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Abstract 

In this work, we combine Density Functional Theory data with a Thermodynamic and a kinetic 

model to determine the total concentration of hydrogen implanted in the sub-surface of tungsten 

exposed to a hydrogen flux. The sub-surface hydrogen concentration is calculated given a flux 

of hydrogen, a temperature of implantation, and the energy of the incoming hydrogen ions as 

independent variables. This global model is built step by step; an equilibrium between atomic 

hydrogen within bulk tungsten and a molecular hydrogen gas phase is first considered, and the 

calculated solubility is compared with experimental results. Subsequently, a kinetic model is 

used to determine the chemical potential for hydrogen in the sub-surface of tungsten. 

Combining both these models, two regimes are established in which hydrogen is preferentially 

trapped at either interstitial sites or in vacancies. We deduce from our model that the existence 

of these two regimes is driven by the temperature of the implanted hydrogen; above a threshold 

or transition temperature is the interstitial regime, below is the vacancy regime in which super-

saturated layers form within tenths of angstrom below the surface. A simple analytical 

expression is derived for the co-existence of the two regimes depending on the implantation 

temperature, the incident energy and the flux of the hydrogen ions which we use to plot the 

corresponding phase diagram. 

 

*corresponding author: yves.ferro@univ-amu.fr 
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1. Introduction 

The solubility of hydrogen in tungsten was experimentally established by Frauenfelder [1]; in 

the case of a tungsten sample in thermodynamic equilibrium with a hydrogen atmosphere, the 

solubility is around 10-18 at.fr. at room temperature and under standard pressure. Under low-

energy hydrogen plasma exposure, the total amount of trapped hydrogen can rise to 10-2 at.fr. 

[2] or above [2-4]. Such a high solubility is reached despite the fact that the kinetic energy of 

the implanted ion is below the displacement threshold of the tungsten atoms, meaning that no 

radiation-defects are created to accommodate additional hydrogen atoms in tungsten. 

Consequently, the question of how the solubility can be increased by sixteen orders of 

magnitude under plasma exposure constitutes the central focus of the present paper. 

It is known since the work of Fukai [5] that vacancies in metal can be created under a high 

pressure of hydrogen in the range of several GPa. On Pd and Ni, up to 20 at.% of vacancies 

were observed and this phenomena was consequently named Super-Abundant Vacancies 

(SAV). Each vacancy can individually accommodate one or multiple hydrogen atoms; they 

constitute traps for hydrogen and induce a dramatic increase of the solubility of hydrogen. Some 

thermodynamic models have been developed [6-10] since then to understand the formation of 

SAV in metals. The driving mechanism is that hydrogen decreases the formation energy of 

vacancies in the host metal, which results in the formation of a huge number of vacancies above 

a given pressure or chemical potential of hydrogen.  

Such thermodynamic models have also been developed for tungsten [11-14]. The one of Sun et 

al. [11] is probably the most comprehensive; it gives the number of vacancies and the total 

solubility of hydrogen at a given chemical potential imposed by a H2 atmosphere. Based on the 

previous work of Sugimoto [15], Sun et. al. [11] were able to relate the chemical potential to 

the pressure of the gaseous hydrogen far beyond ideal gas ranges up to GPas. However, the 

work of [11] does not take into account the temperature dependency of the many different 
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trapping energies and entropies of hydrogen in tungsten. In a previous work from us [12], the 

temperature dependency was introduced by including the vibrational energies and entropies for 

H in its multiple environments in tungsten: as interstitial (Hi), or in single vacancy (V) in which 

j H atoms can be trapped to form a VHj vacancy with j=0-12.  

During plasma exposure however, tungsten is not in contact with molecular hydrogen, but is 

exposed to a flux of hydrogen ions. As a consequence, the relation between the flux/energy of 

the plasma particles and the chemical potential of hydrogen must be established in order to 

predict the amount of hydrogen retained and the number of vacancies created into the tungsten 

material under various exposure conditions. To this end, we use the DFT data we recently 

published in [12] along with an improved thermodynamic model that includes the chemical 

potential of hydrogen. As a consequence, the equilibrium of the tungsten sample with a 

hydrogen reservoir of chemical potential µ can be described. In addition to this, a kinetic model 

recently proposed by Schmid et al. [3,16] is used to take into account the dependency of the 

flux and the ion energy of the particles during plasma exposure. Assuming a steady state is 

reached, a flux balance is established between diffusion into the sample of the implanted H/D 

atoms and outgassing from the sample. Combining both the results of the thermodynamic and 

kinetic model, we are able to determine a chemical potential from the ion energy and the flux 

of particles.  

