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On the possibility of track length based Monte-Carlo algorithms for

stationary drift-diffusion systems with sources and sinks

D. Reiser,1 J. Romazanov,1 and Ch. Linsmeier1
1Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung – Plasmaphysik,
Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich, Germany

The problem of constructing Monte-Carlo solutions of drift-diffusion systems corresponding to

Fokker-Planck equations with sources and sinks is revisited. Firstly, a compact formalism is

introduced for the specific problem of stationary solutions. This leads to identification of the

dwell time as the key quantity to characterize the system and to obtain a proper normalization

for statistical analysis of numerical results. Secondly, the question of appropriate track length

estimators for drift-diffusion systems is discussed for a 1D model system. It is found that a simple

track length estimator can be given only for pure drift motion wihout diffusion. The stochastic

nature of the diffusive part cannot be appropriately described by the path length of simulation

particles. Further analysis of the usual situation with inhomogeneous drift and diffusion coefficients

leads to an error estimate based on particle trajectories. The result for limits in grid cell size and

time step used for the construction of Monte-Carlo trajectories resembles the Courant-Friedrichs-

Lewy and von Neumann conditions for explicit methods.

I. INTRODUCTION

The Monte-Carlo approach is a well-known and
widely used method for the numerical solution of time-
dependent and stationary problems [1–5]. Its particular
strength is in the flexible incoporation of complex multi-
dimensional geometries, its straightforward implementa-
tion in computer codes and its algorithmic robustness.
Although sometimes based on intuition most applications
are based on rigorous mathematical relations between
systems of partial differential equations, corresponding
Green’s functions and stochastic processes. Many ex-
amples of such applications are based on Fokker-Planck
models for drift-diffusion dynamics and its equivalent in
the theory of stochastic differential equations. To men-
tion only a few: codes in plasma physics research for
studies on kinetic impurity transport [6–8] , for neutral
particle transport [9? –11] and for plasma fluid trans-
port [12] are based on certain variants of Fokker-Planck
models including sources and sinks. Usually these codes
are optimized for the treatment of stationary systems
and all together they suffer from statistical noise due
to limited CPU time which limits the number stastis-
tical samples. The search for a solution to this problem,
i. e. increasing the algorithmic efficiency and reducing
the noise, has a long history and led to the design of
so-called estimators [13] which allow to gain more infor-
mation out of the computational effort than simpler and
perhaps more intuitive methods. One example of such a
device is the track length estimator, which does not only
accounts for certain locations of simulation particles, but
rather considers the finite path length of simulation par-
ticles to evaluate the particle distributions in the compu-
tational volume and thereby reduces the statistical noise
in the numerical solution. Although well established for
many years in simulations of neutrons and neutral par-
ticle transport it is surprising that its implementation
in diffusion problems is not that well discussed nor doc-
umented. Questions in this context concern a proper

normalization of numerical solutions, error estimates and
a rigorous mathematical derivation of sometimes intu-
itively obvious methods. In this paper we want to con-
tribute to the discussion of implementing a track length
estimator in drift-diffusion problems closely related to
the research fields mentioned above. To introduce nota-
tion and mathematical framework the problem at hand
is sketched briefly in section II. The formalism leads im-
mediately to the dwell time of the physical system as
the key quantity for constructing a time stepping algo-
rithm. In section III the general framework is applied to
the Fokker-Planck equation. Well known facts on its cor-
responding stochastic differential equations and Green’s
functions are used to discuss the particular Monte-Carlo
approach for its solution. Without loss of generality, ba-
sic results are derived for the particular case of a ho-
mogeneous 1D problem. Based on this, in section IV
the concept of the track length as a mean to estimate
the dwell time is discussed. After a few general com-
ments on simulations of diffusive motion, the analysis of
the more important inhomogeneous 1D case in section V
shows that requirements on accuracy of the stochastic
approach excludes simple track length estimators for dif-
fusive problems and leads essentially to restrictions on
time step and spatial resolution recovering the Courant-
Friedrichs-Lewy and von Neumann conditions for explicit
finite difference methods. In the concluding section VI a
short summary of the findings is given.

