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Abstract 
PROCESS is a reactor systems code – it assesses the engineering and economic viability of a hypothetical fusion 
power station using simple models of all parts of a reactor system.  PROCESS allows the user to choose which 
constraints to impose and which to ignore, so when evaluating the results it is vital to study the list of constraints 
used.  New algorithms submitted by collaborators can be incorporated – for example safety, first wall erosion, and 
fatigue life will be crucial and are not yet taken into account.  This paper describes algorithms relating to the 
engineering aspects of the plant.  The toroidal field (TF) coils and the central solenoid are assumed by default to be 
wound from niobium-tin superconductor with the same properties as the ITER conductors.  The winding 
temperature and induced voltage during a quench provide a limit on the current density in the TF coils.  Upper 
limits are placed on the stresses in the structural materials of the TF coil, using a simple two-layer model of the 
inboard leg of the coil.  The thermal efficiency of the plant can be estimated using the maximum coolant 
temperature, and the capacity factor is derived from estimates of the planned and unplanned downtime, and the 
duty cycle if the reactor is pulsed.  An example of a pulsed power plant is given.  The need for a large central 
solenoid to induce most of the plasma current, and physics assumptions that are conservative compared to some 
other studies, result in a large machine, with a cryostat 36 m in diameter.   Multiple constraints, working together, 
restrict the parameter space of the optimised model.  For example, even when the ratio of operating current to 
critical current in the TF coils is increased by a factor of five, the total coil cross-section decreases only a little, 
because of the need for copper stabiliser, insulation, and structural support.  The result is that the plasma major 
radius hardly changes.  It is these surprising results that justify the development of systems codes. 
 
 
Keywords:  fusion reactor, thermonuclear, deuterium, tritium, economics, magnet, neutronics, reliability, 
availability, capacity factor, blanket, divertor, DEMO 
 
 

1. Introduction 

While physicists at experimental machines investigate whether a fusion plasma can be confined, it is equally 
important to assess whether a fusion plant is feasible from the engineering and economic points of view.  Info-
rmation on this is collated in reactor systems codes, which contain simple models of an entire power plant, 
including physics, engineering and costs.  The PROCESS systems code has been used for many years, and details of 
its physics algorithms and general structure have been published previously (1).  This paper describes the 
engineering assumptions and models.   
 
PROCESS is one of the most flexible of all reactor systems codes.  It finds a set of parameters that maximise (or 
minimise) a Figure of Merit chosen by the user, while being consistent with the constraints, by adjusting a set of 
variables known as iteration variables.  Both the constraints and the iteration variables are chosen by the user from 
an extensive selection.  Only those constraints specified by the user are enforced.  We describe PROCESS version 
393.   
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Sections 2 to 8 describe the models for the superconducting magnets, the first wall, blanket and shield, the flow of 
thermal power and its conversion to electricity, and the availability model.  Section 9 describes a pulsed DEMO 
model obtained using PROCESS, illustrated in Figure 1.   
 
 

 

Figure 1.  Cross-sections of PROCESS model of a pulsed reactor.  In one of the TF coils the winding pack is shown 
in blue, and the shielding for the neutral beam duct in grey.  The thermal shielding which is needed to separate the 

cold superconducting coils from the hot reactor inside, and from the cryostat outside, is not included explicitly.  
The ports for diagnostics and remote handling are not shown because they are not modelled in PROCESS. 

 

2. Toroidal Field Coil (TFC) 

In PROCESS the TF coil consists of a winding pack with a homogenous current density, surrounded by a structural 
case.  It assumes the use of forced-flow helium cooled conductors, such as the cable-in-conduit type.  AC losses are 
not taken into account.  A number of constraints are available for the TF coil but, as always, are only enforced if 
selected by the user.  They include (a) stress in case, (b) stress in conduit, (c) ratio of operating current to critical 
current, (d) superconductor temperature margin, (e) quench voltage, and (f) quench temperature.  Details are below. 
 
The TFC is symmetrical, each half being approximated by 4 circular arcs along the edge facing the plasma.  The 
height is determined purely by the vertical build – the coil is not required to have a constant tension “D” shape.  
Note that the inboard leg is not exactly straight.  This model is used only to calculate the mass, inductance and 
stored energy. 
 

2.1. Access required for neutral beams 
The maximum tangency radius for the neutral beams is determined by the size and shape of the TF coils, as the 
beams need to pass between them at an angle. This may be an important constraint on the achievable neutral beam 
current drive.  Figure 2 shows the geometry and symbols used.  The need for remote handling may impose 
additional constraints.  If the blanket modules run the full height of the machine, and are accessed for maintenance 
from above, then it would not be acceptable for a neutral beam duct to cut the whole blanket module in half, but 
this constraint has not been included. 
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Figure 2. Geometry for neutral beam access between TF coils 
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2.2. TF Coil Current density 
In the default model the parameterisation of critical current density in Nb3Sn as a function of magnetic field B, 
temperature T and strain ε uses the ITER formulation (2), correcting for the strand cross-section and the fraction of 
the strand occupied by copper. The fitting parameters are in Table 1.  The peak magnetic field is calculated using a 
parametric fit to detailed calculations from the Biot-Savart law, while the temperature and strain are set by the user. 
 