In the end, this global model allows to determine, within the implantation depth of tungsten, 

the atomic fractions of interstitial hydrogen, the overall concentration in vacancies and 

hydrogen trapped in vacancies under hydrogen exposure at a given temperature, flux and ion 

energy. The existence of two regimes is established: in a first one, hydrogen is trapped at 

interstitial sites, while in the second regime SAV are formed, which leads to hydrogen super-

saturated layers (SSL). These SSL contain atomic fraction of hydrogen and vacancies in the 

range of the 1% at. fr., which is consistent with the experimental observations [2-4]. 
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2. DFT data 

The data needed to build the thermodynamic model were previously computed in ref [12] by 

means of electronic structure calculations using DFT with the Quantum Espresso code [17]. 

Based on these data, we calculated the formation energy of an interstitial hydrogen atom eint in 

its lowest energy configuration (this occurs when hydrogen is located at tetrahedral position of 

the bcc unit cell of perfect tungsten), the formation energy of a single empty vacancy e0, and 

the formation energy of a single vacancy VHj that traps j hydrogen atoms ej: 

𝑒"#$ = 𝐸'()
*+, −	𝐸()

*+, − 𝐸'/01
*+,  [1] 

𝑒2 = 𝐸3*+, −	
#45
#
	𝐸()

*+,
		
 [2] 

𝑒6 = 𝑒3 + 𝐸3'8
*+, − 𝐸3*+, − 𝑗	𝐸'/01

*+,  [3] 

where 𝐸()
*+,  is the electronic energy of a unit-cell containing n=54 atoms in ref [12], 𝐸'()

*+,  is 

the energy of the same unit-cell with a hydrogen atom in a tetrahedral position, 𝐸3*+,  is the 

energy of the single vacancy (i.e. the unit-cell with one W atom removed), 𝐸3'8
*+,  is the energy 

of a single vacancy incorporating  j H atoms, with j=1 to 12, and 𝐸'/01  is a reference energy of 

hydrogen.  𝐸'/01
*+,  can be chosen as the energy of atomic hydrogen or half the energy of a 

hydrogen molecule. As we are only dealing with energy difference, this reference energy will 

cancel out anyway. We nevertheless used half the energy of a H2 molecule to calculate eint, e0 

and ej displayed in Table 1. These data are in good correspondence with some other ones that 

can be found in the literature [18-20]. For j = 1 to 6, the formation energy of a VHj vacancy 

requires less energy than the formation of an empty vacancy e0; this energy difference is indeed 

the driving mechanism that leads to the formation of abundant VHj vacancies.  

 

Sites Energies (eV) 
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eint 0.93 

e0 3.25 

e1 2.99 

e2 2.73 

e3 2.57 

e4 2.54 

e5 2.57 

e6 2.83 

e7 3.48 

e8 4.08 

e9 4.81 

e10 5.60 

e11 6.58 

e12 7.20 

 

Table 1: formation energies eint of an interstitial atom, e0 of an empty single vacancy, and ej of 
a single-vacancy filled with j H atoms as calculated from equations 1, 2 and 3. 
 

The Gibbs free energy was further computed using the phonon properties of hydrogen in 

tungsten calculated via Density Functional Perturbation Theory (DFPT) [21] while keeping all 

the tungsten atoms frozen. This was also previously done in Ref [12] and was proven to be valid 

due to the mass difference of hydrogen and tungsten. The Gibbs free energy per particles gint, 

and gj were computed with following equation: 

𝑔 = ;𝑒*+, + ℎ=">? − 𝑇𝑠=">  [4] 

The formula for hvib and svib are given in the Appendix. gV is simply eV since we neglected the 

phonon properties of the tungsten network. The standard free energy per particle of H2 in the 
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gas phase was also calculated, which requires adding the translational and rotational 

components of enthalpy and entropy to the equation 4. At standard pressure P°, 𝑔'B
°  is 

determined according to: 

𝑔'B
° = ;𝑒'B

*+, + ℎ'B
="> + ℎ'B

DE$ + ℎ'B
$DF#G? − 𝑇;𝑠'B

="> + 𝑠'B
DE$ + 𝑠'B

°	$DF#G? [5] 

Again, the translation and rotational component to the chemical potential are given in the 

Appendix. Unless the ideal gas law is verified, the Gibbs free energy of H2 is given by: 

𝑔'B = 	𝑔'B
° +	𝑘I𝑇 lnL

M
M°

 [6] 

The range of validity of this model is however limited by the temperature: phonons are 

computed in the quasi-harmonic approximation, which limits the range of temperature to below 

1000K, after which anharmonic effects should be considered [22]. 

