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Abstract. An analytical interatomic bond order potential for the Be–O system
is presented. The potential is fitted and compared to a large database of bulk
BeO and point defect properties obtained using density functional theory. Its
main applications include simulations of plasma-surface interactions involving
oxygen or oxide layers on beryllium, as well as simulations of BeO nanotubes
and nanosheets. We apply the potential in a study of oxygen irradiation of Be
surfaces, and observe the early stages of an oxide layer forming on a Be surface as
a function of temperature and deposition energy. Predicted thermal and elastic
properties of BeO nanotubes and nanosheets are simulated and compared with
published ab initio data.
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1. Introduction

The plasma-facing materials in future fusion reactors
must be able to withstand extreme conditions due to
high thermal loads, ion fluxes, and neutron irradiation.
Beryllium has been selected as the first-wall material
of ITER. The properties contributing to the choice
of Be include a low atomic mass (and hence low
plasma contamination), low tritium retention, and its
oxygen gettering ability [1]. The behaviour of Be
under fusion-relevant conditions has therefore been
extensively studied in experimental and modelling
work [2, 3, 4, 5]. However, little is known about
the effects of oxygen on the structural and erosion
properties of the Be walls [6, 7]. The high affinity
for oxygen is likely to lead to a growing plasma-
facing oxide layer if exposed to air, with subsequent
erosion and sputtering of oxide molecules. Addressing
the consequences of the otherwise desirable oxygen
gettering ability of Be is therefore crucial.

Beryllium oxide has also recently gained consider-
able interest within the nanomaterials community, due
to the partly covalent bonding nature of the otherwise
ionic compound. Ever since the discovery of single lay-
ered carbon nanostructures, nanotubes and nanosheets
of carbon and other materials have been intensively
studied for their exceptional electronic and mechanical
properties [8, 9]. The possibility of producing carbon-
like sp2-bonded BeO nanostructures has been recently
proposed [10], and been the subject of a number of
first-principles studies [10, 11, 12, 13, 14, 15, 16, 17].

Molecular dynamics (MD) simulations is a use-
ful tool for studying atomic processes on time and
length scales inaccessible to experiments and density
functional theory, such as sputtering mechanisms or
radiation damage production. The accuracy of MD
simulations is directly defined by the interatomic po-
tential used to describe the interactions between in-
dividual atoms. Developing accurate many-body in-
teratomic potentials for different materials is therefore
an essential part of atomistic modelling, and no many-
body potential has to our knowledge been developed
for the Be–O system. The potential formalism used
here was originally developed by Tersoff [18, 19], using
the concept of bond order as discussed by Abell [20].
Despite being originally developed to model covalently
bonded materials, the potential has been shown to
closely resemble the embedded atom method potentials
used for metals [21, 22]. The bond order formalism

therefore allows modelling of differently bonded mate-
rials, from pure metals to e.g. metal and semiconduc-
tor compounds. The potential function used in this
work, referred to as the analytical bond order poten-
tial (ABOP), is similar to the original form by Tersoff,
but slightly extended and rewritten. The potential is
capable of modelling bonds breaking and forming, and
has been previously applied to a wide variety of mate-
rials, including pure metallic, metal–carbon–hydrogen,
and metal–oxygen systems [23, 24, 25, 26, 27, 28, 29].
In this work, we extend previously developed poten-
tials for the fusion-relevant Be–W–C–H materials to
include the Be–O interaction.

The article is structured as follows. In section 2,
we briefly describe the functional form of the ABOP,
and the strategy used for fitting the potential to
the constructed database of material properties. In
section 3, we summarise the accuracy of the fitted
properties of the potential, and discuss results from
testing of the potential by calculating properties not
included in the fitting process. Finally, we apply the
ABOP in simulations of O irradiation of a Be surface,
as well as investigations of the thermal stability
and elasticity of BeO nanotubes and nanosheets.
Concluding remarks are given in section 4.

2. Methods

2.1. Potential formalism

The functional form and its parameters has been
extensively discussed previously (see e.g. Ref. [23]),
and will only be briefly presented here. The total
potential energy in the ABOP is expressed as a sum
over all atomic bonds, given by

V =
∑
i

∑
j>i

Vij =
∑
i

∑
j>i

fC(rij)[VR(rij)−bijVA(rij)], (1)

where the repulsive and attractive functions form a
simple Morse-like potential [30]

VR(rij) =
D0

S − 1
exp

[
−β
√

2S(rij − r0)
]

(2)

VA(rij) =
SD0

S − 1
exp

[
−β
√

2/S(rij − r0)
]
. (3)

D0 and r0 are the dimer bond energy and length. The
interaction range is typically restricted to the nearest-
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neighbour shell by the cutoff function

fC(r) =


1, r ≤ R−D
1

2
− 1

2
sin
[ π

2D
(r −R)

]
, |R− r| ≤ D

0, r ≥ R+D.

(4)

R is the cutoff distance and D defines the width of
the cutoff region, where the potential energy smoothly
approaches zero. All many-body interactions are
incorporated in the bond order function, which is
written in the symmetric form

bij =
bij + bji

2
, (5)

where

bij = (1 + χij)
−1/2. (6)

Furthermore, χij is given by

χij =
∑

k( 6=i,j)

fC(rik)gik(θijk)ωijk exp [αijk(rij − rik)] , (7)

and the angular function by

gik(θijk) = γik

[
1 +

c2ik
d2ik
− c2ik
d2ik + (hik + cos θijk)2

]
. (8)

In simulations involving high kinetic energies,
such as irradiation studies, the repulsive part of
the potential given above is unphysically weak and
must be modified to describe repulsive short-range
interactions more accurately. A common approach is to
join the universal repulsive Ziegler-Biersack-Littmark
potential [31], VZBL(rij), with the original potential
Vij as

V ′ij = F (rij)Vij + [1− F (rij)]VZBL. (9)

F (r) is the Fermi function

F (r) =
1

1 + exp[−bf(r − rf)]
, (10)

which ensures a smooth transition between the original
potential and the repulsive ZBL potential. The
parameters bf and rf , defining the transition range and
distance, are chosen so that the equilibrium properties
are nearly unchanged for all considered coordination
numbers.