Critical strand current (0.82 mm diameter, copper : non-copper ratio=1) : 
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Strain function: 

𝑠 𝜖 = 1 +
1

1 − 𝐶!!𝜖!,!
𝐶!! 𝜖!!! + 𝜖!,!! − 𝜖 − 𝜖!! ! + 𝜖!,!! − 𝐶!!𝜖  

𝜖!! =
𝐶!!𝜖!,!
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Reduced magnetic field: 

𝑏 =
𝐵

𝐵!!∗ 𝑇, 𝜖
 

Reduced magnetic field at zero temperature: 

𝑏! =
𝐵

𝐵!!∗ 0, 𝜖
 

Reduced temperature at zero field: 

𝑡 =
𝑇

𝑇!∗ 0, 𝜖
 

 
Table 1.  ITER Reference Scaling Parameters for TF and CS Conductor Design (3) 

  TF CS 
C Scaling constant for strand current (AT) 16500 18700 
BC20max upper critical field at zero temperature and strain 32.97 32.57 
TC0max critical temperature at zero field and strain 16.06 17.17 
p low field exponent of the pinning force (p < 1, p ≈ 0.5) 0.63 0.62 
q high field exponent of the pinning force (q ≈ 2) 2.1 2.125 
Ca1 Strain fitting constant,  44 53 
Ca2 Strain fitting constant,  4 8 
ε0,a residual strain component 0.00256 0.0097 
εmax tensile strain at which the maximum critical properties are reached   -0.003253075 

 
 

 
Figure 3.  Critical current of Nb3Sn TFC strand using ITER parameterization. Strain = -0.3% 

 
The critical current density in the strand is 
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𝐼! = 𝐽!!"#   𝐴!"   1 − 𝑓!"  
where Acs is the interior cross-sectional area of the cable,  fHe is the fraction of that area occupied by helium coolant.  
The actual current per turn is an input, and is available as an iteration variable.  The temperature margin is the 
difference between the temperature at which the critical current equals the actual current, and the actual 
temperature.   
 
The TF conductor is taken to be of the cable-in-conduit design, as illustrated in Figure 4.  The cross-sectional area 
of the conductor is calculated, after allowing for the rounded corners and the fraction occupied by helium coolant. 

 
Figure 4.  Layout of the TFC cable, used for calculating current density and effective Young’s modulus.  

Additional structural material is taken into account as shown, and is described as “radial plates”. 
 

2.3. Quench protection of TFC 
During a quench the coil needs to be discharged into an external resistor to protect the cable and limit the induced 
voltage.  The maximum permissible winding temperature during a quench provides a limit on the current density.  
It is assumed that the superconductor, copper and helium remain in thermal equilibrium with each other, but no 
heat is taken up by the conduit.  The variation of heat capacity and resistivity with temperature are taken into 
account, but not the effect of the magnetic field on the resistivity of the copper stabiliser.  The dump resistor has a 
resistance much higher than that of the coil during the quench.  The maximum current density in the cable space is 
given (4) by 
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where V is the peak voltage developed across the coil, Iop = current per turn, EstoTF = stored energy per coil, fCu, fHe, 
fsc are the volume fractions of helium, copper and superconductor in the cable space, and 
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where ρ = density, C = specific heat capacity, Tmax is the maximum temperature reached, and 𝜂 = electrical 
resistivity of copper.  No limits are placed on the pressure in the conduit or on the stability of the conductor.  The 
user can specify the time taken to dump the energy stored in the TF coils (tdump), and can also set an upper limit for 
the peak voltage developed by the quench, which is 

𝑉 = 2
𝐸!"#$%
𝑡!"#$𝐼!"

  . 

This assumes that the energy deposited in a single dump resistor is derived from the energy stored in a single TF 
coil only. 
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insulator 
conduit 
superconductor 
and helium 



 

6 
 

2.4. Stress in the TFC 
The net forces on the TF coils are inward (toward the major axis of the machine).  In principle these can be 
supported on the central solenoid (as on JET) or on an additional structural part known as a bucking cylinder, or the 
straight sections of the coils can form an arch, also known as a vault (as on ITER).  Tolerance problems make it 
difficult to use more than one method.  Using the CS to support the TF coils is efficient, but causes problems as the 
stresses vary during the pulse, so PROCESS assumes that a vault is used.  Only the stresses in the inboard leg at 
midplane are calculated.  The field from the CS and PF coils is not included in any way, and only steady-state 
stress is calculated.  Figure 5 shows the layouts assumed.   
 

 

Figure 5.  Mid-plane cross-section of inboard leg of TFC.  (a) As used for calculating cross-sectional areas, (b) as 
used for calculating stress, showing the major radii of the dividing surfaces. 

 
The ITER TF coils have steel radial plates that provide extra support for the cable.  To represent this in a simplified 
way, PROCESS allows additional structural material within the winding pack, of the same material as the TF case 
(see Figure 4).  The winding pack is modelled in the stress calculation as a homogeneous material.  Because this 
cable is assumed to be square, an isotropic elastic modulus is used in the horizontal plane.  The vertical Young’s 
modulus is used for the separate calculation of vertical tensile stress.  The shear stresses with a vertical component 
are zero because the out-of-plane forces on the coil due to the poloidal field are neglected. 
 
To calculate the effective Young’s modulus of the winding pack each turn of the coil is split conceptually into 
series and parallel parts as shown in Figure 6.  While the turn is square and therefore symmetric, there are two 
different ways to split it, giving different values for the smeared Young’s modulus, although the difference is small 
and has no physical significance.  One value has been chosen arbitrarily, as follows.  Assuming that the force is 
applied in the direction of the arrow, the components a to d carry the load in parallel, so they have the same strain.  
In component b, for example, the insulation (i) and the radial plate (rp) are series, so they have the same stress.  
Components b and c have very little stiffness, since they are mostly composed of insulation, superconductor and 
helium. 
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Figure 6.  The cable plus radial plate shown split into series and parallel components. The insulation is i, conduit s, 
the conductor w, and the radial plate r. 

 
The effective Young’s moduli for the components labelled a – d in Figure 6 are therefore 

𝐸! = 𝐸!" = 𝐸! 
𝐸! ≈ 0, 𝐸! ≈ 0, 
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   ,  

where the subscripts are 
s  conduit (steel) 
rp radial plate (also steel) 
i insulator 
w conductor 
The combined modulus is  

𝐸! =
2𝑡!"𝐸! + 2𝑡!𝐸!