II. CONSTRUCTION OF MONTE-CARLO PATHS, DWELL
TIME AND NORMALIZATION

In the context of particle transport, collision processes
and fluid flow the Monte-Carlo approach can be consid-
ered roughly as a sampling of random paths of simulation
particles according to certain rules determining jumps or
discrete steps in a computational volume. The distri-
bution of these particles resulting from a given particle
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ensemble at the beginning of the simulation then repre-
sents the solution for a particular quantity of interest. A
random path in configuration space can be described by
a probability density P+

m(xm|x0; tm) representing a path
of a single particle starting at location x0 and moving
to location xm with m steps passing the intermediate lo-
cations x1, x2,. . . ,xm−1. The time corresponding to the
step from xi−1 to xi is denoted by ∆i, the total time
needed for the entire path is denoted by tm=

∑m
i=1

∆i.
Each step is a random event guided by some transition
probability density p+(xi|xi−1; ∆i). The notation p+ la-
bels a step where the particle really arrives at xi, whereas
the opposite event, where the particle disappears during
the step, is taken into account by a transition probability
p−(xi|xi−1; ∆i). The sum of those describes the certain
event that the particle does a step. This is written as

p(x|y; ∆) = p+(x|y; ∆) + p−(x|y; ∆) (1)

and
∫

Ω

p(x|y; ∆) dx = 1 (2)

and means that a particle existing at y will definitely do
a step during a time increment ∆ towards some location
in the volume Ω, but perhaps it will get lost. Therefore,
the probability of a particle still existing after m steps
can be described by

P+
m(xm|x0; tm) =

m
∏

i=1

p+(xi|xi−1; ∆i) (3)

The representation by a product of probabilities requires
the Markov assumption, i. e. each step is independent of
the previous steps. Therefore, the event that a particle
does m− 1 steps and gets lost at the mth step is

P−

m(xm|x0; tm) = p−(xm|xm−1; ∆m)×

×P+
m−1(xm−1|x0; tm −∆m)

(4)

Next the path probabilities are connected to ensembles
of particles by assuming that the probability of finding a
particle at x0 at time t0 can be described by a probability
distribution function f+(x0, t0) obeying
∫

Ω

f+(x0, t0) dx0 = 1 (5)

The particle density n of the ensemble at time t0 is ob-
tained by multiplication with the total number N of par-
ticles in the volume Ω

n(x0, t0) = N f+(x0, t0) (6)

Thus, the distribution function

f+(xm, tm)

=

∫

Ω

. . .

∫

Ω

P+
m(xm|x0; tm) f+(x0, t0) dxm−1. . .dx0

(7)

gives the distribution of particles n(xm, tm) =
N f+(xm, tm) in the volume after m time steps. The
resulting integral equation

f+(xm, tm) =

∫

Ω

p+(xm|xm−1; ∆m) f+(x; tm−1) dx (8)

identifies the transition probabilities as propagators for
the distribution function during the random path. To
simplify notation and for subsequent discussions a gen-
eral propagator for the Monte-Carlo chain is introduced
by

G+(xm|xj ; tm)

=

∫

Ω

. . .

∫

Ω

P+
m(xm|xj ; tm − tj) dxm−1. . .dxj+1

(9)

This definition allows to write

f+(xm, tm) =

∫

Ω

G+(xm|xj ; tm − tj) f
+(xj , tj) dxj (10)

Similarly a propagator for the termination of the path is
defined by

G−(xm|xj ; tm)

=

∫

Ω

. . .

∫

Ω

P−

m(xm|xj ; tm − tj) dxm−1. . .dxj+1

(11)

and a corresponding distribution function f−

f−(xm, tm) =

∫

Ω

G−(xm|xj ; tm − tj) f
+(xj , tj) dxj (12)

which represents the loss probability distribution for par-
ticles at the mth step. Due to the normalization con-
dition of Eq. 2 a recursive relation for the distribution
functions f+ and f− can be found

∫

Ω

f+(x, tm) dx =

∫

Ω

f+(x, tm−1) dx−
∫

Ω

f−(x, tm) dx

(13)

and it follows

∫

Ω

f+(x, tm) dx+

m
∑

i=1

∫

Ω

f−(x, ti) dx = 1 (14)

which simply expresses the fact that a particle is still
present in the volume Ω after m steps or was lost at
an intermediate step. The distribution function f−(x, t)
allows to derive easily certain statistical averages along
the chain. For example, the average dwell time τm of
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a particle, i. e. the average duration of particles along
chains with m steps, is given by

