calculation of alpha particle losses due to

magnetic ripple in DEMO, and thus to be able to estimate power fluxes to the machine

wall and plasma facing components in a realistic and consistent way. The first part of

the effort is to establish of a suitable model for the plasma response to the breaking of
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axisymmetry due to finite number of toroidal field coils. This particular study is motivated

by the recent demonstration [19] that the plasma response model, employed to investigate

the effect of axisymmetry breaking due to N = 3 resonant magnetic perturbation (RMP)

coils, has a strong effect on fast ion confinement and the scaling of losses. In that study,

and in this one, two opposing approaches are compared, one where the symmetry breaking

field calculated in absence of the plasma is added to an axisymmetric MHD equilibrium

calculation (henceforth called the 2D+ripple approach), while the other where a full 3D

free boundary MHD equilibrium calculation naturally includes the plasma response within

the 3D deformation of its flux-surfaces (henceforth called the 3D equilibrium approach).

Confinement of fast particles in ITER has been similarly investigated with 3D equilibrium

[20]. In the study into the effects of resonant magnetic perturbations on fast ion confinement

[19], it was found that particle losses are dominated, at low energy, by parallel transport

due to field-line stochasticity in the 2D+RMP approach and, at high energy, by cross-field

drift in the 3D deformed equilibrium. The study reported here examines to what extent the

two models of 3D fields lead to transport of alpha particles in DEMO where axisymmetry

breaking is associated with the ripple of N = 18 TF coils. In this case, the plasma response

in the presence of such high toroidal mode number is predicted to be weak, thus ensuring

that field-line stochasticity is low and that both ripple models are equivalent representations

of the physical situation.

The modelling comprises a realistic evaluation of the 3D vacuum fields produced by the

DEMO coils using a Biot-Savart integrator Coil.Sphell [21], a consistent treatment of the

plasma response as a 3D MHD equilibrium using the free-boundary VMEC code [22] and an

accurate tracking of fast particles with the VENUS-LEVIS orbit code [23]. By undertaking

full-F simulations for the alpha particle distribution function, it is found that the choice of

ripple model affects the local power flux, i.e. the toroidal and poloidal deposition points on

the LCFS, but the total power given to the edge is the same. Simulations predict an increase

of 50% of the radiated power of 418kW through the LCFS in a purely axisymmetric system.

Transport is found to be enhanced in the 100-200keV range, which constitutes a convenient

process for helium ash removal dominated by collisional ripple trapping and superbanana

transport, rather than stochastic ripple diffusion.

The paper is organised as follows. Section II describes the input parameters used for

integrated modelling of DEMO, i.e. coil configuration and profiles. It also discusses the
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(a) 3D view of DEMO with 18 TF coils. Red/blue colours

denote the direction of current (clockwise/counter-clockwise)

in the PF coils.
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(b) Top view of the TF coils. The crosses

represent the discretised filaments on the

midplane high-field side.

Figure 1: DEMO coils modelled as filaments for the computation of the 3D vacuum field (without

plasma).

2D and 3D equilibria obtained with VMEC as well as the ripple field, represented either

as a vacuum component or as the bulging of 3D nested flux-surfaces. Section III reviews

the conditions for ripple-wells, superbanana orbits and stochastic ripple diffusion, which

are important collisionless loss channels. Section IV presents the results from full-F slowing-

down simulations within VENUS-LEVIS and gives an estimate of the alpha particle and power

loss through the last-closed flux-surface (LCFS).

II. DEMO COILS, PROFILES, EQUILIBRIUM AND RIPPLE FIELD

A. Coils and vacuum fields

The European DEMO coil configuration consists of 18 TF coils (black curves), 6 control

coils (blue squares) and a central stack of 5 coils (green rectangles), as depicted on figure

1 and 2. Each of the 18 TF coils are modelled with 18 evenly distributed current-carrying

filaments, as highlighted by the crosses on figure 1(b). The curves formed by each of these
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filaments are discretised into a large number of small straight segments. The control coils

are modelled with 4 ring-shaped filaments on each corner and the stacked central coils either

with 6 or 10 depending on their height. Figure 2 displays this setup in the poloidal plane;

the magenta crosses or dots locate each filament and represent the direction of current (dots

means outwards and crosses inwards with respect to the sheet of paper). The direction

of current in the TF coils is such that the toroidal magnetic field points in the clockwise

direction looking from above the device (opposite to the definition of cylindrical toroidal

angle). In this way, the ∇B drift is naturally downwards, towards the divertor. The induced

toroidal plasma current is in the same direction as the magnetic field (flowing clockwise from

above) as in ITER. This way, co-passing particles (with v|| > 0) have an inward radial drift

on the upper half and outward drift on the lower half of their orbit.