𝑡!"!
  , 
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When the load is vertical the conductor, conduit, insulator and radial plate are all in parallel, so the modulus is  

𝐸! =
1
𝑡!"!!
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Poisson’s ratio v is taken as 0.3 in all cases. 
 
2.4.1. Horizontal stress components 
The TF coil is split into two layers: the winding pack and the case (Figure 5). The force on the inboard leg is 
primarily directed towards the machine axis, so the bulk of the case is best used on the side nearest this axis.  The 
thin layer of steel on the plasma-facing side is ignored.  The toroidal field at the outer edge of the winding 
pack is BmaxTF .   
The Lorentz force per unit volume is radial, 

𝐹! = 𝑗𝐵. 
The current density, assumed to be constant, is  

𝑗 =
𝐼!"#

𝜋 𝑟!! − 𝑟!!
 

where r0 and  ri are the radii of the winding pack and ITFC is the total current in the set of TF coils.  Inside the 
winding pack at major radius r, Ampere’s law gives the field, assumed to be toroidally uniform, as 

𝐵 =
𝜇!
2𝜋𝑟

𝑗𝜋 𝑟! − 𝑟!!   . 

By toroidal symmetry, the local displacement u is purely radial.  Using a cylindrical co-ordinate system (r,θ), and 
the definition of Poisson’s ratio v, it can be seen that the strain components are 
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where v is Poisson’s ratio, and E is the combined Young’s modulus for the layer in question, 

 
From local force balance a differential equation is derived for each layer, 
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where  

𝛼 =
1 − 𝜈!

𝐸!
𝜇!𝑗!

2
 

𝛽 = −𝛼𝑟!! 
The solution for the displacement is: 

𝑢 = 𝐶!𝑟 +
𝐶!
𝑟
+
𝛼
8
𝑟! +

𝛽
2
𝑟 log 𝑟 

where C1 and C2 are constants of integration, defined for each layer.  The boundary conditions give a set of four 
equations, which are solved using Gaussian elimination each time the code is run, to give the strain as a function of 
radius in each layer.  The peak tangential stress is much greater than the peak radial stress.  The highest stress in the 
case is at the innermost radius and the highest stress in the winding at the innermost radius of the winding.  In the 
winding pack the averaging procedure is reversed to give the stress in the structural portion (conduit and radial 
plates) and the strain in the conductor. 
 
2.4.2. Vertical stress components 

By Ampere’s law the vacuum toroidal field at major radius r inside the TF coil is  

𝐵!(𝑟) =
𝜇!𝐼!"#
2𝜋𝑟

  . 

The field outside the coil is nearly zero (exactly zero for an infinite number of coils), so the average field inside the 
winding pack is approximately half this value.  The Lorentz force per unit length of coil is therefore about  

𝑓 =
𝐵! 𝑟
2

𝐼!"#
𝑁!"

=
𝜇!𝐼!"#!

4𝜋𝑟𝑁!"
 

(NTF = number of TF coils) 
This force is perpendicular to the coil segment, and its vertical component is fdr where dr is the component of the 
segment length along the major radius.  The total vertical force on upper half of the coil is then 

𝐹! = 𝑓𝑑𝑟
!!"!

!!"#$%
=
𝜇!𝐼!"#!

4𝜋𝑁!"
ln

𝑅!"!
𝑅!"#$%  

. 

It can be shown that the tensile force in the inboard leg is half of this.  The superconductor is likely to be twisted, 
which minimises its tensile stress, so we neglect the stiffness of the conductor in the vertical direction.  The vertical 
tensile stress in the inboard leg σz is given by dividing this force by the total area of case, conduit and radial plate.  
In the vertical direction the components of the winding pack are in parallel, so the fractional extension of the 
superconductor is 𝜎!/𝐸!.  This is not a true strain if the conductor is twisted. 
 
2.4.3. Stress criteria 
PROCESS assumes that the principal axes of the stress at the mid-plane are vertical, radial and tangential, so there 
are no shear stresses in this coordinate system.  The von Mises stresses in the case and in the structural part of the 
winding pack are then given in terms of the radial, tangential and vertical stress components σr, σt, σz.  Because the 
structural material inside the winding pack is assumed to take the form of radial and tangential webs (Figure 6), the 
limiting von Mises stress in this zone is given by the larger of the two values: 

𝜎!"#$%&'&! =
1
2
𝜎!! + 𝜎! − 𝜎! ! + 𝜎!!   , 

𝜎!"#$%&'&! =
1
2
𝜎!! + 𝜎! − 𝜎! ! + 𝜎!!   . 

 
In both zones the peak von Mises stress always occurs at the inner radius.  These peak values can each be 
constrained to be no more than the permissible value, specified by the user.  
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3. Central Solenoid (CS) 

The central solenoid provides a loop voltage for plasma initiation and current ramp-up.  For a pulsed reactor it also 
provides some of the voltage required to maintain fusion burn. Quench protection is not taken into account.  The 
CS contains a fraction of steel structural material, whose allowable stresses are the same as for the TF coils (section 
2.4.3).  Only steady-state stress is considered, with no allowance for fatigue due to cyclic stress, although fatigue is 
likely to be significant for a pulsed reactor.  The hoop force is calculated using the approximation,  

𝐹!×! =
𝐵! + 𝐵!

2
𝐼!"𝑅!" 

where Bo and Bi  are the fields at the outer and inner edge of the coil, taking account of the field due to the plasma 
and all the other PF coils, ICS is the total central solenoid current, and RCS is the radius of the midline of the coil. 
The minimum cross-section of steel is calculated from the hoop force and the allowable stress.  The current density 
in the superconductor is derived taking account of the area of steel and of helium coolant.  The critical current 
density in the superconductor is calculated using same parameterisation for Nb3Sn described in 2.2 above, at 
Beginning of Flat-top and End of Pulse.  By comparing the actual current density and the critical current density, 
the temperature margin is derived at each time point.  The smaller of these values is reported, and can be given a 
lower limit using a constraint. 