 

3. Thermodynamic and kinetic models 

In the following we present the different steps used to build the global model. In a first step, 

perfect tungsten is considered in equilibrium with a H2 atmosphere near standard pressure; in 

such conditions the ideal gas law can be applied and no SAV are formed; a thermodynamic 

model is built to determine the solubility of hydrogen in these experimental conditions. The 

model is validated against the experimental data on hydrogen solubility from Frauenfelder [1]. 

In a second steps, single-vacancies are added to the model while an equilibrium with a H2 gas 

phase is still considered. The total solubility of hydrogen at interstitial sites or trapped in 

vacancies is determined as a function of the temperature and the pressure. In a third step, a 

relation between the energy and flux of the impinging ions and the concentration of hydrogen 

located at interstitial sites is established via a kinetic model. With the concentration of hydrogen 

at interstitial sites established, we are then able to determine the chemical potential of hydrogen 

within the range of its implantation depth and consequently, we determine the solubility of 

hydrogen along with the number of created vacancies. 
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3.1 - Hydrogen solubility in perfect W 

We herein consider a tungsten sample in equilibrium with a H2 atmosphere at pressure P and 

temperature T. In a grand-canonical-ensemble picture, the reservoir is the H2 atmosphere 

containing NH hydrogen atoms (i.e. NH/2 hydrogen molecules). The system is the tungsten 

sample in which nint hydrogen are retained at interstitial sites. NH is so huge as compared to nint 

that it can be considered as constant. As a consequence, the pressure of the reservoir is constant 

and the chemical potential it imposes to the system is constant too. On the contrary, nint varies 

up to the point where equilibrium with the reservoir is established. A schematic representation 

of such a model is given in the table below.  

 H2 (Reservoir) Hint (System – W) 

Initial 1
2𝑁' 0 

Equilibrium 1
2 (𝑁' − 𝑛"#$) 

𝑛"#$ 

 

The relevant physical quantity to study such an equilibrium is the Gibbs free energy of the 

system, which is simply the sum of the Gibbs free energy per particle of each constituent of the 

system plus a configurational term: 

 𝐺 =
1
2 (𝑁' − 𝑛"#$)𝑔'B +	𝑛"#$	𝑔"#$ − 	𝑇	𝑆VE#W [7] 

 𝑆VE#W = 𝑘	𝑙𝑛 Y
γ	𝑁!

(γ𝑁 − 𝑛"#$)! 𝑛"#$!
\ [8] 

The configurational entropy expresses all of the configurations that can be built when placing 

nint hydrogen atom into the bcc lattice of a tungsten sample of N W atoms; g = 6 is the number 

of tetrahedral interstitial site in the bbc structure of tungsten. The chemical potential µ of H in 

the reservoir is 𝜇 = 5
^
𝑔'B(𝑃, 𝑇) . The equilibrium conditions being given by ( ab

a#c)d
),,M = 0, the 
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atomic fraction 𝑥"#$ = 	
#c)d
g	

 or solubility of hydrogen in tungsten at equilibrium with a reservoir 

of chemical potential µ is then : 

 𝑥"#$ =
𝛾

1 + 𝑒𝑥𝑝 j𝑔"#$ − 𝜇𝑘	𝑇 k
 [9] 

Unless 	𝑥"#$ < 104^ at.fr., 𝑒𝑥𝑝 jmc)d4n
o	,

k is large in comparison to 1 and the previous equation 

simplifies to: 

 𝑥"#$ = 	γ exp j−	
𝑔"#$ − 𝜇
𝑘𝑇 k [10] 

 
𝑥"#$ = 	 γ	s

𝑃
𝑃°	exp

t−	
𝑔"#$ −

1
2	𝑔'B

°

𝑘𝑇
u 

[11] 

Equation 11 uses the chemical potential of molecular hydrogen assuming an ideal behavior. It 

is also known as the Sievert’s law, which has been measured experimentally by Frauenfelder 

[1] for tungsten at high temperature between 1100K and 2400K. In this range of temperature, 

impurities and other defects are supposed to have only insignificant effects on the solubility 

itself.  