2.2. Computational details

The interatomic potential was fitted using the code
tulip [32]. Molecular dynamics simulations were
carried out with the codes parcas [33, 34] and
lammps [35]. The time step required for energy
conservation in the MD simulations was 0.6 fs.
Structural optimisations, defect energies, and the
phonon dispersion in the ABOP were calculated using
ase [36] and lammps [35]. All density functional
theory (DFT) calculations were carried out using the
Quantum Espresso code [37].

2.3. Fitting database

Beryllium oxide crystallises in the wurtzite structure at
atmospheric pressure and room temperature [38, 39].
A large amount of experimental data is available for
characterising BeO wurtzite: the lattice constants [40,
41, 42, 43], the cohesive energy [44], the bulk
modulus [40], and the elastic constants [40, 45, 46, 47].
However, some other hypothetical Be–O structures in
which the beryllium atom has different coordination
numbers have to also be considered. These structures
will enlarge the fitting database and ensure a better
transferability of the interatomic potential to any kind
of structural environment.

Consequently, DFT calculations have been carried
out for the Be–O dimer, a linear chain of Be–O units,
a graphene-like 2D structure in which Be–O units
form hexagons in a plane, and the 3D wurtzite, zinc
blende, rock salt, and ceasium chloride structures. The
corresponding cohesive energies, lattice constants, bulk
moduli and elastic constants were determined. In
addition, the formation energies of different defects in
BeO wurtzite were calculated as well as the solution
energies of oxygen in pure hcp Be. Surface properties
were also considered by investigating the adsorption of
an oxygen on the Be hcp (0001) surface. Additionally,
phonon properties of BeO wurtzite were determined to
assess the reliability of the ABOP.

The energy of the oxygen molecule in its ground
state is required to compute the cohesive, formation,
and adsorption energies discussed in this work. The
ground state of the O2 molecule is spin triplet, which
consequently requires spin-polarised calculations. In
addition, point defects such as the Be vacancy in BeO
wurtzite displayed magnetic properties, as previously
pointed out in the literature [48, 49, 50], which also
requires spin-polarisation.

The DFT calculations have been performed with
the GGA-PBE exchange and correlation functional [51]
and ultra-soft pseudo-potential [52]. Cutoff energies of
52 Ry (707 eV) and 416 Ry (5658 eV) were used for
the truncation of the expansion of the wave functions
and the electronic density, respectively. The k-point
sampling has been converged to 24 × 24 × 24 for the
wurtzite unit cell containing 2 Be atoms and 2 O
atoms. The phonon calculations were performed in
the framework of the Density Functional Pertubation
Theory [53] with the same cutoff energies and k-point
sampling as above.

The k-point samplings for the others structures
were scaled as the inverse of the size of the box. The
dimer, linear, and graphene-like structures exhibit non-
periodic structures in at least one direction. Thus, in
these directions, the size of the box was increased to
be more than 20 Å to prevent interactions across the
periodic boundaries. In these directions, only one k-
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point was used.
The formation energies of defects in the BeO

wurtzite lattice were calculated in a 3× 3× 3 supercell
(54 Be atoms and 54 O atoms) with a k-point sampling
of 6× 6× 6. Relaxations of both the atomic positions
and the volume of the cell were carried out.

The calculations of an O impurity in the Be
hcp lattice and on the Be hcp (0001) surface were
performed with a cutoff energy of 50 Ry (680 eV)
for the wave functions and 400 Ry (5440 eV) for
the electronic density. The formation energy of O
was calculated in a 5 × 5 × 4 Be supercell (200 Be
atoms). For these calculations, the k-point sampling
was 4 × 4 × 5 (20 × 20 × 20 for the Be hcp unit
cell with 2 Be atoms). The positions of all atoms
as well as the volume of the cell were relaxed. For
the surface calculations, a 3 × 3 supercell was used
in the a and b directions (parallel to the (0001)
surface). Eleven hexagonal Be layer were considered
in the c direction (perpendicular to the surface) with
a 24 Å vacuum layer to prevent interactions between
the studied surface and the bottom of the repeated
supercell in the c direction. The k-point sampling used
for these calculations was 6 × 6 × 1. The calculations
were done by relaxing all atoms except the two bottom
layers.

2.4. Fitting methods

With reference data for BeO phases in a wide range of
coordination numbers from the DFT calculations, the
fitting of the potential parameters followed a similar
strategy as previously outlined in e.g. Ref. [23]. The
cutoff range of Be–O interactions was chosen to be
between the first and second nearest neighbour shells
for all BeO structures included in the fitting process.
When the interaction range is restricted to nearest
neighbours only, the energy per bond, Eb, follows the
Pauling relation [54], given in the ABOP by

Eb = D0 exp
[
−β
√

2S(rb − r0)
]
, (11)

where rb is the bond length. D0 and r0 are typically
chosen to give the correct dimer energy and bond
length, β can be calculated from the ground state
frequency of the dimer, and S fitted to give the correct
bond energies for the higher coordinated structures.
The BeO dimer can be seen as a truncation of the
(BeO)n infinite chain, meaning a reduction from 1D
symmetry to 0D symmetry. As a consequence, strong
border effects modifying the electronic structure of the
BeO dimer exist, and therefore results in a weaker
bond energy. Reduction from 2D graphene to 1D
carbon nanotube has shown to give similar border
effects, where the carbon nanotube can be either
metallic or semiconducting depending on their chiral

indices [55, 56]. The bond energy of the dimer given
by DFT and experiments is therefore exceptionally
weak compared to the bond energies of the higher
coordinated structures, and could not be used to fix
D0 and r0. Both D0 and r0 were therefore included,
together with S and β, when fitting equation 11 to
satisfy the bond energies of all structures studied by
DFT.

Care had to be taken so that the interaction
range of the underlying Be–Be potential (version II
from Ref. [28]) did not interfere with the above fitting
strategy. Including both nearest neighbour Be–O
and Be–Be interactions effectively changes the above
Pauling relation for Be–O structures. The nearest
neighbour Be–Be bond in the ground state of BeO
(wurtzite), is 2.7 Å according to experimental data [40].
The cutoff radius of the Be–Be potential is 2.685 Å,
resulting in Be–Be bonds being included after only
a small compressive strain. Consequently, fitting the
ABOP to the experimental lattice constants leads to
a poor description of elastic properties, as the energy
cost for straining the structure is highly asymmetrical
around the equilibrium. In order to avoid such
unphysical behaviour, the ABOP was fitted to the
(slightly overestimated) lattice constants and cohesive
energies obtained in the DFT calculations.