τm =

m
∑

i=1

∫

Ω

ti f
−(x, ti) dx

m
∑

i=1

∫

Ω

f−(x, ti) dx

=

m
∑

i=1

i
∑

k=1

∫

Ω

∆i f
−(x, ti) dx

m
∑

i=1

∫

Ω

f−(x, ti) dx

(15)

In appendix A the average dwell time τ for a system
with finite Monte-Carlo chains is derived in the continous
limit. It is shown that the dwell time is given by the
cumulative distribution function F+(x)

τ =

∫

Ω

∞
∫

0

f+(x, t) dt dx ≡
∫

Ω

F+(x) dx (16)

For completeness and to point out the relation to nu-
merical procedures we show also the evaluation of Eq. 15
using discrete sums. However, in contrast to the conti-
nous case, for this purpose it is necessary to require that
all time steps are equal, i. e. ∆k = ∆ and tk = k∆ for
1 ≤ k ≤ m. Then one can use Eq. 14 and the relations

m
∑

i=1

i
∑

k=1

∫

Ω

f−(x, tk) dx

=

m
∑

i=1

(m+ 1− i)

∫

Ω

f−(x, ti) dx

= m−
m
∑

i=1

∫

Ω

f+(x, ti) dx

(17)

to find

τm
∆

m
∑

i=1

∫

Ω

f−(x, ti) dx

= (m+ 1)
m
∑

i=1

∫

Ω

f−(x, ti) dx

−m+

∫

Ω

m
∑

i=1

f+(x, ti) dx

(18)

Assuming now an upper limit M for the number of
Monte-Carlo steps, i. e. f+(x, tm) = 0 for m ≥ M one
finds

τM = ∆

∫

Ω

M
∑

i=0

f+(x, ti) dx ≡ ∆

∫

Ω

F+
M (x, tM ) dx (19)

Note, that the cumulative distribution function
F+
M (x, tM ) for the discrete case does not have the

dimensions as its equivalent F+(x) in the continous case,
which is an integral over time. This is the reason for the
time step ∆ appearing in Eq. 19. However, the Eq. 19
is actually a basic result to provide a link between the
physical system and numerical models. The cumulative
particle number

NM =
M
∑

i=1

∫

Ω

n(x, ti) dx = N

∫

Ω

F+
i (x, ti) dx (20)

represents the number of particles in the stationary sys-
tem, where all path lengths are present simultaneously.
And this is identical to the outcome of standard nu-
merical approaches where a number of N∗ particles is
launched and their particular trajectories are tracked via
markers at their respective positions at each time step ∆
until they are lost, i. e. reached a maximum number of
steps. The term markers just denotes the actual position
of particle and its tracking is usually done by increasing
a counter for each grid cell in the discrtized computa-
tional domain by one (perhaps multiplied with a specific
weight). Consequently, this means that the sum of all

the markers for all particles N∗

M =
∑M

i=1
N∗(tM ) in the

simulation (labeled by the asterisk) is an estimate for the
stationary situation. On the other hand, the dwell time
τM is an intrinsic characteristic of the physical system un-
der consideration and is linked to the ratio of stationary
particle number NM and source feeding via N particles
per time ∆.

τM
∆

=
NM

N
=

N∗

M

N∗
(21)

The Eq. 21 provides the necessary normalization condi-
tion for the analysis of Monte-Carlo chains of stationary
systems: the number of physical particles NM can be ob-
tained by the simple scaling NM/N = N∗

M/N∗, where N
is given by the known physical source strength, N∗ is the
number of simulation particles and N∗

M is the outcome of
the numerical construction and superposition of Monte-
Carlo paths. This approach is straightforward and gives
accurate results as long as the chosen particle number
and step size is sufficient to obtain good statistical esti-
mates. This is quite often not easy to ensure. For this
reason in the next section the marker method, where the
dwell time is computed directly, will be compared with
the track length method, which has been proven to be
more efficient in some applications [9; 13]. But, here we
will focus on its possible application for drift-diffusion
systems described by Fokker-Planck models.
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III. FOKKER-PLANCK EQUATION AND GREEN’S
FUNCTIONS

The multi-dimensional Fokker-Planck equation with
sources and sinks can be written