Coil.Sphell [21] is used to process the vacuum field generated by the current filaments.

Applying the Biot-Savart law, the code sums the contribution to the total field of each

discretised segment [24, section 2.3d] as well as the Green functions (elliptic integral) of

each axisymmetric PF filament weighted by the coil’s current. The vacuum magnetic field

BR, BZ , Bφ is recorded on a 3D cylindrical mesh in orthonormal cylindrical coordinates as

an mgrid file that is then read by the free-boundary equilibrium code VMEC and the orbit

solver VENUS-LEVIS [19]. The non-axisymmetric component of the vacuum field that gives

rise to magnetic ripple is discussed in section II D.

B. Profiles

The background plasma profiles considered throughout this work have been established

by the DEMO Physics Basis Group to model the Start Of Flat-top (SOF) phase of a generic

pedestal H-mode discharge. A weakly reversed core q-profile and edge bootstrap current

is assumed. The ion population consists of 50% Deuterium and 50% Tritium. Figure 3(a)

displays the electron/ion densities/temperatures. The background plasma pressure is taken

as the summed product P =
∑

j njTj and is used as an input for the force balance calculation

within VMEC alongside the toroidal current density profile. These profiles as well as the q-

profile resulting from the equilibrium calculation are shown on figure 3(b). The choice of

q-profile is particularily important because ripple transport regimes are influenced by the

field-line pitch, as pointed out by various authors [11, 25] and reviewed in section III. The
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Figure 2: Poloidal cross section of DEMO coils, vessel wall (red contour) and 2D plasma flux-

surfaces from VMEC calculation (grey curves). The black lines depict the filaments used to represent

one TF coil. The TF coil current flows in the counter-clockwise direction, yielding a toroidal field

coming out of the poloidal plane. The blue squares delimit the control PF coils and the green

rectangles the central stack coils. The magenta marks represent the filaments chosen to model the

PF coils (crosses for inward current direction, dots for outward).

current profile and the pressure profile have a direct influence on the equilibrium calculation

via the MHD force-balance. The temperature and density profile control the fusion cross-

section and therefore the source of alpha particles in full-F simulations. It is rather tedious

to perform a sensitivity study of alpha particle losses with respect to background plasma

profiles. The latter are still under investigation and have not acquired their definite shape,

such that it is probably too early to perform quantitative scans. The numerical results

presented hereafter suggest that alpha particle confinement is excellent in DEMO and loss

due to ripple is a minor concern. Thanks to the tools and work presented here, losses can

easily be re-assessed based on analytic expressions reviewed in section III.
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Figure 3: DEMO background profiles at the SOF phase.

C. Equilibrium

The details of the construction of free boundary equilibrium using the VMEC code is

presented in detail in [26]. Given the external vacuum field from the coils described in section

II A and the profiles described in section II B, non-linear MHD equilibrium calculations

are performed with the free-boundary VMEC code. Two kinds of magnetic configurations

are produced: an axisymmetric equilibrium with toroidal mode number n = 0 and a 3D

equilibrium with multiples of the toroidal ripple periodicity n = ±{0, 1, 2, 3} × N , where

N = 18 is the number of TF coils. In both cases, fully up-down asymmetric mode content

and poloidal numbersm = 0−11 are retained. The number of radial mesh points is set to 289.

The 2D equilibrium obtained represents the unperturbed axisymmetric plasma to which the

vacuum ripple field is algebraically added. The 3D equilibrium includes the plasma response

to the magnetic ripple in the geometry of its nested flux-surfaces as well as in the toroidal

mode spectrum of the magnetic field. In this sense, the VMEC MHD equilibria are consistent

with the profiles and coil setup presented earlier. The studied DEMO configuration is a

single-null diverted plasma with major radius R0 = 9.25m, minor radius a = 2.9m, field

on-axis B0 = 6T, toroidal plasma current Ip = 19.6MA, volume V = 2145m3 and β = 2.2%.

Figure II C illustrates the corrugation of the LCFS due to the finite number of TF coils in
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Figure 4: Representation of the bumpy LCFS of a 3D MHD equilibrium computed by the free-

boundary VMEC code in the DEMO coil configuration. The corrugation caused by the ripple,

R3D − R2D, has been inflated by a factor of 200 for illustration purposes. Deformations of the

LCFS are found to be 1cm at most.

coil MA coil MA

TF 14.832 P1 12.28

CS3U 9 P2 -7.2 / -6.8

CS2 5.6 P3 1.25 / 1.65

CS1 -8.79 P4 -8.58 / -8.18

CS2L 7.01 P5 -7.11 / -6.71

CS3L 8.7 P6 18.3 / 18.3

Table I: Coil current required to centre and stretch the plasma in the limits of the vacuum vessel

with VMEC for DEMO Ip = 19.6MA / 16.6MA.