The parameters of the angular function gik(θijk) in
equation 8 were numerically fitted using the reference
data obtained by DFT. The parameter h, defining
the optimal angle between the atoms ijk, was allowed
to vary between the equilibrium angles of the lowest
energy phases, wurtzite (109.5◦;h = 0.33), and the
graphene-like sheet (120◦;h = 0.5).

3. Results and discussion

3.1. Fitted properties

Table 1 shows the properties of different BeO phases
given by the ABOP and compared to data obtained by
the DFT calculations and available experimental data.
The potential parameters are given in table 2. The
structural properties of the ground state (wurtzite)
phase are well reproduced by both DFT and the
ABOP, including all elastic constants. However, it
should be noted that the experimental values for
the elastic constants vary significantly from study to
study. The lattice constants obtained in the DFT
calculations are slightly overestimated compared to the
experimental data, which is a known feature of the
GGA-PBE functionals [57]. Nevertheless, as noted
previously, the ABOP was fitted to reproduce the DFT
lattice constants of the different phases, in order to get
good elastic properties.

As a consequence of restricting the interactions
to nearest neighbours, the ABOP formalism cannot
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Table 1: Properties of different existing and hypothetical BeO phases obtained with DFT and the ABOP,
compared with available experimental results. The listed properties with units are; r0: bond length (Å), Ecoh:
cohesive energy per atom (eV/atom), a, c: lattice constants (Å), z: internal coordinate of wurtzite, B: bulk
modulus (GPa), B′: pressure derivative of the bulk modulus, cij : elastic constants (GPa).

DFT Experiment ABOP

BeO graphene

rb 1.591 1.605
Ecoh −5.353 −5.458

BeO wurtzite (P63mc, no. 186)

a 2.766 2.698a 2.758
c 4.496 4.38a 4.503
z 0.3773 0.378a 0.375
Ecoh −5.469 −6.1b −5.559
B 218 210a, 224c, 249d, 208e 208
B′ 5.1± 1.0a 4.0
c11 424.4 470c, 460.6d, 454e 463
c12 133.7 168c, 126.5d, 85e 98
c13 96.6 119c, 88.48d, 77e 62
c33 466.1 494c, 491.6d, 488e 499
c44 126.6 153c, 147.7d, 155e 164
c66 145.3 152c, 167.0d, 185e 183

BeO zinc blende (F 4̄3m, no. 216)

a 3.904 3.900
Ecoh −5.463 −5.559
B 219 208

BeO rock salt (Fm3̄m, no. 225)

a 3.729 3.825
Ecoh −4.975 −4.075
B 225 185

BeO caesium chloride (Pm3̄m, no. 221)

a 2.406 2.397
Ecoh −3.849 −3.899
B 199 197

a Ref. [40] b Calculated from the room temperature enthalpy of formation from
Ref. [44] c Ref. [45] d Ref. [46] e Ref. [47]

reproduce the subtle energy difference between the
wurtzite and zinc blende structures. The geometry
of the nearest neighbour shell is identical in both
structures, and the energy and bond distances will
therefore be exactly the same in the ABOP. The
cohesive energy and bond distance of the graphene-
like BeO sheet are also in good agreement with
DFT, and more importantly, the difference in cohesive
energy between the wurtzite and graphene phases is in

excellent agreement with DFT.
The overall good agreement between the ABOP

and DFT across a wide range of coordination numbers
generally ensures a good transferability to bonding
geometries and coordination numbers not found in the
fitted structures. In the following sections, we test this
assumption by calculating properties not included in
the fitting database.
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Table 2: Parameters for the Be–O ABOP. The Be–
Be and O–O parameters are taken from earlier studies
(Be–Be version II from Ref. [28]), and the Be–O
parameters are fitted in this study.

Be–Be [28] O–O [29] Be–O

D0 1.03571 5.166 6.783
r0 2.07880 1.2075 1.41
β 1.3 2.3090 1.6525
S 1.88982 1.3864 1.8754
γ 8.19587× 10−7 0.82595 0.3940568
c 89.3894 0.035608 1.4
d 0.27443 0.046496 0.821
h 0.7606934 0.45056 0.488
R 2.535 2.1 2.5
D 0.15 0.2 0.2
α 0.0 0.0 0.0
ω 1.0 1.0 1.0
bf 15.0 12.0 15.0
rf 0.8 0.5 0.8

3.2. Tested properties

3.2.1. BeO bulk properties. When fitting an inter-
atomic potential to properties of a select amount of
crystalline phases, it is important to confirm that the
desired ground state phase is correctly predicted by
the potential, and that no phase not considered in the
fitting process is lower in energy. The ABOP was
therefore subjected to extensive annealing and heat-
ing/quenching MD simulations of wurtzite BeO, and
no recrystallisations into other phases were observed.
Upon heating to temperatures above the melting point,
we found that BeO melts into a very low-density liq-
uid phase with large regions of empty space between
the clusters of atoms. The melting point is commonly
estimated by creating a liquid-solid interface, and de-
termining the temperature at which the molten and
crystalline phases are in equilibrium. However, due to
the melting behaviour of BeO, this was not possible.
We therefore carried out simple heating simulations
with different heating rates to determine an approxi-
mate melting temperature. Simple heating of a single-
crystalline system in MD is known to overestimate the
melting point due to the the lack of nucleation points,
and due to the extremely high heating rates required
for MD time scales. The observed melting point for all
tested heating rates was about 3000 K. This should be
considered an upper limit predicted by the ABOP, and
is therefore in good agreement with the experimental
melting point of 2851 K [44].