 

Considering a reservoir at the standard pressure (P=P°), the results from equation 11 are plotted 

on Figure 1 between room temperature and around 1000K. An extrapolation of the 

Frauenfelder’s law xvwx = 9.3	 × 104} exp j−	5.2~
���

k at low temperature is provided in Figure 1. 

The error bars given by Frauenfelder are also used to define the upper and lower boundaries for 

the solubility within the experimental uncertainty, xvwx�4 = 5.10	 × 104} exp j−	5.^5
���

k  and  

xvwx�� = 1.82	 × 104^ exp j−	2.��
���

k, respectively. 
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The agreement between the calculated and experimental solubility is excellent in the range of 

temperature considered as can be seen from Figure 1.  The same model will consequently be 

used in the next section to determine the hydrogen solubility in tungsten with vacancies.    

 

Figure 1: Calculated solubility xint (black line) compared to the experimental solubility 
measured by Frauenfleder (red dashed line). Also, the error bars given bar Frauenfelder are 
plotted (blue dotted lines). 
 

 

3.2 - Hydrogen solubility in tungsten with single vacancies 

 A reservoir of NH atoms in the form of H2 molecules and temperature T and pressure P is again 

used to impose the chemical potential 𝜇 = 5
^
𝑔'B(𝑃, 𝑇) to the system. We now consider the case 

in which the pressure is in the range of GPa. At such a pressure, single-vacancies are created in 

large number and have to be taken into account into the model. The number of vacancies that 

trap j H atoms is nj, and the total amount of hydrogen trapped in the single vacancies is 
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𝑛$DF���� = 	∑ 𝑗	𝑛65^
6�2 . The total number of H atoms absorbed in the sample is nH and the total 

number of vacancies is nv:  

 𝑛' = 𝑛"#$ +�𝑗	𝑛6

5^

6�2

 [12] 

 𝑛= = 	� 	𝑛6

5^

6�2

  

All nj, nint, nH and nv vary as in the previous paragraph up to the point where the equilibrium is 

reached. The atomic fraction xj, xH, xint and xv (same quantities but divided by the number N of 

W atoms) will be equally used throughout this paper. A schematic representation of such a 

system is given by the table below. 

 

 (Reservoir)  (System – W) 

 H2  Hint  Hvac 

Initial 1
2𝑁'  0 0 

Equilibrium 1
2 (𝑁' − 𝑛') 

 
𝑛"#$ = 𝑛' −�𝑗	𝑛6

5^

6�2

 �𝑗	𝑛6

5^

6�2

 

 

The Gibbs free energy of the whole system is: 

 𝐺 =
1
2 (𝑁' − 𝑛')𝜇'B +	𝑛"#$		𝑔"#$ +

t�𝑗	𝑛6

5^

6�2

	𝑔6u 	− 	𝑇	𝑆VE#W [13] 

 

𝑆VE#W = 𝑘 ln𝑍"#$
VE#W + 𝑘 ln𝑍=FV

VE#W 

𝑍"#$
VE#W =

𝛾𝑁!
(𝛾𝑁 − 𝑛"#$)! 𝑛"#$!

										𝑍=FV
VE#W =

(𝑁 − 𝑛=)!
𝑛=!

�
𝜔6
#8

𝑛6!

5^

6�2

 
[14] 
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wj is the number of degenerate configurations in which j H atoms are located in a single vacancy 

and was taken from Ref [13]. The equilibrium conditions are now given by ( ab
a#8
),,M,#c�#8 = 0 

and ( ab
a#c)d

),,M = 0.  