the 3D equilibrium. The maximum edge deformation is found not to exceed 1cm, suggesting

that the non-linear response of the plasma is weak. The coil currents required to centre

and stretch the plasma in place are shown in table I. It is noted that the plasma position

and the shape of the LCFS are rather sensitive to small changes in these values. An MHD

stability analysis would help understand the nature of this sensitivity.
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D. Ripple field

The non-axisymmetric component of the magnetic field, i.e. the ripple δB, is represented

in the literature as a vacuum field. With this simplifying assumption, the perturbation

respects ∇ · δB = 0 and ∇ × δB = 0. The plasma response to a weak non-resonant term

is important if β & N2ε2, where ε = r/R is the inverse aspect ratio [8, Newcomb’s equation

in a cylindrical plasma column]. It is unlikely that this condition be satisfied in the case of

DEMO. This statement is yet to be verified numerically by comparing the ripple amplitude

in the 2D+ripple and 3D equilibrium models.

In the vacuum approximation, the ripple field satisfies a Laplace equation ∇2Φ = 0,

where δB = ∇Φ. Analytic solutions of this boundary value problem exist in special cases.

For circular TF coils in a tokamak configuration, the fundamental (n = N) vacuum ripple

perturbation is expressed as [7]

Φ =
B0R0

N
δ(R,Z) sin(Nφ) (1)

δ(R,Z) = δ0 cosh(αZ)JN(αR) (2)

where JN is the Bessel function of order N and α and δ0 are geometric constants. This

result highlights the fact that the ripple amplitude scales as δ ∝ (αR)N as a function of

major radius and number of TF coils. The geometry is more complicated than circular in

DEMO, so the ripple amplitude δ(R,Z) is evaluated numerically as

δ(R,Z) ≡ Bφ,max −Bφ,min

Bφ,max +Bφ,min

=
max(Bφ)

< Bφ >
− 1 (3)

where the total 3D field B is calculated via Coil.Sphell or VMEC. The fundamental field

and vector potential (up to a choice of gauge) are then described by

δA =
B0R0

N2
R cos(Nφ) (∂Zδ∇R− ∂Rδ∇Z) (4)

δB = B0R0

[
1
N

sin(Nφ)∇δ + δ cos(Nφ)∇φ
]
. (5)

Figure 5(a) shows the non-axisymmetric component of the vacuum field generated by the

coils as a function of the toroidal angle at a given point in (R,Z). The ripple field displays

the expected sinusoidal behaviour with a dominant mode number n = N , as in equation

(1). The magnetostatic interaction with ferritic inserts will reduce the amplitude of that
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Figure 5: Properties of the ripple field of DEMO.

fundamental mode, but may give rise to harmonics and localised peaks [27]. Tools exist to

model this phenomenon, but its investigation is outside the scope of this work.

Figure 5(b) demonstrates a scaling of δmax = 0.76N of the maximum ripple amplitude

within the vacuum vessel as a function of the number of TF coils. The ripple amplitude

in the current DEMO design is 0.72% with 18 coils. Keeping the vacuum vessel in place,

it would be 1.24% with 16 and reduced to 0.41% with 20. The change is probably not

significant enough to consider varying the number of coils. This is discussed from the point

of view of alpha particle loss channels in section III.

Figure 6 shows that δ(R,Z) has the same features in the poloidal plane as in equation

(2). It also demonstrates that the vacuum vessel is adequately positioned away from the

large increase near the TF coils. Lowering the vacuum chamber by a few centimetres might

help to further reduce its penetration.

Resonant magnetic perturbations generate magnetic islands at rational surfaces when

applied to axisymmetric MHD equilibria and spoil the confining properties of nested flux-

surfaces. When islands overlap, field-lines become stochastic, large portions of the plasma
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Figure 7: Poincaré plot of field-lines from the 2D+ripple model in the normalised flux coordinates

plane (ρtor, θ). The nested flux-surfaces are weakly bulging out at the outer midplane. Displace-

ments are in the range of 1cm in real space, similarly to figure II C.

are connected and relax to Taylor states [28]. In such cases, neither the 2D+ripple nor

3D equilibrium approach is appropriate to describe the magnetic configuration. Figure 7,

which is a Poincaré plot of DEMO’s field-lines, indicates that the ripple field is only weakly

resonant and small enough not to destroy the nested flux-surfaces; the vertical lines are

merely deformed and no islands form. Unlike the case of RMPs [19], both 2D+ripple and

3D equilibrium models are almost equivalent representations of the magnetic field.
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Figure 8: Trajectory of a deeply trapped particle shown on a torus with colour coding marking

the ripple field intensity |δB| on the average flux-surface. The particle is toroidally trapped until

the downward ∇B drift drags it away from the locally high ripple field so that the particle crosses

to the next field periodicity. This mechanism, called separatrix-crossing [12, 13] leads to enhanced

transport in the presence of collisions [7, 17].