We also determined the thermal expansion
coefficients of wurtzite BeO and compared the obtained
results to experimental data. The experimental data

from Kozlovskii et al. [58] are for the temperature
range 293 K−1823 K. Slack and Bartram [59] reviewed
values in the temperature range 300 K−2200 K,
which is the range on which we focused our study.
Both studies reported the linear expansion, i.e. the
variation of the sample in a single direction and not
the variation of the volume of the sample. Since the
crystal we are simulating is a single crystal, unlike
the experiments, we have easily access to the linear
thermal expansion coefficients, αi∈{x,y,z} (in K−1), of
the different directions of the lattice. The appropriate
coefficient to compare to the experimental data on
polycrystalline BeO is then the directionally averaged
value [59]

α̃ =
1

3
(αx + αy + αz). (12)

To obtain the thermal expansion, a cuboid box of
wurtzite BeO, containing 15840 atoms was used. The
temperature of the system was quickly increased from
0 K to 2000 K in 10 ps, kept constant for about 40 ps
so that the volume of the box relaxed to zero pressure,
and finally the temperature was decreased with a rate
of 10 K/ps. The thermal expansion was determined
by looking at the variation of the box lengths in the
x, y and z directions that give the different αi∈{x,y,z}.
The comparison with the experimental data is reported
in figure 1. The simulation data with the ABOP
is overall in good agreement with the experimental
values, especially above 1000 K. At lower temperatures,
the thermal expansion is slightly overestimated. In the
range 1300−2200 K, the experimental values reported
by Slack and Bartram seem to be constant. In the
ABOP, α̃ also have this behaviour, but for the range
1000−2000 K. Above 2000 K, the lengths of the box
exhibits large changes that lead to a quick increase of
the thermal expansion.

In the simulation, the values of αx and αy are the
same, except at high temperatures. Indeed, wurtzite
has hexagonal symmetry, and consequently the x and
y directions are not symmetrically equivalent. There
is also a clear anisotropy in the thermal expansion in
the z direction compared to the two other directions,
which is expected for a wurtzite structure.

Figure 2 shows the phonon dispersion of the
wurtzite BeO phase obtained with the ABOP and
compared to DFT and experimental results [47].
Our DFT results are in good agreement with the
experimental measurements. The lower acoustic
branches are well reproduced in the ABOP. The
subtle differences in the energies of the acoustic
branches between the ABOP, DFT, and experiment
are likely due to the corresponding differences in
elastic constants, as seen in table 1. However, the
optical branches at around 90 meV in DFT and
experiments are strongly overestimated in the ABOP,
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Figure 1: Thermal expansion coefficients αi∈{x,y,z},
obtained from the variation of the length of the
simulation, and the directionally averaged coefficient
α̃ = 1/3(αx + αy + αz), compared with experimental
data [58, 59].
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Figure 2: Phonon dispersion of wurtzite BeO
calculated with the ABOP and compared with DFT
calculations and experimental data from Ref. [47].

with the corresponding branches at around 140−150
meV energies. The overestimation of the optical
branches can be attributed to the lack of long-range
coulombic interactions in the ABOP [60], and was
previously also observed in the ZnO ABOP [29].

3.2.2. Be–O molecules. Table 3 shows the bond
lengths and cohesive energies of a few selected Be–O
molecules predicted by the ABOP and compared with
our DFT calculations and experimental results [61].

Table 3: Bond lengths (Å) and cohesive energies
(eV/atom) of different Be–O molecules predicted by
the ABOP and compared with DFT results and
experimental data [61].

DFT Exp. [61] ABOP

BeO

rb 1.422 1.410
Ecoh −1.936 −2.3 −3.391

(BeO)2

rb 1.555 1.617
Ecoh −3.631 −4.0 −3.809

(BeO)3

rb 1.521 1.532
Ecoh −4.314 −4.7 −4.747

(BeO)∞ infinite chain

rb 1.480 1.517
Ecoh −4.694 −4.754

The properties of the dimer BeO are directly
determined by the potential parameters D0 and r0.
As discussed earlier, choosing D0 to reproduce the
experimental or DFT dimer energy is not compatible
with the cohesive energies of the bulk BeO phases,
and the bond energy of the Be–O dimer is therefore
overestimated in the ABOP. (BeO)n molecules were
experimentally predicted to form closed ring-like
structures [61]. (BeO)2 and (BeO)3 rings were
therefore relaxed in DFT and with the ABOP. The
relaxed shape and bond angles are different in the
DFT and ABOP simulations, but the bond lengths and
energies are in reasonable agreement. As the number
of atoms in the molecules is increased, the energy and
bond length tend towards those of an infinite BeO
chain, as seen in table 3. This shows that border effects
are significant for the dimer, as previously explained,
and tend to vanish as the length of the molecule is
increased. The qualitatively good agreement between
the ABOP and DFT for molecules is promising for
applying the ABOP in studies of surface irradiation,
where sputtering of various molecules is expected.

3.2.3. Oxygen point defects in Be. Formation
energies for oxygen in the common high-symmetry
interstitial sites in hcp Be were calculated with the
ABOP, and compared to DFT calculations. The
formation energy is defined as

Ef = ED − nBeµBe − nOµO, (13)
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BT

NBTBC
BO

NBC NBO

Figure 3: Common interstitial sites in the hcp lattice.
BT: basal tetrahedral, BO: basal octahedral, BC: basal
crowdion, NBT = non-basal tetrahedral, NBO: non-
basal octahedral, and NBC: non-basal crowdion.

Table 4: Formation energies (eV) of O interstitial
atoms in Be. The different interstitial sites with
abbreviations are illustrated in figure 3. The
values from Ref. [62] are calculated as the reported
accommodation energies plus half the dissociation
energy of an O2 molecule (2.56 eV).