∂f

∂t
= −∇ ·

[

V f − 1

2
∇ · (D f)

]

+ S+ − S− (22)

It describes the temporal evolution of a scalar function
f transported by a convection with drift velocity V and
conduction guided by a diffusion tensor D. Sources are
summarized by S+ and sinks by S−, respectively. The
Fokker-Planck equation naturally appears in the context
of passive scalar transport like Brownian motion. And,
even though it is a linear equation it plays an important
role in linearized methods for non-linear fluid dynamics
and similar problems. Here we consider Eq. 22 as an
evolution equation for the particle distribution function
f+ discussed in the previous section, but this does not
affect any other interpretation. A very appealing feature
of the Fokker-Planck equation is that for constant V and
D its Green’s function is known and that its importance
for stochastic processes has been studied intensively. We
refer to these fundamentals just by recalling two basic
facts: (1) The Green’s function for Eq. 22 without sources
and sinks is given by

G(x, t) =

√

|D−1|
8π3t

exp

[

− (x−Vt) ·D−1 · (x−Vt)

2t

]

(23)

and it is fulfilling the integral relation

f(x+∆x, t+∆t) =

∫

Ω

G(∆x,∆t) f(x, t) dx (24)

(2) The basic recipe for constructing a Monte-Carlo chain
to obtain a discrete representation of a solution of Eq. 22
reads

∆x = V∆t+B · ξ
√
∆t (25)

where ξ is a vector whose components are three indepen-
dent Gaussian random numbers with mean 0 and vari-
ance 1. The tensor B fulfills D = B·BT. The basic corre-
spondence between these two aspects is that the Green’s
function can be regarded as probability distribution of
the step ∆x and the construction rule of Eq. 25 provides
exactly this Gaussian distribution. For details on this
a vast amount of literature exists, see e. g. [14; 15] and
references therein.

As for us, we continue with the discussion of the dwell
time introduced in the previous section as the basic quan-
tity for the evaluation of Monte-Carlo chains. For this
purpose and to keep the math as simple as possible we
restrict ourselves on a prototypical 1D problem

∂f

∂t
= − ∂

∂x
(V f) +

1

2

∂2

∂x2
(Df)− αf + S+ − S− (26)

Here, V and D are constant drift and diffusion coeffi-
cients, S+ and S+ are unspecified source and sink terms
and α is a decay rate introducing an additional loss pro-
cess, e. g. ionization processes, radioactive decay or ab-
sorption processes. It is a strength of the Monte-Carlo
method, that usually the source and sink terms S+ and
S− can be treated by starting and terminating chains at
particular locations. Therefore, we exclude the sources
and sinks contained in S+ and S− in the temporal evo-
lution of f . The remaining transport piece and decay
process can be computed via

f(x, t+∆) =

∞
∫

−∞

G(x− y,∆) f(y, t) dy (27)

where

G(x− y,∆) =
e−α∆

√
2 πD∆

exp

[

− (x− y − V ∆)2

2D∆

]

(28)

is the relevant Green’s function of Eq. 26 with properties

+∞
∫

−∞

G(x− y,∆) dx =

+∞
∫

−∞

G(x − y,∆) dy = e−α∆ (29)

and
∞
∫

−∞

G(x−y,∆2)G(y−z,∆1) dy = G(x−z,∆1+∆2) (30)

Comparison of Eq. 27 with Eq. 8 shows that the Green’s
function G(x − y,∆) can be regarded as the transi-
tion probability density p+(x|y; ∆) guiding the Monte-
Carlo steps. Similarly the loss probability is given by
p−(x|y; ∆) = (1−e−α∆)G(x−y,∆). Note, that for pure
drift motion the Green’s function becomes

p+(x|y; ∆) = G(x − y,∆) = δ(x − y − V ∆) e−α∆ (31)

with δ(x− y−V ∆) being the Dirac delta function. Now
we are in the position to evaluate certain expressions of
section II. One finds
∞
∫

−∞

f+(x, tm) dx = e−αtm (32)

and
∞
∫

−∞

f−(x, tm) dx =
(

e−α∆m − 1
)

e−αtm (33)

The dwell time τm for the 1D problem reads

τm =

m
∑

i=1

i
∑

k=1

∆k

∞
∫

−∞

f−(x, ti) dx

m
∑

i=1

∞
∫

−∞

f−(x, ti) dx

(34)
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and - as elucidated in appendix A - in the continous limit
with measure µ(t) = 1 − eαt (see appendix A) this pro-
vides the compact result