4. Poloidal field (PF) coils 

The current per turn (i.e. the current in the conductor) is an input parameter.  The number of turns in each coil is 
then calculated from the total current.  The mass of superconductor in each coil is calculated from the cross-section, 
length, void fraction and density.  The tangential tension (hoop) force is  

𝐹 = 𝑅
(𝐵!" + 𝐵!"!)

2
𝐼 

where R is the radius of the coil, BPF is the field at the inner edge, BPF2 is the field at the outer edge, and I is the 
peak current.  The cross-sectional area and mass of the structural material, assumed to be steel, in each PF coil is 
calculated using the maximum permissible tensile stress in the steel, and a specified fraction of the hoop force to be 
supported by the steel.  The steel required is not included in the dimensions output. 

5. First wall, blanket and shield 

The neutron wall loading is calculated by dividing the neutron power by the wall area. 

𝑊!"" =
𝑃!"#$𝑉

𝐹!"#!𝑆!"#!
 

where Sarea = plasma surface area, Pneut = neutron fusion power per volume and Farea = user-specified ratio between 
first wall area and plasma surface area.  An upper limit can be imposed on the neutron wall load, which is a purely 
nominal quantity, in no way representative of the actual neutron flux. 
 
The volumes of the outboard blanket, shield and vacuum vessel are calculated based on these assumptions: (a) each 
has the form of half a toroidal shell, centred on the outboard edge of the inboard part (which resembles a cylinder), 
(b) the thickness of the blanket and shield are each much less than their minor radius, (c) the thickness of the shell 
varies as a+(b-a)sinφ, where φ is the angle to the vertical (φ=π/2 on the midplane), and (d) the shell has elongation 
k. 
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Figure 7.  Model for volume of outboard blanket and shield used for calculating volumes: each is half a toroidal shell.  The 

thickness varies between a and b.  The inboard part is modelled as a cylinder. 

 
The volume is given by 

𝑉!!!"" = 2𝜋𝑟𝑘 !
!𝑅𝜋 +

!
!2𝑟 + 2 𝑏 − !

! 𝑅 + (𝑏 − !
!)
𝜋
2
𝑟  

The inboard blanket, shield and vacuum vessel are modelled as cylinders for calculating volumes. 
 
The mass of the blanket is determined by its volume and by its volumetric composition which by default includes 
titanium beryllide (TiBe12), lithium orthosilicate (Li4SiO4), helium and steel. 

6. Plant power balance 

6.1. Reactor power 
The plant power flowchart is shown in Figure 8. 
 

 
Figure 8.  Power flows.  LGH is low grade heat, rejected to the environment.  The dashed lines represent alternative options.  

The heat loads on the cryogenic components are not included in this diagram. 

 
The cooling system consists of two parts – the part heated by “primary” heat, which contributes to electricity 
production, and the part heated by “low grade heat”, which does not.  The options for how power is divided are 
shown in Table 2.   The wall-plug efficiency of the heating and current drive system used is specified by the user.   
 

b 

a 
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Table 2.  Primary heat (useful for electricity production) 
Component Type of heating Fraction 

First wall 
& blanket 
 

nuclear heating 
photon radiation 
pumping power 

 100% 

Shield 
 

nuclear heating,  
pumping power  

0% or 100%  

Divertor 
 

fusion power to α particles 
nuclear heating 
photon radiation 
pumping power  

0% or 100%  

 
 

6.2. Power deposition 
The deposition of nuclear power in the reactor components are derived from the transport model for neutrons and 
secondary particles illustrated in Figure 9.  (The photon power on the first wall and divertor are derived from the 
radiation model described in (1).) 
 

 

Figure 9.  The neutronic model used to derive heat deposition.  The plasma is shown in pink, breeding blanket in 
red, shield in black, vacuum vessel (including ports) in grey, the TF coil in green and the CS and PF coils in 

yellow. The face of the first wall armour facing the plasma is blue. 

 
 
The following functions provide a reasonable fit to the results for nuclear heating power in each component, as 
follows: 

armour  and  first  wall = 𝑓𝐶!"𝑃!"#$%&𝑀!" 

blanket = 𝑓𝐶!"#$%&'𝑃!"#!"# 1 − 𝑒!!!!"#$%&'  

shield = 𝑓𝐶!!!"#$𝑃!"#$%&𝑀!!!"#$𝑒!!!!"#$%&'𝑒!!!!!!"#$ 

coils = 𝑓𝐶!"#$%𝑃!"#$%&𝑀!"#$%𝑒!!!!"#$%&'𝑒!!(!!!!"#$!!!!) 

where 𝑃!"#$%& is the fusion power, 𝑀!" is the mass of the first wall and its armour, 𝑀!"#$%&' is the mass of the 
blanket, 𝑀!"#$% is the mass of the TF and PF coils (heating in the CS is negligible),𝐿!"#$%&', 𝐿!!!"#$ and Lvv are the 
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integrated line densities of armour + first wall + blanket, the shield, and the vacuum vessel respectively.  Although 
the neutronics calculations give absolute results, we have introduced a factor f to renormalize the power deposition 
making the assumption that 100% of the neutrons are absorbed.  

7. Heat extraction from first wall and electricity generation 

The heat from the primary coolant is transferred to a secondary coolant (working fluid), which is used to generate 
electricity in a power conversion cycle. The theoretical efficiency of conversion will be determined by the mean 
temperature at which heat is added to the working fluid by the primary coolant, and the temperature at which heat 
is rejected to the environment.  However, the primary coolant temperature must be sufficiently low for the 
materials in the reactor structure to be below their practical limits. It is further necessary to minimise the power 
demand for pumping the primary and secondary coolants.  Two models are available that combine the 
thermohydraulics of the blanket and first wall with the secondary cycle: a simple model and a detailed model, 
described below.  PROCESS assumes that for a pulsed reactor the energy conversion system can be rapidly 
switched between operation and standby modes, without losing any additional thermal or electrical energy.  The 
dwell time between pulses is input by the user. 
 