Site DFT ABOP

This work Ref. [62] Ref. [63]

BT −0.85 −2.50 −2.37 −4.09
BO 1.82 0.21 0.39 −1.03
BC - - - −2.85
NBT - unstable unstable unstable
NBO 0.59 −1.13 −0.87 −4.06
NBC - - −0.41 −2.90
r-NBT - - - −4.71

where ED is the total energy of the system containing
the defect, and nBe (nO) the number of Be (O) atoms.
The chemical potentials at 0 K are given by the
cohesive energies as µBe = −3.624 eV and µO =
EO2

/2 = −2.583 eV in the ABOP.
Figure 3 shows an illustration of the different

interstitial sites with the adopted naming and
abbreviations. The calculated formation energies are
given in table 4. The most stable interstitial position
according to DFT is the the basal tetrahedral (BT)
site. However, as can be seen in table 4, our DFT
data are about 1.5 eV higher in energy than the DFT
data by Middleburgh et al. [62] and Zhang et al. [63].
On the other hand, the relative stabilities between
the BT, NBO and BO interstitial sites are in good

agreement (within a margin of 0.06 eV) between the
three DFT studies. Thus, the reason for the difference
in formation energy is clearly that the reference energy
for oxygen is not the same in all three studies. To
investigate the effect of the oxygen reference, we
calculated the energies of oxygen atoms and molecules
in different states: the spin triplet (ground state) and
a state with no spin. Using the spin triplet state, we
obtained the formation energies reported in table 4.
However, using the state with no spin, the formation
energy of O in BT becomes −2.73 eV, in NBO −1.31
eV, and in BO −0.08 eV. These values are much
closer to the values reported by Zhang et al. and
Middleburgh et al., indicating that their values have
been calculated using a state with no spin for the
oxygen reference. Clearly, no spins exist in the ABOP
formalism, and the only possible reference state of
oxygen is the cohesive energy of the O2 molecule given
by the ABOP parametrisation.

In the ABOP, the most stable site is a position
above the BT site, close to the NBT site (denoted r-
NBT in table 4). However, an oxygen interstitial at
the NBT site relaxes to the BT site, as opposed to
the close-by ground state r-NBT position, in agreement
with DFT observations [62, 63]. The order of stability
for the remaining interstitial sites predicted by the
ABOP is in agreement with DFT results, although the
differences in energy vary, and e.g. the stability of the
NBO site is strongly overestimated.

Despite predicting the incorrect ground state
oxygen interstitial site, the ABOP still qualitatively
reproduces the diffusive properties obtained by DFT.
The energy barrier for migration between adjacent
BT sites, through an intermediate NBO site, is about
1.6 eV according to DFT calculations by Zhang et
al. [63]. Although the lowest energy migration path
in the ABOP is between the predicted ground state
(r-NBT) and the close-by BT site along the [0001]
axis (see figure 3), further migration through the bulk
requires exiting the tetrahedral surrounding, following
paths similar to those studied earlier in DFT. The
migration energy of the BT−NBO−BT path is about
2.3 eV in the ABOP, slightly higher than the 1.6
eV obtained by DFT [63]. The fact that the ABOP
correctly predicts the O interstitial to be trapped in
a tetrahedral atomic environment, even though the
exact position inside the tetrahedron contradicts DFT
results, can therefore be considered acceptable for most
practical use in atomistic simulations. Due to the
relatively high migration energies, oxygen is highly
immobile during MD time scales, which is important
for oxidation and deposition simulations. Oxidation of
Be surfaces is experimentally known to be limited by
Be atoms migrating up through the oxide layer [64], as
opposed to oxygen migrating into the Be bulk, which
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hcp
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on top

Figure 4: Adsorption sites on a hcp (0001) surface.

due to the high oxygen migration barriers is likely to
be reproduced by the ABOP.

Additionally, we calculated adsorption energies of
oxygen atoms on a Be (0001) surface with the ABOP,
and compared to DFT calculations. The adsorption
energy of a single oxygen atom is defined as

Ead = ED − ES − µO, (14)

where ED is the total energy of the surface slab with
the adsorbate, ES the total energy of the clean surface
slab, and µO the chemical potential of oxygen (−2.583
eV in the ABOP).

Figure 4 shows the common adsorption sites on
a hcp (0001) surface. The corresponding adsorption
energies and the distances to the surface layer are
given in table 5. There is a noticeable difference in
the formation energies between DFT and the ABOP.
However, due to the different possibilities of treating
µO in DFT, as discussed earlier, emphasis should be
put on the order of stability when comparing the
ABOP with DFT, and not the absolute values. The
relaxed distances from the surface layer are in good
agreement between DFT and the ABOP, except for the
fcc site. The hcp and fcc sites have identical nearest-
neighbour symmetry, and therefore similar adsorption
energies. However, the ABOP predicts the fcc site as
the preferred adsorption site over the hcp, in contrast
to the DFT results. This is a consequence of the
interaction range of the ABOP and cannot be corrected
without sacrificing the fitted bulk BeO properties. The
second-nearest Be neighbour (the atom directly below
the hcp site in the first sub-surface layer) is barely
within the cutoff radius of the ABOP after relaxation,
while the same atom is outside of the cutoff sphere for
the fcc site. This is also evident from the difference in
the relaxed distances from the surface given in table 5.
The functional form of the ABOP leads to a weakening
of the nearest neighbour bonds due to the second
nearest neighbour for the hcp site, resulting in a higher
energy than for the fcc site.

3.2.4. Point defects in BeO. The chemical potentials
of the elements can vary depending on the chemical
environment. The formation energy for a neutral point

Table 5: Adsorption energies and relaxed distances
from the surface layer for O atoms on a Be (0001)
surface. See figure 4 for the positions of the different
sites.

DFT ABOP

Site Ead (eV) d (Å) Ead (eV) d (Å)

fcc −3.10 0.91 −6.22 0.59
hcp −3.54 0.82 −5.91 0.85
bridge unstable −4.72 0.71
on top −0.74 1.52 −2.11 1.47

defect can then be expressed in the more general form
used in Ref. [65], as

Ef =ED −
1

2
(nBe + nO)µBeO

− 1

2
(nBe − nO)(µBe − µO)− 1

2
(nBe − nO)∆µ,

(15)

where ∆µ is thermodynamically restricted to the range
−∆Hf < ∆µ < ∆Hf , and ∆Hf is the enthalpy of
formation of BeO in its ground state phase (−4.91
eV/f.u. in the ABOP). The limits of ∆µ correspond to
O-rich and Be-rich conditions. Here, we use ∆µ = 0 in
all calculations.