τm =

tm
∫

0

α t e−αt dt

tm
∫

0

α e−αt dt

=
1

α
− tm e−αtm

1− e−αtm
(35)

Now we come to the question of average track length λm.
As mentioned above, the reason to use this quantity in
estimating a particle distribution is - as for any other
choice of estimator - to get more information from the
time stepping and to use a larger time step. We start with
the general discrete expression similar to the definition of
τm in Eq. 15

λm =

m
∑

i=1

∫

Ω

i
∑

k=1

|xk − xk−1| f−(x, ti) dx

m
∑

i=1

∫

Ω

f−(x, ti) dx

(36)

For the prototypical 1D problem considered here one
finds by the use of Eqs. 27-30 that

∞
∫

−∞

|xk − xk−1| f−(x, ti) dx

= L(∆k)

∞
∫

−∞

f−(x, ti) dx for 1 ≤ k ≤ i

(37)

where L(∆) is the average length of a jump for a drift-
diffusive time step ∆

L(∆) =

∞
∫

−∞

|x|√
2πD∆

exp

[

− (x− V∆)2

2D∆

]

dx

=

√

2D∆

π
exp

(

−V 2∆

2D

)

+ V∆erf

(

V

√

∆

2D

)

(38)

Finally, the average track length λm in the 1D case is
given as

λm =

m
∑

i=1

i
∑

k=1

L(∆k)

∞
∫

−∞

f−(x, ti) dx

m
∑

i=1

∞
∫

−∞

f−(x, ti) dx

(39)

note that L(∆k) → |V |∆k for D → 0 and then λm =
|V | τm. This limit forms the basis for the use of track
length in many applications with pure drift. Without any

diffusion the average track length is synonymous with the
dwell time and this fact gives reason to sample path incre-
ments instead of counting markers during construction of
Monte-Carlo path. Of course an increase of the numeri-
cal efficiency has to be checked for the specific problem
at hand. Sometimes the simple marker method might
be more efficient, even if smaller time steps are neces-
sary. However, for finite diffusion coefficient D > 0 the
extension of the track length method encounters certain
problems which will be discussed in more detail in the
next section.

IV. DWELL TIME VS TRACK LENGTH

The dwell time has been shown to be the basic quantity
for normalizing and evaluating numerical Monte-Carlo
chains in section II. This led to the normalization condi-
tion Eq. 21. Expressions have been derived for the dwell
time τm, Eq. 34, and the average path length λm, Eq. 39,
in a 1D drift-diffusion system. The question initiating the
present analysis was: by which means the track length λ
might be useful in replacing the time consuming compu-
tation of the dwell time τ by markers. At first glance the
answer might look simple: due to the fact that L(∆i) is
known analytically and that it depends only on the time
step ∆i (the case, where L(∆i) depends also varies spa-
tially, will be part of the discussion in the next section)
the comparison of Eqs. 15 and 34 with Eqs. 36 and 39
lead to the idea that it might be enough to sample the
scaled path

Φi =
|xi − xi−1|
L(∆i)

∆i (40)

because

m
∑

i=1

∞
∫

−∞

i
∑

k=1

|xk − xk−1|
L(∆k)

∆kf
−(x, ti) dx

m
∑

i=1

∞
∫

−∞

f−(x, ti) dx

= τm (41)

As noted before, for pure drift motion the average step
length is just L(∆k) = |V |∆k. Therefore, the nu-
merical procedure of sampling Φi consists of sampling
|xi − xi−1|/|V | for all particles and all paths. Then it
is clear that the resulting cumulative distribution repre-
sents the dwell time. For a diffusive step it is not that ob-
vious due to the random character of the step expressed
in the construction of Eq. 25 which reads in the 1D case

∆x = V∆t+
√
D∆t γ (42)