7.1. Simple model 
In this model, the power required to pump the primary coolant through each of the first wall, breeder zone, divertor, 
and shield, is calculated as a user input fraction of the thermal power deposited in the coolant from the reactor.  The 
pumping power is deposited in the primary coolant.  The default values for this fraction are 0.0005 for a water 
coolant, and 0.085 for a helium coolant.  The separation of power into first wall, breeder zone, divertor, and shield 
allows a different coolant to be assumed for each system if required. 
 
The gross electric power is derived using a thermal efficiency based on the user's choice of blanket.  The options 
are water-cooled lithium-lead (WCLL), helium-cooled lithium-lead (HCLL), or helium-cooled pebble-bed (HCPB).  
The resulting thermal efficiencies used are taken from studies that modelled Rankine cycles for the different 
options of a helium-cooled primary circuit with a top temperature of 500ºC (6), and a water-cooled primary circuit 
with a top temperature of 320ºC (7).  (For historical reasons in both cases the divertor was cooled by water with a 
top temperature of 150ºC in the helium-cooled reactor, and 250ºC for the water-cooled reactor.) Hence, no 
variation of efficiency with primary coolant temperature is possible using the simplified model; indeed, no 
temperatures are even considered in the model.  The defined thermal efficiencies for the given blanket choices are 
shown in Table 3.  For a helium-cooled reactor a penalty is applied as the coolant in the divertor has to operate at much 
lower temperature than the blanket, which may be the case because of the greater heat flux that has to be removed.  
Efficiencies differ depending on whether the heat from the divertor is utilised to preheat the secondary coolant, or 
is discarded as waste heat.  Note that these thermal efficiencies are for the cycle only, describing the conversion of 
primary heat to gross electric power.  The overall plant net power, accounting for recirculating power (including, 
for instance, the primary coolant pumping power demands), and hence the plant net efficiency, will be lower.   
 

Table 3.  Simple energy conversion model: secondary cycle thermal efficiency, defined as gross electric power 
divided by thermal power deposited in the secondary coolant. f = fraction of heat to the divertor 

Primary Coolant Water Helium 
Divertor heat used Yes No Yes No 

Efficiency 31% n.a. 0.411 − 0.339  𝑓 41.1% 
 
 

7.2. Detailed model: first wall 
The detailed model for heat extraction and power conversion calculates the maximum temperature of the first wall 
for given coolant inlet and outlet temperatures and channel dimensions.  An iteration loop is utilised to decrease the 
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thickness of the first wall, up to practical limits, if the temperature is found to be above the material limits.  From 
this, the efficiency of the secondary cycle can be found from the coolant outlet temperature.  The divertor heat is 
included in the primary cycle. 
 
The outlet temperature of the primary coolant is (a) for water, 20 K below the boiling point; (b) for helium, a user 
input. 
 
 
 
To calculate the maximum temperature of the first wall, the method of LeClaire is used (8), (9).  In this approach, 
the first wall is assumed to consist of a set of parallel pipes, such that the surface is not flat, but a repeating semi-
circular pattern.  This geometry is unlikely to be used in practice, but allows a convenient analytical approach.  The 
calculation of the peak temperature assumes that this occurs at the point closest to the plasma on each pipe and 
where the coolant temperature is at its maximum (which occurs at the top of the front face of the module).  The 
temperature is calculated analytically by considering the conduction of heat through the pipe structure to the 
coolant, where heat is deposited both volumetrically from the incident neutron power, and upon the surface from 
radiative power.  The heat transfer coefficient is calculated using the Sieder-Tate correlation.  If the first wall 
temperature is found to be above specified limits, the thickness of the first wall is reduced, until it becomes too low 
to withstand the pressure of the coolant.  (Note that if both criteria are satisfied using the initial inputs, the code 
does not vary the thickness of the first wall.)  If the temperature and thickness requirements cannot both be satisfied 
the code returns an error.  The peak hoop stress is given by Lamé’s solution for a thick-walled cylinder: 

𝜎! =
𝑃 𝑏!"

! + 𝑎!"!

𝑏!"
! − 𝑎!"!

 

where 𝑏!" and 𝑎!" are the outer and inner radii of the first wall pipes, and P is the maximum coolant pressure.  
This must be less than the permissible stress.  The plasma-facing side of the pipe may be eroded by sputtering, so 
an ad hoc adjustment is made, 

𝜎! =
𝑃 (𝑏!" − 𝑤!"#$%#&)! + 𝑎!"!

(𝑏!" − 𝑤!"#$%#&)! − 𝑎!"!
 

 
where 𝑤!"#$%#& is the specified erosion thinning over the lifetime of the first wall.  There is also a neutron fluence 
limit which determines the lifetime of the first wall and blanket – see section 8.1 below. 
 
The power required to pump the coolant through the first wall and breeder zone is not trivial to calculate, as it 
depends sensitively on the diameter of the channels, and on the design of the feeder pipes and manifolds.  The 
relevant algorithms are still under development. 
 
 
 

7.3. Detailed model: energy conversion 
From the coolant outlet temperature, the thermal efficiency of the power conversion cycle is determined.  The user 
can choose between a steam Rankine cycle and a supercritical carbon dioxide Brayton cycle.   
 