The first condition leads to: 

 
𝑥6

𝜔6(1 + 𝑥=)
	�
𝛾 − 𝑥"#$
𝑥"#$

�
6
= exp �−

𝑔6 − 𝑗	𝑔"#$
𝑘𝑇 � [15] 

while the second condition leads to equation 9 again. Combining equations 9 and 15 gives: 

 
𝑥6

1 + 𝑥=
	= 𝜔6 	exp �−

𝑔6 − 𝑗	𝜇
𝑘𝑇 � [16] 

Noticing that ∑ 𝑥65^
6�2 = 𝑥=, one finally gets: 

 

	𝑥6 = 	
1
𝐶 	𝜔6 	exp �−	

𝑔6 − 𝑗	𝜇
𝑘𝑇 � 

𝐶 = 1 −�	𝜔6 	exp �−
𝑔6 − 𝑗	𝜇
𝑘𝑇 �

5^

6�2

 

[17] 

In cases such as xv <<1, then C»1 and equation17 takes a very simple analytical form. 

Equations 9 or 10 and 17 can now be used to determine the atomic fraction of interstitial H 

atoms and the atomic fraction of H atoms trapped in vacancies, respectively, provided that the 

chemical potential µ is known, or that one of the atomic fraction xint or xj or the total solubility 

xH is known. The limit of validity of this model is reached at a concentration around 10-2 at. fr. 

(1%) of vacancies. At such a concentration, traps interact with each other, thus the trapping 

energies for hydrogen are modified as compared to the corresponding trapping energies for 

diluted vacancies in tungsten. Moreover, aggregation of vacancies and the formation of vacancy 

clusters is expected. Also, the configurational entropy will take a more complex form as 

discussed in [12]. This limit is however set at a very high concentration and the domain of 

validity of the model is consequently quite robust. 
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 3.3 - Kinetic model 

The objective of this sub-section is to determine the chemical potential µ as a function of the 

implantation conditions, and consequently all the properties and behavior of hydrogen within 

tungsten. This can be achieved using equations 10 or 11provided that the fraction of interstitial 

H atoms xint is known. Based on a kinetic model, a simple expression for xint was recently 

proposed in Ref [3,16]. In this model, an incident flux ϕvw� (m-2s-1) of ions with energy Evw� 

(eV) is assumed to create a triangular depth-profile of interstitial hydrogen atoms in tungsten 

as represented in Figure 3. The implanted flux is (1 − r) ⋅ ϕvw� where r is the dimensionless 

reflection coefficient of the ions and depends on the incident energy Evw� of the ions. R� is the 

mean depth of ion implantation and is also dependent on Evw�. The fraction of hydrogen remains 

maximal at the peak depth over time since the flux of ions continuously implants particles to 

this depth. This maximal fraction of interstitial hydrogen is called xvwx���. The migration of the 

hydrogen atoms from the implantation zone to the bulk is characterized by the distance R�(t). 

	
Figure 3: Schematic representation of the depth profile of interstitial hydrogen atoms 𝑥"#$ 
during an implantation with H+/D+ ions. The profile is shown from the surface (left) to the bulk 
(right). 
 

According to Fick’s law of diffusion, these two fluxes depend on the diffusion coefficient of 

hydrogen in tungsten D(T): 

depth

x"#$%&'

x"#$

R) R*(t)

1 − r ⋅ ϕ"#3

ϕ4"5ϕ*6789:



	 13	

 
ϕ�£¤¥¦§ = D(T) ⋅

xvwx��� ⋅ ρ©
R�

 [18] 

 
ϕªv« = D(T) ⋅

xvwx��� ⋅ ρ©
R�(t)

  

Where ρ© ≈ 6.18 × 10^�	at. m4}  is the tungsten density. The flux balance between the 

desorbing flux, the migration flux and the implanted flux yields: 

 (1 − r) ⋅ ϕvw� = 	−ϕ�£¤¥¦§ + ϕªv« [19] 

The distance Rd(t) in Figure 3 and equations 18 increases with time. ϕªv«  is inversely 

proportional to Rd(t), it consequently decreases and tends towards zero with time. When the 

steady state is reached, the implantation and desorption fluxes equilibrates, which leads to: 

 

 xvwx��� = R� ⋅
(1 − r) ⋅ ϕvw�
D(T) ⋅ ρ©

 [20] 

All the quantities are known in equation 20since ϕvw� is given by the experimental conditions, 

D(T) = D¥ exp j−
°±
o	,
k is the diffusion coefficient calculated by DFT [12], and R� and r can 

be easily determiner via SRIM [23,24]. SRIM needs Evw� as input data, which is also given by 

the experimental conditions. In Appendix II, the conditions within which a steady state is 

reached are investigated. Combining equations 9 or 10, 18 and 20 yields the chemical potential 

of hydrogen, the total solubility of hydrogen and the defect concentration created in the material 

at Rp, which we examine in the next sub-section. 