Here, γ is a random number with zero mean and vari-
ance 1. Indeed, the special nature of the Fokker-Planck
model does not allow to introduce an effective velocity
L(∆)/∆ to be used to scale the step length |xi − xi−1|.
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The problem is illustrated by Fig. 1 for a particle passing
two cell faces. The advantage of a track length estima-
tor would lie in the possibility to evaluate pieces of a
single particle step when particles jump over more than
one grid cell in the computational domain. The grid cells
are just serving for counting markers during Monte-Carlo
time stepping and to obtain a discrete representation of
the solution of interest. The idea is to distribute dwell
times to different grid cells according to a proper split-
ting of the distance between to subsequent locations, i.e.
∆ = ∆1 + ∆2. This would allow large time steps, be-
cause the single step is retroactively splitted into several
steps. Therefore, having computed a step x → z for a

Φ

Φ1 Φ2 Φ3

Xi−3/2 Xi−1/2 Xi+1/2 Xi+3/2

x z

FIG. 1 Sketch of a particle step during time step ∆ from
location x to location z. Here two cell boundaries at Xi−1/2

and Xi+1/2 are passed with a single step. The estimator Φ

covers the entire step. The evaluation of the Monte-Carlo
trajectories needs the determination of the components Φ1,
Φ2 and Φ3 for proper sampling.

given time step ∆ which passes, e. g. a single grid cell
boundary at point y, a unique splitting of the estimator
Φ is needed to evaluate

Φ =
|z − x|
L(∆)

∆ =
|y − x|
L(∆1)

∆1 +
|z − y|
L(∆2)

∆2 = Φ1 +Φ2 (43)

However, this requires L(∆) = L(∆1) + L(∆2). For the
non-diffusive case D = 0 this is fulfilled, but unfortu-
nately one finds by inspection of Eq. 38 that for finite
diffusion coefficient D

L(∆1) + L(∆2) > L(∆1 +∆2) (44)

for any finite ∆1 and ∆2. Moreover, when considering
the sum of average path lengths for m steps with time
increment ∆ one finds that

m
∑

k=1

L(k∆) =
m
∑

k=1

√

2Dk∆

π
exp

(

−V 2k∆

2D

)

+
m
∑

k=1

V k∆erf

(

V

√

k∆

2D

)

(45)

is a monotonically increasing function of the number of
steps m if the total time m∆ is kept constant. The total

length diverges for m → ∞. Then
∑m

k=1
L(k∆) → ∞.

This shows that the length L(∆) is not a useful quan-
tity to describe the path of a diffusing particle during a
prescribed time interval ∆. The explanation for these pe-
culiarities is that the line segment between two points in
stochastic diffusive steps does not tell us anything about
intermediate locations of a particle. It could have been
anywhere with a finite probability. In other words, sam-
pling the path length or the estimator Φ does not allow
to obtain the dwell time as it was possible by marker
counting via Eq. 21. Therefore, a proper normalization
is not provided. The only exception is the pure drift
which is deterministic and allows retroactive analysis of
the straight line segment connecting two subsequent lo-
cations. But even this is not ensured if V is not constant
everywhere and certain errors occur if the time step is
chosen too large. this will be discussed in more detail in
the next section.

V. THE 1D INHOMOGENEOUS CASE

In the previous section it has been found that an over-
all picture of the dwell time being of central impor-
tance for the Monte-Carlo sampling can not be extracted
from segments of the particle trajectories if diffusion is
present. Rather, the trajectories represent only proba-
bilities. This is illustrated in Fig. 2 where the dwell time
Ti for a single time step ∆ is shown as a function of
the location x0 where a particle has started. The dwell
time Ti(x0) of a particle starting at position x0 for each
particular grid cell is introduced by

Ti(x0) =

Xi+1/2
∫

Xi−1/2

∆
∫

0

G(x − x0, t) dt dx (46)

where Xi−1/2 and Xi+1/2 denote the location of the ith
cell boundaries. A dwell Ti(x0) ≈ ∆ means that the pos-
sible jumps of a particle started at a particular x0 are
most likely inside the ith cell. A lower value means that
the probability for detours into other cells is significant.
It can be seen that particles starting in a particular cell
in general have a finite dwell time in certain regions of
the neighboring cells. This has to be taken into account
when a particle step is to be weighted properly. Actu-
ally, it is needed to consider the dwell time for each cell
separately to gain information for the proper weighting
of the Monte-Carlo sampling. On the other hand this
means that the full Green’s function integral Eq. 46 is
evaluated and this is what the Monte-Carlo algorithm is
supposed to do. The situation becomes even worse when
the inhomogeneous case with spatially varying velocity
V (x) and diffusion D(x) is considered. Then the Green’s
function is not even known and the Monte-Carlo step-
ping is justified only for regions with constant V and D,
as usual in discretized computational volumes. But this
leads directly to the requirement that the overlap in dwell
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∆