If the Rankine cycle is chosen and the primary coolant is water, it is assumed that the cycle is similar to that of 
pressurised water reactors currently in operation.  This cycle was modelled for a range of different top temperatures 
in order to find a correlation of cycle efficiency with temperature.  The modelling method is described in (7).  A 
penalty of 0.042 was subtracted from the efficiency to account for pressure losses in the cycle using a more detailed 
model as a benchmark (7).  If the Rankine secondary is chosen but the primary coolant is helium, it is assumed that 
the cycle is a superheated-steam Rankine cycle.  The results of modelling by Dostal (13) were used, but with an 
efficiency penalty of 0.0179 to give agreement at one point with a benchmark (6).    For the supercritical CO2 cycle, 
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the correlation of efficiency with temperature is derived from results of cycle modelling carried out by 
collaborators.  The derived fits are in Table 4.  For both Rankine cycles the divertor heat is used in a separate heat 
exchanger to preheat the feedwater, while for CO2 cycle it is used in the main heat exchanger.  In both cases the 
divertor heat is counted as primary heat, and is included in the calculation of the efficiency.   
 

Table 4.  Fitting functions for secondary cycle efficiency.  T1  and T3  are the maximum temperatures of the primary blanket 
and divertor coolants; T2  is the temperature of the secondary fluid at the inlet to the turbine.   𝚫𝜼 is a correction to represent 
the loss in cycle efficiency due to the lower temperature of the divertor coolant. 

Secondary 
cycle 

Primary 
coolant 

Efficiency (T2  in ºC) T2  range 
(ºC) 

T1 - T2  
(ºC) 

T3 
(ºC) 

Steam Rankine Water 0.3720 ln 𝑇! + 273
− 2.0219 

275-310 40 250 

Helium 0.1802 ln 𝑇! + 273
− 0.7823 − Δ𝜂 

384-642 20 150 

Supercritical 
CO2 Brayton 

Water or 
Helium 

0.4347 ln 𝑇! + 273
− 2.5043 

135-750 20 T3=T2 

 
 

8. Availability 

The availability of a power plant is crucial for generating electricity economically.  A new availability module has 
recently been added.  Our definitions are as follows.  Availability is the fraction of the time in which the plant is 
operating normally.  For a pulsed reactor the dwell time in between pulses is considered to be normal operation.  
Capacity factor is the electrical energy delivered to the grid over the lifetime of the plant, divided by the maximum 
rate at which electrical power can be delivered.  These are the same for a steady-state, fixed power reactor, but for a 
pulsed reactor capacity factor will be less than availability.  (No allowance has been made for load following – 
reduction of output at times of low demand.) 
 
The total availability is derived from the addition of the planned and unplanned availabilities, 
  𝑈!"#$!"#and  𝑈!"#$%""&', and a term to take account of the overlap: 

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐴!"! = 1 − (  𝑈!"#$$%& + 𝑈!"#$%""&' − 𝑈!"#$$%&𝑈!"#$%""&') 

The cost of electricity (COE) is the mechanism by which the availability is fed back into the PROCESS optimiser.  
For a pulsed reactor the duty cycle Fdc is calculated using the pulse length and the time between pulses (dwell 
time).   The capacity factor is AtotFdc.  The code uses this value and cost data (including the capital cost) to estimate 
the cost of electricity for the plant. 

 
The lifetime of the components of a pulsed reactor may be substantially reduced because of fatigue, but this is not 
currently taken into account. 

8.1. Planned Unavailability 
 
The planned unavailability in PROCESS is linked to the lifetimes of the blanket and divertor and the time taken to replace 
them. The lifetime for the blanket is based only on the neutron flux, using the following very loose scaling: 

𝑡!"!",!"#$%&' =
𝜙!"#$%&'
𝑞!"#$%&'
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where 𝜙!"#$%&' is the allowable fast neutron fluence and 𝑞!"#$%&' is the nominal neutron wall load, defined as the fusion power 
divided by the first wall area.  In contrast, the divertor lifetime is estimated using the particle and photon heat load: 

𝑡!"#$,!"# =
𝜙!"#
𝑞!"#

 

where 𝜙!"# is the allowable cumulative heat load and 𝑞!"# is the peak heat load on the divertor. This formula will usually 
ensure that the divertor lifetime reduces as the power into the divertor increases, but the absolute values derived should not be 
taken seriously. 
 
PROCESS calculates which of the two components has the shorter lifetime.  For example, if the divertor has a shorter life, one 
or more outages, noutages, may be required for divertor replacement within the lifetime of a single blanket.  The unavailability is 
given by: 

𝑈 =
𝑡!"#$

𝑡!" + 𝑡!"#$
, 

where top is the total operational time, and tmain is the total time required for maintenance, both over the entire life of the 
machine.  The operational time top is given by 𝑡!"#$,!"#$%&' (or tlife,div, if lower).  The total planned unavailability is then: 

𝑈!"#$$%& =
𝑛!"#$%&'𝑡!"#,!"#$%! +   𝑡!"#$%&'&,!"#$%!

𝑡!"#$,!"#$%&' +   𝑛!"#$%&'𝑡!"#,!"#$%! +   𝑡!"#$%&'&,!"#$%!
, 

where tdiv, repair is the time to replace the divertor and tcomplete, repair is the time taken to replace both the blanket and the divertor.   
 
The time to replace the blanket and divertor are estimated by Crofts et al (14), who studied the influence of the number of 
remote handling systems on the length of scheduled maintenance. A fit to their results gives the time to repair both the blanket 
and divertor as: 

𝑡!"#$%!(𝑚𝑜𝑛𝑡ℎ𝑠) =
21
𝑁!.! + 2 

where N is the number of remote handling systems working in parallel.  The extra two months are to allow the dose-rate to 
reduce to an acceptable level before remote handling operations start, and to allow pump-down and preparation for operation at 
the end of the shutdown. Crofts et al comment that to replace the blanket one must remove the divertor also. On the other hand 
it is possible to replace the divertor alone and this is estimated to take 70% of the time taken to repair the blanket.   
 
 
 

8.2. Unplanned downtime 
Each subsystem is represented by a simple model that tries to capture the degradation of reliability when approaching 
operational and technological limits.  This increases the risk of unplanned downtime as the design margins are reduced.  This 
approach is well suited to a systems code, as it ensures that the optimiser will choose a design point that has adequate design 
margins whenever possible. The total unplanned unavailability is the sum of the unplanned unavailabilities for each system. 
 