III. ALPHA PARTICLE LOSS CHANNELS

In its minimum field of 4.6T, alpha particles at 3.5MeV in DEMO have a Larmor radius

of 8.15cm at most, i.e. less than 3% of the minor radius (2.9m). With a poloidal field

of 1.2T at the LCFS on the low-field side midplane, the banana width is expected to be

rb = 2
√
εmv/eBp ≈ 30cm, implying that first orbit loss concern alpha particles only in the

outer 19% of the plasma volume. Additional losses will occur if particles access that space

via collisionless and/or collisional processes. There is a distinction to make depending on

whether the loss channel is effectively diffusive or convective. The diffusive type can be

understood as the result of a “slow” stochastic processes (random walk), e.g. collisions or

ergodic orbits. Losses from convection, which are in a sense direct and fast, are important

to assess by solving the particle dynamics.

In the absence of collisions, the first-order guiding-centre drift equations admit three

constants of motion in axisymmetric systems, namely energy E = 1
2
mv2 = 1

2
mv2
|| + µB,

magnetic moment µ = mv2
⊥/2B and toroidal momentum Pφ = eAφ + mv||Bφ/B = −eΨp +

mv||F/B where Ψp is the poloidal flux and F (Ψp) = Bφ is the poloidal current and covariant

component of the magnetic field. In axisymmetry, guiding-centre orbits are thus exactly

integrable, i.e. can be expressed as quadratures. Magnetic ripple only spoils the conservation

of toroidal momentum. Depending on the size of the perturbation, orbits change from being
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near-integrable (deformed closed paths in phase-space) to resonant (island structures in

phase-space) to finally chaotic/stochastic. Only when the orbits are stochastic/ergodic can

collisionless losses effectively be described as a diffusion, otherwise they are convective in

nature. The transition between topological classes of orbits is a difficult non-linear problem

where the geometry, up-down asymmetry, elongation and triangularity have strong effects,

as discussed hereafter.

In DEMO, the free orbits of passing particles do not deviate significantly enough from

integrability, since the ripple is non-resonant and weak; the trajectories of passing particles

form drift-surfaces that are topologically the same as flux-surfaces, traced by field-lines.

Passing-particles are well confined and their contribution to heat loss and power deposi-

tion is negligible. Trapped particles, on the other hand, are extensively affected by non-

axisymmetric components. Two different mechanisms are at play: 1) the perturbed position

of their bounce-tips on a given |B| = const surface can resonate with the ripple periodicity

and become chaotic, leading to collisionless stochastic diffusion [15], 2) the toroidal varia-

tion of the ripple field creates magnetic mirrors such that particles with v||/v <
√
δ become

trapped within a field periodicity [7, 25]. In this case, the bounce tips rapidly move across

the constant |B| surface due to the “grad-B” drift in the B ×∇B direction (downwards in

our case), forming the so-called superbanana orbits. If the depth of the ripple well increases

as the bounce tips are displaced outwards, the particle is lost to the edge. In the oppo-

site case, the particle simply moves out of the ripple well and the orbit returns to being a

traditional banana (poloidally trapped). The latter possibility, called ripple-detrapping or

separatrix crossing [12, 13] is illustrated on figure 8. Such particles are still confined but

traverse between periodicities in an random way.

A. Estimate of the ripple well domain

Regions where ripple wells exist are mapped at zero-order in Larmor radius by locating

where the modulus of the total field,

B = B2D + δB|| +O(δ2) = B2D[1 + δ cos(Nφ)] +O(δ2), (6)

has a negative slope (dip) in the direction of unperturbed field-lines [7, 25]. Writing the field-

line equation dφ/dθ = Bφ
2D/B

θ
2D ≈ q, where Bi = B ·∇ui are the contravariant components

13
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Figure 9: Comparison between a) semi-analytical estimates of ripple-well and stochastic ripple

diffusion domains and b) numerical integration of particle orbits.

of the magnetic field, the criterion is 0 > dB
dl

= dθ
dl

(∂θB + q∂φB). Ripple wells occur roughly
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when

δ >
|∂θB2D|
B2DN

Bθ
2D

Bφ
2D

≈ ε| sin θb|
Nq

(7)

where ε = r/R is the inverse aspect ratio, B2D ≈ B0(1−ε cos θ), B0 is the magnetic strength

on axis. The fields in equation (7) are evaluated at the bounce position θb where the parallel

velocity is zero, v|| = 0, and the guiding-centre energy is entirely stored in the magnetic

potential, i.e. E = µB2D(Ψp, θb). Notice that the first part of equation (7) is valid in any

flux coordinate system, which makes it directly applicable to the output of VMEC (no need

to find straight field-line coordinates).