Formation energies of simple neutral point defects
were calculated with DFT and compared to values
predicted by the ABOP, as listed in table 6. The
formation energies for single vacancies in BeO are
strongly underestimated in the ABOP, particularly the
Be vacancy. The stability of point defects in metal
oxides, such as BeO or ZnO, are generally dependent
on the electronic structure and charge state of the
point defect [66, 67, 68], effects that the ABOP cannot
capture. Good accuracy in describing point defects in
BeO can therefore not be expected from the ABOP.
In the case of the Be vacancy, our DFT calculation
predicts a magnetisation of 2.2 µB/cell induced by the
Be vacancy, which could explain the large difference
in the value obtained with the ABOP. Similarly, the
Be antisite induces a 2.05 µB/cell magnetisation, and
consequently the difference in the formation energy
predicted by the ABOP and DFT is large (around 5 eV
for both the Be vacancy and antisite). Interestingly,
the same 2−3 eV difference as for the O interstitial
formation energies in pure Be (table 4), is observed
between DFT and the ABOP for defects in BeO with
an excess of one O atom (O antisite and O vacancy).
In all of these cases, DFT gives higher formation
energies than the ABOP. This difference could be due
to the different manner the O2 molecule is considered,
inducing a shift between the DFT and ABOP values,
as discussed previously.
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The lowest energy Be and O interstitial sites
in BeO predicted by the ABOP were identified by
creating 200 BeO systems with a randomly placed
O or Be interstitial. All systems were relaxed at
1000 K and subsequently quenched to 0 K, allowing
the interstitials to find a nearby energy minimum.
The ground state O interstitial configuration in the
ABOP (Ef = 6.75 eV) was an oxygen atom in an
octahedral site on the Be-basal plane, but with strong
relaxation of the geometry of the surrounding atoms.
This complex configuration is likely an artefact of the
potential. However, only 4 out of the 200 random
simulations ended in this configuration. The majority
of cases produced an O−O dumbbell with Ef = 8.08
eV or Ef = 8.57 eV, depending on the orientation.
The formation energy obtained by DFT for an O
interstitial in a Be-basal octahedral, corresponding to
the closest high-symmetry site to the ABOP ground
state configuration, is 9.50 eV. The O−O dumbbell
interstitial was found to be significantly more stable in
DFT, with Ef = 6.00 eV.

For the Be interstitial, the ABOP predicts
a slightly off-plane O-basal octahedral site as the
preferred interstitial position, with Ef = 7.50 eV. The
corresponding DFT calculation resulted in relaxation
of the Be atom in the opposite direction, with a final
formation energy of 9.72 eV. The second lowest energy
site in ABOP was an off-axis tetrahedral site with a
slightly higher formation energy of 7.73 eV.

Note that only values for the lowest energy sites
are listed in table 6, and in the case of an O interstitial,
the DFT and ABOP values do not correspond to the
same interstitial configuration. Furthermore, while
the preferred sites in the ABOP certainly correspond
to the global minimum energy sites for interstitials,
that is not necessarily true for the DFT values, as we
only considered a few selected sites. The calculated
DFT values only allow a qualitative justification of the
magnitudes of interstitial formation energies in BeO
predicted by the ABOP.

3.3. Applications

3.3.1. Oxygen irradiation of Be. As an application
of the Be–O ABOP, we studied the oxidation of
beryllium by incident oxygen ions. Simulations of
O ion irradiation at normal incidence on a (0001)
Be surface were carried out. The simulations were
performed using an initial cell containing 4704 atoms.
The energies of the ions were 1, 10, and 100 eV, and
the temperature of the Be target was 300 K, 1000 K,
and 1500 K. One thousand cumulative simulations at a
flux of 2.6×1028 m−2s−1 were done for all energies and
temperatures. Between every single bombardment, the
cell was shifted in the x and y directions in order
to model a uniform distribution of the ions on the

Table 6: Formation energies (eV) of point defects in
BeO. The Be vacancy and antisite both lead to a
magnetisation of the cell in DFT, as indicated below
the table.

DFT ABOP

VO 4.42 1.62
VBe 5.47a 0.55
OBe 9.57 11.64
BeO 12.93b 7.34
Oi 6.00 6.75
Bei 9.72 7.50

aM = 2.2 µB/cell
bM = 2.05 µB/cell

(a) 100 eV. (b) 10 eV. (c) 1 eV.

Figure 5: Snapshots of the beryllium surfaces
bombarded at 300 K by 1000 O ions with energies 100
eV (a), 10 eV (b), and 1 eV (c). The grey circles
correspond to beryllium atoms and white circles to
oxygen atoms.

surface. Periodic boundaries were used in the x and
y directions. The temperature of the simulation box
was kept constant by controlling the temperature of
the borders of the simulation cell. The two bottom
layers were kept frozen to mimic an infinite lattice. 5
ps separated each bombardment.

Snapshots of the irradiated (0001) Be surfaces at
300 K are shown in figure 5a-c. In the early stage of
the irradiation, after around 10−100 deposited ions,
the deposition region is still almost hexagonal Be. In
the 100 eV irradiation case, the O atoms mainly stop in
the r-NBT and NBO sites, which are the most stables
sites according to the ABOP (table 4). In the lower
energy cases, and especially in the 1 eV case, the ions
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Figure 6: Profiles of O and Be atoms (upper figures) and potential energy per atom (lower figures) as functions
of depth, after bombardment of 1000 O ions on a (0001) Be with energies 100 eV (a), 10 eV (b), and 1 eV (c).
The initial position of the (0001) surface is indicated by the black vertical lines, and the black horizontal lines
correspond to the potential energy of the perfect wurtzite BeO structure. In some cases, particles have been
eroded during the 1000th irradiation, and are not taken into account in these plots. In these cases, the potential
energy goes to 0 eV (and marks the position of the surface of the oxide layer).

do not have enough energy to overcome the energy
barrier at the surface, and consequently remain stuck
on the surface mainly in the hcp and fcc hollow sites
(table 5). After 1000 O ions, the region where the O
ions stop is no longer a hexagonal Be structure, and
an amorphous oxidised layer with a rough surface has
been formed, as seen in figure 5. The thickness of
the oxide layer decrease as the energy of the O ions
decrease. For 100 eV ions, a large amount of O ions
are implanted below the surface while for 1 eV ions,
the O ions are almost exclusively stuck on top of the
surface. The roughness of the oxide surface is most
pronounced for the irradiation with 100 eV ions. These
ions have enough energy to cause sputtering from the
surface, and also induce damage deep below the surface
(figure 5a). For 100 eV ions at 300 K, several O
atoms are also seen much deeper than the oxidised
layer. These deep atoms are results of channelling [69],
where ions travel through the material in lines of low
atomic density. Channelled ions are also observed in
the irradiations at 1000 K and 1500 K, but closer to
the surface. This could be explained by the increased
thermal motion of the target atoms at the higher
temperatures, effectively making the channelling paths
more narrow.