For the heating and current drive systems the unplanned unavailability is taken as 2%. This is far less than currently operating 
systems - large improvements will need to be made in order to meet the requirements of a power plant.  The failure rate for the 
steam turbine system can be estimated from experience (15) as 9.39 × 10-5 failures per hour, with an associated average repair 
time of 96 hours.  
 
8.2.1. Magnets 
 
It is likely that the chance of a quench in a magnet is the largest driver of the risk of unplanned unavailability, and this may 
depend on the temperature margin in the TF coils – the difference between the actual temperature and the critical temperature 
of the superconductor (section 2.2).  The unplanned unavailability of the magnet system is given by: 

𝑈 =
𝜏!"#$

𝜏!"#$ +   𝜏!"#$%&!
, 
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where 𝜏!"#$ is the maintenance time for the magnet system and 𝜏!"#$%&! is the estimated time between quenches of the magnet 
system.  This is calculated as follows. 

𝜏!"#$%!! =   

  𝐿!"#                                                                                                                𝑇!"#$ >
𝑇!"#$,!"#

c
  

𝐿!"#   
𝑇!"#$ − 𝑇!"#$,!"#

𝑇!"#$,!"#
  
𝑐

1 − 𝑐                               𝑇!"#$,!"# < 𝑇!"#$ <
𝑇!"#$,!"#

c
  

      0                                                                                                                            𝑇!"#$ < 𝑇!"#$.!"#

 

where  
LMag = lifetime when design margin is large,  
Tmarg = superconductor temperature margin,  
Tmarg,lim = temperature margin lower limit,  
c = determines the temperature margin at which lifetime starts to decline.  
The suggested range for c is 0.9-0.99. Figure 10 shows an example for a minimum temperature margin of 1.5 K.  
The magnet never quenches if the temperature margin is above a critical value, and it will not operate at all below 
the temperature margin lower limit.  In between, there is a finite risk of quench. 
 

 

Figure 10.  Illustration of the approach used to estimate unplanned failures:  estimated time between quenches in 
the TF coils 

 
8.2.2. First wall, blanket and divertor 
 
The first wall and blanket will be subject to neutron irradiation during operations.  In addition, the first wall will be exposed to 
photon radiation, and particle bombardment by ions and neutral atoms.  The unplanned downtime is based on the number of 
cycles a blanket set experiences before replacement.  (This model is restricted to pulsed reactors).  The number of cycles 
between planned blanket replacements, N, is determined by the blanket lifetime which is based on the neutron flux (section 8.1 
above): 

𝑁 =
𝑡!"#$,!"#$%&'
𝑡!"!#$

 

This approach allows PROCESS to improve the availability of the blanket by increasing the neutron flux, until the planned 
downtime starts to dominate.  This is counter-intuitive, but is correct if one assumes that the neutron flux affects the total life 
of the blanket but not the cycle life.  
 
The life of the blanket is expressed in terms of a reference number of cycles Nref.  The probability of failure in one pulse cycle 
before the reference cycle life is a constant, pf.  During the reference lifetime the instantaneous availability after n cycles since 
the blanket was last repaired or replaced is: 
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𝑎 𝑛 = 𝑎! = 1 −
𝑝!𝑡!"#$
𝑡!"!#$

                    𝑛 ≤ 𝑁!"# 

where tmain is the time required to repair the blanket, tcycle is the length of one pulse cycle.  After the reference lifetime we 
assume that the reliability of the blanket starts to decline, so the instantaneous availability is given by: 

𝑎 𝑛 = 𝑎!
𝑁! − 𝑛
𝑁! − 𝑁!"#

                      𝑛 > 𝑁!"# 

where NU is the cycle when the blanket fails with 100% probability.  The availability decreases linearly beyond the reference 
lifetime.  Integrating the instantaneous availability gives the mean availability over the planned cycle life N: 

𝑁 ≤ 𝑁!"#                  𝐴 𝑁 = 𝑎!             

𝑁 > 𝑁!"#                  𝐴 𝑁 =
𝑎!

𝑁! − 𝑁!"#
𝑁! −

𝑁!"#!

2𝑁
−
𝑁
2
            

The availability of the divertor is estimated in a similar way. 
 
8.2.3. Vacuum System 
The vacuum system will be extensive and complex, as it must capture unburnt fuel, helium ash and impurities, as 
well as evacuating the reactor before operation.   PROCESS assumes that there is a pumping duct between every 
pair of adjacent TF coils, and that cryopumps are used, so that for each duct there are two pumps that can be 
regenerated alternately.  During planned maintenance broken pumps can be replaced, so the calculation of 
unplanned downtime is done for an operational period between planned shutdowns and then multiplied by the 
number of operational periods in the machine lifetime. The total operational time between shutdowns is 

𝑡!" =
𝑡!",!"!#$

𝑁!!!"#$!"# + 1
 

Where top,total  is the total operational time in the life of the machine. The failure rate for a cryopump is taken from 
(16):  

𝑝! = 2×10!!    /ℎ𝑜𝑢𝑟 
If the total number of pumps is Ntot, then the probability of n failures in the operational period top is: 

𝑃 𝑛 = 𝑁!"!
𝑛   (𝑡!"𝑝!)!     1 − 𝑡!"𝑝!

!!"!!! 

where 𝑁!"!𝑛  are the binomial coefficients.  If the number of failures exceeds the number of redundant pumps then 

it will cause additional unplanned downtime. The total downtime over the entire operational period is then 

𝑡!"#$ = 𝑁!!!"#$%&' + 1 𝑡!"#$ 𝑃 𝑛 𝑛 − 𝑁!

!!"!

!!!!!!