The black hatched patch in figure 9(a) highlights the ripple well domain using equation (7)

within the 19.6MA DEMO equilibrium. A direct vertical path to the LCFS appears beyond

R = 11m from the outer midplane; particles whose bounce-tips fall into that area are rapidly

lost (convection). Below R = 11m, trapped particles in the hatched domain move in and

out of the ripple-well, as in figure 8. In velocity space, it is known that ripple-well trapping

concerns only a small fraction v||/v .
√
δ of the fast particle population [7, 29]. This loss

channel is very active in the collisional regime, when particle orbits considerably vary due

to pitch-angle scattering. The superbanana fraction is greatly enhanced by diffusion and

redistribution of particles in phase-space [7, 13, 17].

B. Resonant bounce-tip motion and stochastic ripple diffusion

Figure 9(b) shows the bounce tip displacement of a collection of trapped particles. Their

motion is numerically calculated by using the guiding-centre orbit code VENUS-LEVIS. Par-

ticles that are not ripple-trapped, which is the case for most of the dots in figure 9(b), can

still become unconfined via a collisionless process called stochastic ripple diffusion [11, 14–

16, 30]. Figure 10, which is a break-up of figure 9(b) into planes of constant major radius

R, illustrates various examples of bounce-tip motion. Most appear to be only weakly per-

turbed (still integrable orbits) and form horizontal lines in the vertical and toroidal plane

at constant B (KAM surfaces in phase-space). In some areas, the net toroidal shift matches

the ripple field periodicity and the bounce-tip displacement resonates with the perturbation

(in the sense of the KAM theorem), thus generating island structures and fixed points. The

elliptic shapes at R = 9.8m and Z = 1m are examples of precession resonance, also indicated

on figure 9(b). These resonant island structures grow and deform due to non-linearities, as
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Figure 10: Displacement of bounce tips on different planes of constant |B|.

the ripple field becomes larger towards the outboard side (for example at R = 11m above

Z = 1.2m). Eventually, the islands overlap and the wandering of the bounce-tips becomes

chaotic, as seen near the midplane at R = 11m. This stochastic motion leads to collisionless

diffusion and, if these regions connect to the vacuum vessel, particles are lost after several

bounce times (∼ 1000). The route to chaos is a highly non-linear problem [15] and the

competition between bounce resonances and precession resonances leads to subtle changes

in the resonance patterns.

There is no simple analytic expression for the onset of bounce-tip stochastisation and no

reliable expression to trace out loss paths. Estimates are provided in the form of a Chirikov

criterion applied to the bounce-tip map. Analytic expressions are established in the limit

of zero orbit width by several authors [11, 14, 29]. Their result is generalised here to be

able to directly use VMEC equilibria and coordinates. For a given energy E and magnetic
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moment µ, the variables required to locate the bounce tips of a particle is the toroidal angle

φ and toroidal momentum −Pφ/e = J . The poloidal bounce point at Ψp(E, µ, J, φ) and

θb(E, µ, J, φ) is constrained by the relation B(Ψp, θb, φ) = E/µ. In the absence of ripple, φ is

an ignorable angle and J is the associated constant action, which conveniently corresponds

to the poloidal flux J = Ψp. Following the work by [14], the weak ripple makes J become a

time-dependent function, described by

dJ

dt
=
∂L/e
∂φ

= v||(∂φAi)b
i
2D −

µ
e
∂φB +O(δ2, m

e
) (8)

≈ δ µ
e
B2DN sin[Nφ(t)] +O

(
δ2, m

e

)
(9)

where equation (6) was used as well as the phase-space guiding-centre Lagrangian [31],

L = (eA+mv||b)·Ẋ− 1
2
mv2
||−µB, bi = B/B ·∇ui and the lowest-order unperturbed solution

to the guiding-centre Euler-Lagrange equations Ẋ = v||b+O(m
e

). By virtue of equation (4),

the first term in equation (8) is equal to v||B0R0R/N [(b × êφ) ·∇δ)] sin(Nφ) ∝ φ̇ sin(Nφ)

and contributes little to the total variation. As in [14], the stationary phase approximation

is used to integrate equation (9) around the bounce tip, −Pφ/e = J is incremented at the

jth bounce tip by

Jj+ 1
2

= Jj− 1
2

+ ∆ sin
[
Nφj + (−1)jπ/4

]
(10)

where ∆(E, µ, J) = δ
µ

e
B2D

√
2πN

|φ̈j|
+O(δ2, m

e
) (11)

The fields in this expression are evaluated at the bounce position in the unperturbed equi-

librium. The subscript B2D = B is dropped hereafter so as not to overload the notation.