To further analyse the process of oxidation in our

MD simulations, atom profiles (Be and O) as well
as potential energy per atom profiles were plotted
as functions of depth. The profiles are presented in
figure 6a-c for the three temperatures and the three
energies. The initial position of the (0001) Be surface
is indicated with a vertical line, in order to see where
the oxidised layer is formed.

For 100 eV ions, the oxide layer has a thickness
of about 35 Å at all temperatures. The layer is
equivalently distributed below and above the initial
Be surface. It evidences the fact that part of the
oxidised layer is formed by implantation of the O
ions. However, as can be seen in the Be profiles, some
Be atoms are also extracted from below the surface
to construct a sparse oxide layer above the initial
Be surface. This can be explained either by recoil
energies transferred from the incident ions to the Be
atoms, or by diffusion of Be atoms through the oxide
layer. The latter process has been used to explain
the growth mechanism of oxide layers in experiments
by Roth et al. [64, 6]. However, given the difference
in time scales in experiment compared to our MD
simulations, diffusion of Be atoms is unlikely to be the
main oxidation mechanism for 100 eV ions. As seen
in figure 5a, the temperature has a very limited effect
on the thickness of the oxidised layer, as well as on
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the potential energy per atom, which seems to confirm
the fact that this layer is mainly built through energy
transfer between the incident ions and the Be atoms.
Furthermore, looking at the profiles of potential energy
per atom, one can see that in the oxidised region, the
potential energy drops from about −3.5 eV (pure Be)
to a minimum of −5.0 eV. The minimum potential
energy is obtained for a O/Be ratio of 1, meaning that
stoichiometric BeO is preferentially formed in the oxide
layer. However, the potential energy does not reach
that of perfect wurtzite (horizontal line in the lower
plots) even after cooling of the oxidised structure to 0
K. The time scale for formation of a crystalline wurtzite
BeO layer is likely beyond reach for MD, and the oxide
layer is still in an amorphous BeO phase (see figure 5a).

For 10 eV ions, the oxide layer has a thickness
between 11.0 Å (300 K), and 20.2 Å (1500 K), i.e.
an increase in thickness of about 80 % between the
temperatures. Unlike the 100 eV case, most of the
oxidised layer is above the initial Be surface, and only
a few atoms are implanted below the surface. As
discussed previously, the growth of the oxide layer
above the initial Be surface is mainly due to the
recoil energy transmitted by the ions to the near-
surface Be atoms. However, the significant increase
in thickness of the oxide layer at higher temperatures
also suggests a thermally activated process, i.e. the
diffusion mechanism of oxide layer growth seem to be
significant even at MD time scales. The oxide layer
reaches about 3.6 Å deeper, and grows to around 5.6
Å higher at 1500 K compared to 300 K. The effect of
temperature is also clearly seen in the potential energy
profile in figure 6b. The oxide layer formed at a high
temperature is more stable by 0.34 eV/atom, bringing
the oxide layer closer to a wurtzite configuration (in
terms of potential energy). Again, the minimum
potential energy is obtained for a O/Be ratio of 1 at
all temperatures.

The observations discussed above for the 10 eV
ions are also true for the 1 eV case (figure 6c), but
now even more pronounced. At 300 K, the resulting
layer after 1000 bombardments can hardly be called
an oxide layer, and is essentially a complete layer of
adsorbed O atoms on top of the Be surface, with only
a few atoms (25) below the surface. The thickness
of the layer is only 3.7 Å, which is less than the
lattice constant of the wurtzite in the [0001] direction
(table 1). Consequently, the decrease in the potential
energy at 300 K is only 0.59 eV in the O-adsorbed layer
compared to the pure Be bulk. At 1000 K and 1500
K, the situation is completely different. The thickness
of the oxide layer is significantly increased, and is 14.7
Å at 1500 K, which is comparable to the thickness of
the oxide layer for the 10 eV irradiation at the same
temperature, and represents an increase in thickness of
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Figure 7: Sputtering yields of Be by O ions at
different temperatures and energies. The MD data are
compared to the sputtering yield given by BCA using
SRIM [71]. The error bars are the standard errors
obtained after repeating the 1000 O irradiation series
four times for each temperature and energy.

about 300 %. As in the case of the 10 eV irradiation,
the potential energy of the oxide layer decreases a lot as
the temperature is increased. The oxide layer at 1500
K is 0.84 eV/atom more stable than the layer at 300
K. Thus, the strong temperature dependence even at
a very low energy of the incident ions suggests that a
thermally activated process, such as diffusion of atoms
through the oxide layer, is the origin of the growth of
the oxide layer at higher temperatures, as proposed by
Roth et al. [70, 64, 6]

Finally, the irradiation simulations allow us to
investigate the sputtering of beryllium by oxygen
ions at different temperatures and incident energies.
Figure 7 shows the evolution of the sputtering yields
(number of sputtered Be atoms per incoming O ions) as
a function of incident O energy for the three different
temperatures used in the simulations. In addition to
the sputtering yields obtained by the MD simulations,
SRIM [71] simulations are completed to compare the
MD results to results obtained in the binary collision
approximation (BCA).

The SRIM simulations only give a non-zero
sputtering yield for an incident energy of 100 eV. In
addition, the sputtering yield calculated by SRIM is
underestimated by one order of magnitude compared
to the MD-calculated values. This large discrepancy is
explained by the strong chemical sputtering of Be by
O ions. Chemical sputtering is dominant in the range
of ion energies and temperatures considered here. At
1 eV and 10 eV, the sputtering yield is even purely
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chemical. Thus, from these simulations, it is clear that
to accurately tackle the issue of beryllium sputtering by
oxygen ions in tokamaks, MD is needed. The products
of the chemical sputtering are mainly BeO and BeO2,
even though a few larger molecules like Be2O3 or
Be3O4 are eventually observed once a O/Be ratio of 1
is obtained in the oxidised layer. The chemical erosion
for 100 eV irradiation is found to be dependent on
the state of the oxidised layer. In the first stage of
the irradiation, only single Be atoms are eroded from
the surface, but once the oxidised layer has a O/Be
ratio of about 1, molecules are eventually sputtered.
From figure 7, it is also clear that the erosion is much
more pronounced at higher energies, and that the
temperature, by increasing the motion of the beryllium
atoms on the surface, increases sputtering from the
surface. Thus, for 1 eV irradiation, no sputtering
is observed at 300 K while at 1000 K and 1500 K,
significant erosion of the material is observed.