Ti−1 Ti Ti+1

Xi−3/2 Xi−1/2 Xi+1/2 Xi+3/2
x0

T

FIG. 2 Sktech of the dwell time Tk for different cells as a
function of the particle’s starting position x0. The time step
is ∆ and the dwell time can reach this value inside the cells
if most possible steps are essentially inside a particular cell.
But when the particle starts closer to the cell boundaries its
dwell time in the neighboring cell is non-zero due to possi-
ble stochastic detours. The plots were obtained numerically
by using the parameters V =2 m/s, D=1 m2/s, Xi−3/2=-1,
Xi−1/2=2, Xi+1/2=5, Xi+3/2=8, α=0 and time step ∆=0.1
s.

times Ti over cell boundaries as sketched in Fig. 2 should
be as small as possible as it introduces numerical errors.
To quantify the error one might estimate the width b of
the overlap in Fig. 2 where the dwell time Ti drops from
∆ to 0. With the definition

b

∣

∣

∣

∣

∂Ti

∂x0

∣

∣

∣

∣

= ∆ (47)

and |∂Ti/∂x0| taken at a cell boundary, a measure for the
error E can be introduced by b/∆x, ∆x = Xi−Xi−1. The
requirement b/∆x ≪ 1 gives the condition

E =
∆

∆x

∣

∣

∣

∣

∂Ti

∂x0

∣

∣

∣

∣

−1

i

≪ 1 (48)

where |∂Ti/∂x0|i is the minimum of |∂Ti/∂x0| at posi-
tions Xi−1/2 and Xi+1/2. The detailed expressions for
those derivatives are given in appendix B. It is impor-
tant to note that for α = 0 the following limits of Eq. 48
can be found: For V 6= 0 and D → 0

ED=0 = |V | ∆

∆x
≪ 1 (49)

and for V → 0 and D > 0

EV =0 =

√

πD

2∆

∆

∆x
≪ 1 (50)

which are well known from stability analysis of finite dif-
ference schemes [16]. But here the conditions result from
requirements on accuracy for the otherwise numerically
stable Monte-Carlo procedure The term stable in this
context is used in the sense that no instabilities occur
in the straightforward sampling along particle trajecto-
ries. Of course the application for linearized models of

non-linear systems might suffer from the usual numerical
difficulties with respect to unstable modes. The Fig. 3
illustrates the condition of Eq. 48 in comparison with the
limiting cases of Eqs. 49 and 50.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.1  0.2  0.3  0.4  0.5  0.6

∆

E

E

ED=0

EV =0

FIG. 3 Sketch of the error estimates E, EV =0 and ED=0

defined in Eqs. 48, 49 and 50. The general error estimate
E combines the limiting cases EV =0 and ED=0 and is more
restrictive for the choice of a time step ∆. The plots were
obtained numerically by using the parameters V =2 m/s, D=1
m2/s, ∆x=4 and α=0.

VI. CONCLUSION

The problem of Monte-Carlo time stepping algorithms
for Fokker-Planck equations has been reconsidered. The
basic aim in finding numerical solutions of stationary
problems is in the numerical estimation of the dwell
time. This can be obtained by the standard procedure of
launching an ensemble of simulation particles and track-
ing their entire paths by counting markers in a discretized
grid. The ratio of the cumulative number of particles and
the number of launched particles per time step provides
the dwell time and a proper normalization to connect the
simulation results with the physical system under consid-
eration. The path length sampling has been considered as
a possible alternative for the time consuming counting of
markers. This is obviously a simple and efficient method
for free flight problems, like for neutral particles or neu-
trons in many applications, where the motion is domi-
nated by drift and therefore deterministic. However, it
is shown that the stochastic nature of the diffusive piece
in the transport excludes the use of simple track length
sampling because the path length of diffusion trajecto-
ries is not a well defined quantity and not appropriate
to represent the dwell time. As long as no other track
length based estimator is found - and in this work no
proposal is given - the stepping algorithm is restricted
to the usual marker method. An additional analysis of
the inomogeneous 1D problem allowed to derive further
restrictions on the construction of Monte-Carlo trajecto-
ries which shows that the well known Courant-Friedrichs-
Lewy condition for explicit finite difference schemes has
to be taken into account also for the marker based Monte-
Carlo schemes.
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APPENDIX A: Dwell time and other averages in the
continous limit