The toroidal acceleration is found at lowest order in the drift approximation as

φ̈ ≈ d

dt

[
v||
Bφ

B

]
≈ v̇||

Bφ

B
= − e

m

µ

e

∂θB

B

(Bφ)2

qB
(12)

where the equation of motion v̇|| = − e
m
µ
e
∇B ·b was used. The coefficient ∆, which represents

the displacement in J of the bounce tip at each bounce, is thus approximately

∆ = δ
B

Bφ

√
πNq

∂θB/B

2mĒ

e
(13)

where eĒ = µB = 3.5MeV and Bφ = B ·∇φ = F/R2 the contravariant toroidal component

of the magnetic field in an axisymmetric tokamak. The modulus of B ≈ F/R, so that the
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fraction is approximately B/Bφ ≈ R. The reader may verify that ∆ has the right units of

flux, i.e. [kgm2/Cs]. It is noted that this result differs from [15, equation (5)].

Between tips j and j + 1 (lower and upper or vice-versa), the toroidal angle jumps by

φj+1 = φj − (−1)jφb,j+ 1
2

+ φp,j+ 1
2

(14)

where φb(E, µ, J) = 2qθb(E, µ, J) is the toroidal angle after travelling along the field-line

from −θb to θb (assuming up-down symmetry) and φp(E, µ, J) is the displacement due to

precession drift. Equations (10) and (14) describe a discrete map. There is a myriad of

periodic points for which Ψj+K = Ψj and Nφj+K = Nφj + 2kπ. Island structures can form

around them, as the map resonates with the perturbation. The width of these islands is

obtained by expanding linearly around the periodic points. According to Chirikov, stochastic

behaviour is triggered when this width surpasses the distance to the neighbouring periodic

point. Following [11, 15], the island width scales as wK ≈
√

4∆/N(|φ′b|+ |φ′p|) and the

separation as ΨK+1 −ΨK ≈ 2π/N(|φ′b|+ |φ′p|), where prime denotes derivative with respect

to J (at fixed energy and magnetic moment). The variation of φb is expressed as

φ′b = 2q′θb + 2qθ′b (15)

where the bounce angle is constrained to vary as

dB(Ψp, θb) = 0 ⇐⇒ dθb
dJ

= −
∂ΨpB

∂θB
(16)

The variation of precession angle φ′p cannot be expressed in terms of simple analytic expres-

sions. It is often the case that |φ′p| � |φ′b| in tokamaks so that φ′p can be neglected. The

Chirikov criterion then reads w2
K/(ΨK+1 − ΨK)2 ≈ N∆|φ′b| & 1 and the stochastic ripple

diffusion is found (within an order of magnitude) to occur wherever δ & δGWB, with

δGWB ≡
Bφ

B

√
e

2mĒ

∂θB/B

πN3q

∣∣∣∣2q′θb − 2q
∂ΨpB

∂θB

∣∣∣∣−1

=
ψeF

R2B

√
e

2mĒ

∂θB/B

πN3q3

∣∣∣∣2dqdsθb − 2q
∂sB

∂θB

∣∣∣∣−1

(17)

where s = ψt/ψe is the normalised toroidal magnetic flux, a more natural radial coordinate

used by VMEC. Its relation with the poloidal flux is straight-forward, as dψt/dΨp = q. The

reader can verify that equation (17) reduces correctly to the expression by [11] for a large

aspect ratio circular flux-surface expansion of tokamak geometry (evaluated at θb = π/2)

δGWB ≈
(
ρ
dq

dr

)−1(
ε

πNq

)3/2

(18)
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where ρ = mv⊥/eB =
√

2m
e
Ē/B is the Larmor radius, r = a

√
s and a the minor radius.

This expression is useful to understand the scaling of the threshold for stochastic ripple

diffusion in terms of basic equilibrium parameters. Larger values of q and higher magnetic

shear reduce the threshold, consequently spoiling the confinement of trapped bananas. In a

diverted plasma where q → ∞ at the separatrix, stochastisation of the bounce motion will

always occur beyond a given radius. What matters is whether there a direct path to the

wall exists and how many alpha particles are found in those domains.

Equation (17) is applied to predict the regions of chaotic bounce tip motion in figure

9(a). The red patch near the outer edge shows where the threshold for stochastisation ripple

diffusion is exceeded. It qualitatively matches the region where bounce tips are observed

to be strongly affected by the ripple in figure 10. The blue colour represents the areas

where δ − δGWB is negative and the orbits are near-integrable (no overlap of islands). The

accuracy of this criterion is poor for such small ripple amplitude. Equation (17) tends to

over predicts the level of stochastic bounce orbits in the case of DEMO. The numerical

integration of particle motion such as in figure 10 indicates that alpha particles are actually

better confined than is predicted by the analytic estimate. Applying equation (18) leads to

a worse mismatch. The criterion for the onset of stochastic ripple diffusion could be further

improved by including φ′p, finite orbit width effects, higher-order terms in δ, etc... However,

with the availability of particle pushing codes, it is more reliable to obtain the threshold by

solving particle orbits directly.