 

where tmain is the unscheduled maintenance time for a vacuum pump, and Nr is the number of redundant pumps. If 
there are several redundant pumps then this unscheduled downtime can be reduced to a negligible level.  Then the 
unplanned unavailability is 

𝑈!"# = max(𝑈!"#,
𝑡!"#$

𝑡!",!"!#$ + 𝑡!"#$
) 

The lower limit Umin allows for common mode failures that affect several pumps. 



 

18 
 

9. Application to DEMO 

A model for a pulsed reactor generating 500 MW net electricity has been obtained using PROCESS, referred to as 
DEMO A (1).  Some of the engineering aspects are discussed here, and illustrated in Figure 1.  The engineering 
constraints selected are listed in Table 5. 
 
Table 5.  Some of the engineering constraints applied in the DEMO A model.   

Limiting constraints Limit applied 
Current density in central solenoid at end of flat-top  
= 0.25×critical current density 

< 1.36E+07 A/m2 

Current density in winding pack of TF coils  
= 0.5×critical current density 

< 3.67E+07 A/m2 

Stress in the case of the TF coil (von Mises stress) 660 MPa 
Conductor temperature in quench of TF coil < 150 K 
Thickness of conduit of TF coil conductor > 4 mm 
Ratio of power crossing the separatrix to plasma major radius (Psep/R) (MW/m) 17 MW/m 
Net electric power output > 500 MWe 

Constraints applied but found not to be limiting  

Voltage generated in quench of TF coil < 20 kV 
Minimum availability value >75% 
Nominal neutron wall load < 8 MW/m2 

Constraints described in this paper but not applied  
Central solenoid temperature margin lower limit  
 
The machine is large - the outside dimensions of the cryostat are 36 m (diameter) x 29 m (height).  The TF coils 
allow the neutral beam to be tangent to the plasma axis or even further out, allowing optimum current drive to be 
achieved if required.   The power flows are summarised in Table 6, and some thermodynamic parameters are in 
Table 7.   
 
Table 6.  Power flows.   
Power Balance for Reactor MW 
Fusion power 1686 
Power from energy multiplication in blanket and shield (MW) 321 
Injected power (MW) 50 
Ohmic power (inductive power transfer to plasma) (MW) 1 
Power deposited in primary coolant by pump 14 

Total 2072 
Heat extracted from armour and first wall 435 
Heat extracted from blanket 1297 
Heat extracted from shield 2 
Heat extracted from divertor 338 

Total 2073 
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Table 7.  Thermodynamic and energy parameters.      
Wall plug efficiency of neutral beam injection system 40% 
Primary coolant Helium 
Primary coolant inlet/outlet temperatures (blanket) 300 ºC / 550ºC 
Primary coolant inlet/outlet temperatures (divertor) 100/150°C 
Secondary coolant Water/steam 
Gross electric power* / high grade heat 
(*Power for pumps in secondary circuit already subtracted) 

36.8 % 

Net electric power / total nuclear power 24.9 % 
 
 

 
 

 
 

 

Figure 11.  Dependence of plasma major radius, total TF coil cross-section and superconductor cross-section on 
normalised maximum permissible current density in TF coil.  Figure of Merit is major radius. 

 
Figure 11 illustrates the way in which multiple constraints can conspire to limit the space for variability of the 
optimised model.  Even when the ratio of operating current to critical current in the TF coils is increased by a factor 
of five, the total coil cross-section decreases only a little, because of the large non-superconducting area needed for 
copper stabiliser, insulation, and, especially, structural support.  The result is that the plasma major radius reduces 
by just 12 cm, or 1.4%.  This shows that to make effective use of improved superconductors, stronger structural 
materials would also be required. 
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Another illustration of this effect of multiple constraints is shown in Figure 12.  As the output power requirement is 
increased, the code increases the seeded impurity fraction, in order to increase the radiation fraction, thus 
maintaining the power per unit length into the divertor zone at a constant value.  The injected power was fixed in 
this run, so the electric power required for current drive drops as a fraction of gross electric power.  As the machine 
gets bigger, the increased space allows the toroidal field to increase slightly.  Because of these factors and others, 
the major radius grows by only 9%, even though the power output has increased by a factor of 2.2. 

 
 

 

Figure 12.  Dependence of the density of the seeded impurity (xenon), radiation power, major radius and 
recirculating electric power on net electric output required.  Figure of Merit is major radius. 

 
Fully annotated input and output files for these models are available in the Supplementary Data accompanying this 
paper. 

10. Discussion and Future work 

A new neutronics module is being developed (17).  The time-dependent code FATI was used to simulate the 
depletion of breeding and neutron multiplying isotopes in an HCPB blanket.  594 models were run, covering the 
parameter space of lithium fraction, 6Li enrichment, and blanket thickness.  The results were fitted with analytical 
expressions, which will be incorporated into PROCESS.   In the future it will be important to obtain improved 
parametric expressions for energy multiplication, and for nuclear energy deposition in the coils, with and without 
neutral beam ducts. 
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A new module has been developed (18) that estimates the approximate likely cost of building a tokamak fusion 
power station, on the assumption that the outstanding issues can be resolved.  It is based on information from the 
F4E website on the cost of ITER contracts, actual expenditure as listed in ITER website, and adjusted ITER 
budgetary estimates.  For steam cycle components, values from an industrial database are used.  The costs and 
scaling rules will be incorporated into PROCESS.      
 
PROCESS allows the user to choose which constraints to impose and which to ignore, so when evaluating the 
results it is vital to study the list of constraints used.  Work is underway on the sensitivity of PROCESS results to 
variations in input parameters, and on the robustness of the optimiser in finding global solutions.  New algorithms 
submitted by collaborators can be incorporated – for example safety, first wall erosion, and fatigue life will be 
crucial and are not yet taken into account.  The PROCESS homepage is www.ccfe.ac.uk/powerplants.aspx.   
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