 

4. Super-saturation in tungsten 

4.1 – Global model 

The kinetic and thermodynamic model are herein combined to yield an estimate of the hydrogen 

concentration implanted in the sub-surface of tungsten around Rp at a given implantation 

temperature. The sub-surface is indeed the range of validity of the model; since we use a 
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thermodynamic model, an equilibrium has to be established at least locally. The sub-surface 

layer is located where the energy of the implanted ions is deposited and thus acts as an energy 

bath for the system in this region. Consequently, kinetic processes are easily activated in this 

region, which ensures that equilibrium is reached, and the model applies. 

In a first step we model the fraction of hydrogen implanted in the sub-surface. We apply the 

kinetic model with implantation conditions commonly found in the literature: ϕvw� =

105²𝑚4^𝑠45 and Einc = 500 eV/ion. The reflection coefficient r and mean depth of implantation 

were given by SRIM are r = 0.51 and Rp = 7.7 nm. The kinetic model allows us to determine 

xvwx��� given in equation 20, and then to determine the chemical potential µ from equation 10. 

The fraction xj of VHj vacancies in the sub-surface layers are subsequently calculated using 

equations 18. These fractions are plotted in Figure 4 in a range of temperature from 300K to 

800K. 

The most populated vacancies are the VH6 for an implantation at 300K, followed by VH7 and 

VH5, then VH4 up to V0. This ranking is inverted at higher temperature, namely at 800K. The 

same qualitative trend exists when an equilibrium with a H2 gas phase is considered [12]; 

however in the case of implantation, the concentration of vacancies and the solubility of 

hydrogen dramatically increases to xV = 0.4% and xH = 2.4% at 300K. This result is in good 

agreement with experimental observations that report the formation of super-saturated layers 

(SSL) within the first ten nanometers of tungsten after implantation at room temperature [3]. It 

also follows that these SSL would be a consequence of SAV which drastically increase the 

hydrogen concentration while simultaneously inducing a huge number of defects.  
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Figure 4: Atomic fraction of VHj vacancies in the sub-surface layer of tungsten within 10 nm 
with a flux 𝜙"#V = 105²𝑚4^𝑠45 and ion energy Einc = 500 eV/ion.  
 

To better understand the formation mechanism of the supersaturated layers, we plotted in Figure 

5 the total fraction of hydrogen implanted in the sub-surface as a function of the temperature. 

This was done for fluxes ranging from ϕvw� = 105�m4^s45 to ϕvw� = 10^~m4^s45 and for an 

incident energy Einc = 500 eV/ion. Two regimes are observed; at high temperatures, the total 

solubility of hydrogen varies slowly with temperature and remains within one order of 

magnitude; the concentration is mostly dependent on the flux of implantation. At low 

temperatures, the total solubility dramatically increases as the temperature decreases; SSL are 

consequently formed in this regime. The dotted lines in Figure 5 display the fraction of 

hydrogen trapped at interstitial sites only (i.e. the fraction of hydrogen located within vacancies 

is removed). It is clear that the dramatic increase in the hydrogen solubility is the consequence 

of the formation of vacancies in huge numbers that accommodate hydrogen atoms.  As a 

consequence, the physical distinction between these two regimes is driven by trapping at 

interstitial sites at high temperature, and by the formation SAV and trapping of hydrogen in the 

form of VHj vacancies at low temperature. Our model predicts that the formation of SAV and 
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consequent trapping of VHj vacancies in the low temperature regime is what causes the 

formation of the experimentally observed SSL.  

 

 

Figure 5: Total solubility of hydrogen (bold lines) implanted at Rp for various incident fluxes 
ranging from 𝜙"#V = 105�𝑚4^𝑠45  to 𝜙"#V = 10^~𝑚4^𝑠45 plotted as a function of the 
temperature of implantation and for an incident energy of Einc = 500 eV/ion. The fraction of 
hydrogen trapped at interstitial sites is also plotted in dotted lines for comparison. 
 