An interesting point to mention in figure 10 is that the resonant/chaotic structures are

vertically separated by straight lines. The ripple setup of DEMO appears to be favourable

to the existence of robust KAM barriers. Assessing their stability can actually serve as a

proxy for design optimisation. In this work, the regions of stochastic ripple diffusion and

ripple wells have been mapped inside the plasma, where alpha particles are expected to

be created. Extending the study to beyond the LCFS is not possible with VMEC under the

assumption of nested flux-surfaces.

IV. RESULTS FROM SLOWING DOWN SIMULATIONS

The previous section has demonstrated that it is possible to estimate the collisionless loss

channels, but only in simple geometries and under many assumptions. Full-F PIC simula-
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Figure 11: Fusion yield (initial source of alpha particles), saturated power and birth regions of lost

particles.

tions with VENUS-LEVIS are required to model the effect of collisions and yield quantitative

estimate of alpha particle losses. First, a list of markers is created according to the fusion

cross section between thermal Deuterium and Tritium [33]. Figure 11(a) displays the alpha

power density calculated using the background profiles of section II B. A fixed number of

markers are injected at regular time intervals and their orbits are followed until they either

reach thermal energy via slowing-down processes (thermalisation) or cross outside of the

LCFS because of prompt loss, pitch-angle scattering and the convective/diffusive processes

associated to ripple, as described in section III. Collisions against the background plasma

(electrons and ions) are modelled via Monte-Carlo operators [32]. After a period correspond-

ing to a slowing-down time, the alpha particle distribution saturates and the loss fluxes are
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Figure 12: Histograms of losses across the LCFS for axisymmetric case, 2D+ripple and 3D equi-

librium ripple models.

compared for different equilibria and ripple models.

The lower curves on figure 11(a) show the saturated alpha particle power remaining

in the hot distribution - most markers have transferred their energy to the bulk plasma

and left the distribution or have hit the LCFS. The difference between the axisymmetric

equilibrium and the cases with ripple is imperceptible in the scale of the figure. Indeed,

given the background temperature and density profiles, the alpha birth position is strongly

centred in the core, where particles are well confined. This is depicted on figure 11(b), which

compares the central region of high fusion yield (orange heat map) with the zones where

lost particles were initially emitted. The total power radiated through the LCFS obtained

from the simulations is 418kW assuming a purely axisymmetric equilibrium, 674kW in the

2D+ripple model and 662kW for the 3D equilibrium case. Comparing to a total fusion

power of 450MW, a low level of alpha power is expected to be lost. The finite number of

toroidal field coils (18 field coils) effectively increases the level by fifty percent.

Figure 12(a) shows a histogram of lost particles as a function of their energy at the LCFS.

The peak at 3.5MeV corresponds to prompt losses, accounting for most of the lost alpha

power. The curve then decreases in the axisymmetric equilibrium, as particles lose energy

and become better confined, and rises again at around 100 − 200KeV in both 2D+ripple

and 3D equilibrium models. This is a consequence of ripple enhanced collisional transport

[7, 17]. The increase of transport at low energy is convenient for helium ash removal.
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Figure 13: Comparison of losses in velocity-space between axisymmetric and 3D equilibrium (result

is identical for 2D+ripple).

Figure 12(b) is a similar histogram based on flight time, i.e. seconds after which an alpha

particle crosses the LCFS. The large peak on the left is again due to prompt losses, for

timescales of the order of a bounce/transit period, ∼ 10−5s. The curve drops significantly at

around 0.1s in the axisymmetric case, quicker than a slowing-down time. At low energies,

particles thermalise faster (move out of the alpha population) than they diffuse outwards.

The opposite behaviour is observed in the presence of ripple as the loss rate is enhanced

for longer flight-times. The combined effect of ripple and collisionality leads to a stronger

redistribution of particles in phase-space than in the axisymmetric case. The fact that

ripple transport is more efficient at low energies is a favourable result for the current design

of DEMO, allowing good power confinement and a sink for cold particles.