The dwell τm has been defined in section II by the
discrete expression Eq. 15

τm =

m
∑

i=1

∫

Ω

ti f
−(x, ti) dx

m
∑

i=1

∫

Ω

f−(x, ti) dx

(A1)

Assuming that all requirements of measure theory and
Lebesgue integration are met one might introduce a prob-
ability measure µ

µ(tm) =

m
∑

i=1

∫

Ω

f−(x, ti) dx

= 1−
∫

Ω

f+(x, tm) dx ≡
tm
∫

0

µ′(t) dt

(A2)

with density µ′

µ′(t) = −
∫

Ω

∂f+(x, t)

∂t
dx (A3)

Then the dwell time τm in the continous limit is written
as

τm =

tm
∫

0

t
µ′(t)

µ(tm)
dt (A4)

This can be evaluated via

tm
∫

0

t µ′(t) dt = −
∫

Ω

tm
∫

0

t
∂f+(x, t)

∂t
dt dx

= −tm

∫

Ω

f+(x, tm) dx+

∫

Ω

tm
∫

0

f+(x, t) dt dx

(A5)

to obtain

τm − τm

∫

Ω

f+(x, tm) dx

=

∫

Ω

tm
∫

0

f+(x, t) dt dx− tm

∫

Ω

f+(x, tm) dx

(A6)

The stationarity of the problem considered here requires
that f+(x, tm) = 0 for tm > tM , with a finite time tM
giving the upper limit for a Monte-Carlo chain. Then
one finds for τ = limtm→∞ τm

τ =

∫

Ω

∞
∫

0

f+(x, t) dt dx ≡
∫

Ω

F+(x) dx (A7)

In a similar way one can derive the chain average ωm of
a quantity w = w(t)

ωm =

m
∑

i=1

∫

Ω

w(ti) f
−(x, ti) dx

m
∑

i=1

∫

Ω

f−(x, ti) dx

(A8)

with the continous limit

ω =

∫

Ω

∞
∫

0

∂w

∂t
f+(x, t) dt dx (A9)

APPENDIX B: Evaluation of derivatives in the time stepping
error

The definition of Eq. 46 for the dwell time Ti in the
ith cell

Ti =

Xi+1/2
∫

Xi−1/2

∆
∫

0

G(x − x0, t) dt dx (B1)

gives

∂Ti

∂x0

=

∆
∫

0

G(Xi−1/2 − x0, t) dt−
∆
∫

0

G(Xi+1/2 − x0, t) dt

(B2)

This can be evaluated using the relation

∆
∫

0

G(x, t) dt =
1

2v′
exp

(

vx

D
− v′|x|

D

)[

1 + erf

(

v′∆− |x|√
2D∆

)]

− 1

2v′
exp

(

vx

D
+

v′|x|
D

)[

1− erf

(

v′∆+ |x|√
2D∆

)]
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(B3)

where

v′ =
√

2αD + v2 (B4)

Defining ∆x = Xi+1/2−Xi−1/2 one finds for x0 = Xi−1/2

∂Ti

∂x0

∣

∣

∣

∣

Xi−1/2

=
1

v′
erf

(

v′∆√
2D∆

)

− 1

2v′
exp

(

v∆x

D
− v′∆x

D

)[

1 + erf

(

v′∆−∆x√
2D∆

)]

+
1

2v′
exp

(

v∆x

D
+

v′∆x

D

)[

1− erf

(

v′∆+∆x√
2D∆

)]

(B5)

and at x0 = Xi+1/2 the derivative is

∂Ti

∂x0

∣

∣

∣

∣

Xi+1/2

= − 1

v′
erf

(

v′∆√
2D∆

)

+
1

2v′
exp

(

−v∆x

D
− v′∆x

D

)[

1 + erf

(

v′∆−∆x√
2D∆

)]

− 1

2v′
exp

(

−v∆x

D
+

v′∆x

D

)[

1− erf

(

v′∆+∆x√
2D∆

)]

(B6)
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