 

In summary, the temperature of transition between the vacancy and interstitial regimes depends 

on the flux: while the vacancy regime is not reached at room temperature for a flux of ϕvw� =

105�m4^s45, it is reached below 550K with a flux of  ϕvw� = 10^~m4^s45. This temperature 

of transition Tt is clearly seen in Figure 5 and corresponds to the points where the total solubility 

and the solubility at interstitial sites are no longer superimposed. 

 

4.2 – Temperature of transition depending on the flux 
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Below is set a simple analytical expressions of the transition temperature between the 

interstitial and the vacancy or SSL regimes. At Tt, the fraction of hydrogen trapped in interstitial 

sites xint is equal to the fraction of hydrogen trapped in vacancies. As the most populated 

vacancies at low temperature are the VH6, we have the condition xint = j xj with j = 6. 

Equation 10 and 17 with C = 1 allows to determine the transition temperature depending on the 

chemical potential: 

 Tx = 	
1

𝑘	𝑙𝑛 𝛾
𝑗	𝜔6

	¶𝑔"#$ − 𝑔6 + (𝑗 − 1)𝜇· [21] 

The chemical potential is determined using equation [10] and [20]: 

 µ = E¹ + gvwx + k	Tx ln ¼
𝑅�(1 − r) ⋅ ϕvw�

γ	ρ©	𝐷E
¿ [22] 

The transition temperature depending on the flux is the determined combining equations [21] 

and [22]: 

 Tx =
𝑔6 − 	𝑗	𝑔"#$ − (𝑗 − 1)𝐸F

𝑘	 Y(𝑗 − 1)	𝑙𝑛 Y
𝑅�(1 − r) ⋅ ϕvw�

γ	ρ©	𝐷E
\ +	ln

𝑗	𝜔6
𝛾 \

 [23] 

Tt can be plotted easily assuming that gint » eint = 1.18 eV when corrected from the Zero Point 

Energy (ZPE), gj » ej = 4.08 eV also corrected from the ZPE with j = 6 (using j=5 and e5=3.60ev 

does not significantly affect the result). The activation energy for diffusion is Ea = 0.20 eV, the 

other quantities in equation 23 are Do = 1.9 10-7 m-2s-1, 𝛾 = 6, 𝜔À = 1 and ρ©= 6.18 ×1028 at.m-

3. In the end, Rp and r are determined by the incident energy Einc of the ion. They are given by 

SRIM : r=0.51 and Rp = 7.7 nm at Einc = 500 eV, and r=0.56 and Rp = 2.4 nm at Einc = 70 eV. 

Tt is plotted in Figure 6 for Einc equal to 500eV and 70eV. Tt agrees well with the one that can 

be read on Figure 5 with Einc = 500 eV. As a consequence, equation 23 gives a simple and easy 

to use analytical expression that allows one to predict the experimental conditions leading to 

the formation of hydrogen super-saturated layers in tungsten: the SSL are formed in conditions 



	 18	

corresponding to the top left of Figure 6, while on the right-hand side no SSL is formed. Figure 

6 can be read as a diagram of existence of the SSL. 

 

Figure 6: Diagram of existence of the SSL: temperature of transition between the interstitial 
and vacancy regime for hydrogen trapping plotted as a function of the incident flux of the ions 
for 2 incident energies, Einc=500eV as in Figure 5, and Einc = 70eV. 
 

Even if this phase diagram still needs to be validated against experimental results, we can 

nevertheless compare with the results from Gao et al [3] recorded at T=300K with Einc = 70eV 

and ϕvw� = 9.910-19 m-2s-1. With these experimental conditions, they fall in the SSL domain in 

good correspondence with the concentration experimentally determined to 9.4% at.fr. In 

addition, Poon et al. [25], studied the retention of D in a single crystalline sample implanted by 

500 eV/D ions at 300 K and various fluxes; they reported a significant decrease of the deuterium 

retention for fluxes below 1×1018 m-2s-1; this would indicate that the coordinate T=300K, ϕvw� 
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= 1.0 ×10-18 m-2s-1  lies on the transition curve, which is clearly the case in Figure 5 and 6, and 

would consequently be in full agreement with the model. 