3.3.2. Thermal stability and elasticity of BeO
nanosheets and nanotubes. We applied the Be–O
ABOP in an investigation of the thermal stability
and elasticity of BeO nanosheets and nanotubes.
Carbon graphene has been shown to be thermally
very stable with an estimated melting point of around
4500 K [72]. To estimate the melting point of
the corresponding BeO sheet with the ABOP, we
carried out MD simulations with different heating
rates. The system consisted of 800 atoms with periodic
boundaries in the planar dimensions. The BeO sheet
was heated up at zero pressure with three different
heating rates, 10 K/ps, 5 K/ps, and 2.5 K/ps. The
observed melting point was about 3300 K and did
not significantly change with the different heating
rates. More sophisticated methods have been used to
obtain more accurate estimates of the melting point
of (carbon) graphene [72], but is beyond the scope
of this work. The obtained melting point of 3300 K
should therefore be considered an upper limit predicted
by the ABOP. Snapshots from the melting simulation
are seen in figure 8. During high temperatures,
breaking of individual Be–O bonds was common, with
neighbouring Be and O atoms moving in opposite out-
of-plane directions. However, individual bond breaking
rarely resulted in any permanent damage, as the bond
was generally reformed quickly. At temperatures close
to the observed melting point, bond breaking often lead
to chains or entire hexagons of BeO being temporarily
detached from the nanosheet, connected only by chains
of Be and O atoms as seen in figure 8a. Figure 8b
shows the onset of the melting process, where the first
permanently damaged regions are formed. Melting
occurred by the entire nanosheet separating into chain-
and ring-like BeO structures with two- and three-fold

coordinations, as seen in figure 8c.
The stability of the BeO nanosheet close to the

observed melting point was assessed in a constant
temperature simulation at 3000 K. Previously, Wu
et al. [15] studied the thermal stability of a BeO
nanoribbon with ab initio MD, and observed that
the nanoribbon remained intact throughout a 5 ps
simulation at 2000 K. Using the ABOP, we can
extend the time scale to nanoseconds. The BeO
sheet remained stable throughout the 1 ns simulation
time, altough two BeO molecules were released, leaving
vacancies in the monolayer.

The elasticity of nanotubes predicted by the
ABOP was compared with published DFT results
of the Young’s modulus. The Young’s modulus for
3D structures is typically calculated as the second
derivative of the energy with respect to the strain at
equilibrium, divided by the equilibrium volume. Due
to the ambiguity of defining the shell thickness when
calculating the volume of a nanotube, the Young’s
modulus for nanotubes is conventionally defined [73]
using the equilibrium area of the cylindrical nanotube
shell S0, as

Y =
1

S0

∂2E

∂ε2

∣∣∣∣
ε=0

, (16)

where S0 = 2πLR, L the length, and R the radius
of the nanotube. Baumeier et al. [11] calculated
the Young’s moduli for both armchair, expressed
by chiral indices (n, n), and zigzag, (n, 0), BeO
nanotubes as a function of the diameter. The
corresponding Young’s moduli for both armchair and
zigzag nanotubes were calculated using the ABOP. The
length of the nanotubes was about 50 Å, and periodic
boundaries were used in the length dimension. The
potential energy as a function of strain at 0 K was
extracted by statically straining the nanotube around
the equilibrium length, and carrying out conjugate
gradient energy minimisations at each strain value.
The Young’s modulus can then be obtained from a
second order polynomial fit to the strain–energy curve
according to equation 16.

Figure 9 shows the Young’s modulus as a function
of diameter calculated with the ABOP and compared
to DFT results by Baumeier et al. [11]. The ABOP
slightly overestimates the Young’s moduli compared to
the DFT data, but the overall trend is similar. The
zigzag type nanotubes are elastically softer than the
armchair nanotubes, and the Young’s modulus rapidly
tends towards the value of the infinite graphene-like
sheet, in agreement with DFT. Recently, Baima et
al. [12] also calculated the Young’s modulus of zigzag
BeO nanotubes in DFT, and obtained values slightly
higher than the results of Baumeier et al. given
in figure 9. The calculated Young’s modulus of the
infinite nanosheet with the ABOP is 0.163 TPa nm,
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(a) 3200 K, 1.282 ns. (b) 3280 K, 1.316 ns. (c) 3310 K, 1.333 ns.

Figure 8: Snapshots (side and top views) of the melting of a BeO nanosheet simulated with the ABOP. Be atoms
are coloured grey and O atoms white.
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Figure 9: Young’s modulus of armchair (n, n) and
zigzag (n, 0) BeO nanotubes as a function of the
diameter, calculated with the ABOP and compared
with DFT results [11]. The limiting values for the
infinite graphene-like BeO sheet are given at the right.

compared to the DFT values 0.13 TPa nm by Baumeier
et al., and 0.137 TPa nm by Baima et al.

4. Conclusions

An analytical bond order potential for the Be–O
system was fitted and tested against a large database of
density functional theory results. The potential shows

promising capabilities for simulations of the fusion-
relevant Be–O surface interactions. The structural,
elastic, thermal, and phonon properties of BeO are
well reproduced, as well as the energetics of simple
Be–O molecules. Point defect and diffusion properties
in Be and BeO obtained by DFT are qualitatively
reproduced by the potential. The potential was applied
in simulations of the early stages of oxidation of a
Be surface by irradiation at different energies and
temperatures. We observed the formation of an oxide
layer on the Be surface, and found that chemical
sputtering of Be–O molecules is significant even at very
low ion energies. Furthermore, the potential was shown
to be suited for simulations of BeO nanotubes and
nanosheets.
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