Figure 13 shows the lost particle distribution function in velocity space. The semi-circle

denotes prompt losses at 1
2
m(v2

||+v2
⊥) = 3.5MeV . Colours are most vivid near the boundary

between co-passing and trapped. Most losses occur on the outer midplane (see figure 14),

which is easier to reach on the lower portion of a co-passing particle return path than on

the upper portion of a counter-passing return path. In the axisymmetric case, the yellow

inverted triangle is caused by particles switching from a narrow passing orbit to a wider

trapped orbit after a collision. In the presence of ripple, a darker region appears in the

vicinity of v|| ∼ 0. This corresponds to deeply trapped particles that sit at the edge of

the plasma and are kicked around the ripple-wells via collisions. This effect is stronger as

particle energy decreases and leads to the enhancement of transport with collisionality, as

mentioned above.
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(a) Axisymmetric case (b) 2D+ripple model (c) 3D equilibrium model

Figure 14: Power flux through the LCFS as a function of toroidal and poloidal angles.

Figure 14 shows lost power fluxes through the LCFS as a function of the toroidal and

the (VMEC) poloidal angle θ. Losses in the axisymmetric case are heavenly distributed in

the toroidal direction and around θ ∼ 0 (outer midplane). In the 2D+ripple model, the

simulation domain is the same axisymmetric LCFS but in this case, the field-lines, now three-

dimensional, intersects the boundary. Particles streaming down the field-lines accumulate

right after the location of the TF coil near Nφ ∼ 3π/2, reminding that the magnetic field

turns clockwise from above (opposite from the definition of toroidal angle). This hot spot is

the result of a zero-orbit width effect, due to the intersection of field-lines with the boundary.

In the 3D equilibrium case, the LCFS forms bulges consistently with the path of field-lines,

such that particles are lost further away from the TF coil. These losses are due to drift

effects. Their accumulation occurs in the region of unfavourable curvature near Nφ ∼ π/2.

The mechanism is similar to that observed in stellarators [34]. Ultimately, particles would

continue to be followed in the vacuum beyond the LCFS. The matching of 3D equilibria

and vacuum fields is difficult with present day tools such that it is currently not possible

to compare heat loads in both ripple 2D+ripple and 3D equilibrium models. The difference

between figure 14(b) and 14(c) is not however expected to translate to corresponding local

hot-spots on the wall or plasma facing components, since the wall is many orbit widths away

from the plasma, and deformations in the wall will be much larger than the differences in

the magnetic between the two models. The calculation of exact heat-loads of plasma-facing

components (PFCs) is addressed in the vacuum approximation by several other groups [35].

The formation of hot-spots mostly occur wherever the wall is protruding the vacuum vessel

or the field-lines are intersecting the PFCs.
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V. CONCLUSIONS

Alpha particle losses and consequential heat fluxes on the surface marking the plasma

boundary have been calculated in 3D MHD equilibria that model the DEMO coil configu-

ration. The work is primarily a physics study that compares the losses associated with two

models that account for the breaking of axisymmetry due to the finite number of toroidal

field coils. In contrast to studies into the effects of resonant magnetic perturbations on fast

ion losses, it is found that the plasma response to the ripple associated with the finite number

of toroidal field coils is weak, thus ensuring that the plasma response can be neglected.

The two approaches for including the ripple field have been applied to DEMO for a

given coil description (notably with 18 toroidal field coils assuming no ferritic inserts) and

for a given plasma current density and plasma pressure profile. For the study of particle

trajectories, it was found that the guiding centre approximation is adequate, essentially

because the scale length of the magnetic field variation is much larger that the Larmor

radius of 3.5MeV alpha particles. A detailed investigation into the origin of the transport

due to the 3D nature of the DEMO magnetic field was undertaken. It is found that the

dominant transport channel is due to superbanana transport, enhanced by collisions. The

relatively weak ripple does not cause magnetic islands to form, nor stochastic fields in the

2D+ripple model (note that islands are not permitted in the 3D equilibrium model), so that

losses from passing ions are negligible. The approximate criterion for the onset of trapped ion

stochastisation was reviewed for the use of general flux-coordinates (VMEC) and the regions

of chaotic bounce tips were qualitatively mapped. Chaotic trapped ion stochastisation due

to drift-bounce resonance is subdominant, although its contribution to transport is hard to

predict and to disentangle within the full-F VENUS-LEVIS simulations.

By undertaking full-F slowing-down simulations for the distribution function of the alpha

particles, using the guiding-centre code VENUS-LEVIS, it is found that the choice of model

for the 3D ripple does affect the local power flux (locally in toroidal and poloidal angle)

on the last closed flux surface, but not the total power given to the edge. The alpha

population is well confined in the core of the plasma. The effect of the 3D magnetic field

influences transport only near the edge of the plasma. The weak amount of alpha particle

losses obtained in axisymmetry is increased by 50% due to ripple, with peak effect occurring

for particles in the 100-200keV range. This convenient transport process for helium ash is
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dominated by collisional super banana transport, rather than stochastic ripple transport.
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