 

 

5. Conclusion 

In this work we combined DFT data, a kinetic model, and a thermodynamic model to produce 

a global model enabling us to examine the behavior of hydrogen in tungsten under hydrogen 

ions irradiations. The results of our model provide the date to construct a simple diagram 

allowing one to predict the domain of existence of the super-saturated layers depending on the 

flux, the energy of the ions, and the temperature of implantation of hydrogen in tungsten. A 

simple analytical expression is given for the temperature of transition between the interstitial 

and vacancy regimes, which make it easy to determine the experimental conditions leading to 

the formation of the SSL.  
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Appendix 

Appendix I 

 
The vibrational enthalpies and entropies were calculated as follows: 

ℎ="> = ∑ ℎ𝜈6 Â
5
^
+ 5

£Ã��
ÄÅ8
ÆÇ �45

È#ÉcÊ
6�5  (AI-1) 

𝑠="> = 𝑘∑ ËÌÍ8
o,

5

£Ã��
ÄÅ8
ÆÇ �45

− ln	 j1 − exp j−ÌÍ8
o,
kkÎ#ÉcÊ

6�5  (AI-2) 

For the gas phase, it is also necessary to considered the translational et rotational components 

to the Gibbs free energy. Since H2 is an homonuclear diatomic molecule, these components 

were computed as follows: 

 

ℎ$DF#G =
5
2𝑘𝑇 

 

𝑠$DF#G° = 𝑘I t
5
2 + 𝑙𝑛 Ï

𝑘𝑇
𝑃° �

2	𝜋	𝑚	𝑘	𝑇
ℎ^ �

}
^
Ñu 

 

(AI-3) 

ℎDE$ = 𝑘𝑇 

 

𝑠DE$ = 𝑘I Ò1 + 𝑙𝑛 ¼
8	𝜋^	𝐼	𝑘	𝑇
𝜎	ℎ^

¿Õ 

 

(AI-4) 

In 𝑠DE$ , s depends on the symmetry of the molecule. It is 2 for an homonuclear diatomic 

molecule. I is the inertia momentum of H2. 

 

 

Appendix AII 

We herein check the conditions within which the steady state leading to equation [15] is 

reached. To this end, we assume the concentration of trapped hydrogen 𝑥$DF���� is constant up 

to the depth 𝑅�(𝑡). It follows the number of hydrogen trapped per surface unit is 𝑐$DF���� =
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𝜌(𝑅�(𝑡)𝑥$DF����, and its derivative with respect to time is 𝜙Ù"m = 	
�	Vd/±ÚÚ0Û

�$
. This leads to 

𝑅�(𝑡)	𝑑𝑅�(𝑡) =
*(,)

Ýd/±ÚÚ0Û
	𝑥"#$Þßà	𝑑𝑡 , which is 𝑅�(𝑡) = L^*(,)Ýc)d

áâã

Ýd/±ÚÚ0Û
	𝑡 once integrated over time. 

Using this expression in the flux balance (13)  

0 =
D(T)
R�

⋅ �Lxäå
����

^

+ s
xäæçèééêë ⋅ D(T)

2 ⋅ t ⋅ Lxäå
��� − (1 − r) ⋅

ϕvw�
ρ©

	 (AII-1) 

we end up with: 

 
Lxvwx��� = sR� ⋅

(1 − r) ⋅ ϕvw
D(T) ⋅ ρ©

⋅ L
τª
t ⋅

ts1 +
t
τª

− 1u 
(AII-3) 

Where 𝜏Ù = îÚïðÝd/±ÚÚ0Û
�(54D)ñc)ò

 is the time characterizing the growth of 𝑥"#$Þßà. Figure A shows the 

evolution of 𝑥"#$Þßà/𝑥"#$Þßà$→õ as a function of 𝑡/𝜏Ù as described by equation (14). It requires 

𝑡 = 360𝜏Ù for 𝑥"#$Þßà to reach 90% of its steady-state value which can be considered as the 

steady-state condition. 

 

Figure A: evolution of 𝑥"#$Þßà with time 𝑡/𝜏Ù.  
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A typical implantation flux is (1 − 𝑟)𝜙"#V = 105²	𝐷𝑚4^𝑠45 with ion energy of 250 eV/D. 

This ion energy, at normal incidence, leads to 𝑅� = 5	𝑛𝑚. Considering 10-2 at.fr as an upper 

limit for 𝑥$DF���� , one can obtain 𝜏Ù = 0.0425	𝑠 . Thus, the steady-state condition is 𝑡 >

15.3	𝑠 . Considering runs last for hundreds or even thousands of second, it appears very 

reasonable to assume that the steady-state is reached during experiments. 
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