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The behavior of hydrogen in iron and iron alloys is of interest in many fields of physics and materi-
als science. To enable large-scale molecular dynamics simulations of systems with Fe–H interactions,
we develop, based on density-functional theory calculations, an interatomic Fe–H potential in the
Tersoff–Brenner formalism. The obtained analytical potential is suitable for simulations of H in bulk
Fe as well as for modeling small FeH molecules, and it can be directly combined with our previously
constructed potential for the stainless steel Fe–Cr–C system. We apply the potential to studying
how hydrogen affects the mechanical properties of monocrystalline bulk Fe and an Fe bicrystal with
a grain boundary. In both cases, hydrogen is found to soften the material.

PACS numbers: 61.43.Bn,75.50.Bp,61.72.Mn,81.40.Jj
Keywords: Interatomic potential, Molecular dynamics, Tensile testing, Hydrogen-induced embrittlement

I. INTRODUCTION

Hydrogen, although not soluble in iron in equilibrium,
can be introduced into it by irradiation, nuclear decay,
or chemical processes. Hydrogen is well known to cause
embrittlement in iron and steel [1–8], which is a serious
issue in, e.g., the automotive and nuclear industries. In
the former, the high mechanical resistance desired from
the body steels must often be traded off against their in-
creased susceptibility to hydrogen embrittlement [9–12],
while the nuclear processes in the latter will, on long time
scales, induce hydrogen buildup in the reactor steels [13–
16]. Moreover, the recent changes in the design of the
ITER fusion reactor are to render some of its steel com-
ponents directly exposed to the fusion plasma [17], mak-
ing it important to study how the energetic H isotopes
escaping from the plasma interact with Fe.
Atomic-level molecular dynamics (MD) simulations

have proven to be a good tool for examining irradiation
effects [18, 19], mechanical properties of materials [20–
22], and plasma–wall interactions [23, 24]. The key phys-
ical input for MD is the interatomic potential. Since
steels by definition contain Fe and C [25], simulations
of H effects in steels require, at a minimum, a potential
that can describe all interactions in the ternary Fe–C–H
system.
In this work, we develop a potential for Fe–H interac-

tions in the same reactive Tersoff–Brenner formalism [26–
28] we used previously to construct a potential for the
stainless steel Fe–Cr–C system [29]. The potential is fit-
ted to a database of properties of FeH molecules and H
in bulk Fe, obtained from literature and our own density
functional theory (DFT) calculations. By using already
available C–H parameters [27, 30], the potentials can be
directly combined to model the entire ternary Fe–C–H
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system. The potential allows simulating H in bulk Fe as
well as ion irradiation and chemical reactivity of H at Fe
and Fe–C surfaces. We demonstrate its use in simulating
hydrogen-induced softening in bulk Fe and in Fe grain
boundaries.
Fe–H potentials have been already devised using the

embedded-atom method [31, 32]. However, its associ-
ated functional form cannot realistically describe the C–
H bonding chemistry [27]. Since our aim is to obtain
a potential for the entire Fe–C–H system, we choose to
develop the Fe–H potential in the Tersoff–Brenner for-
malism which allows combining the Fe–H part with both
Fe and C interactions, similar to what was done earlier
for the W–C–H system [30].

The remainder of this article is organized as follows.
In Sec. II, we summarize the Tersoff–Brenner potential
formalism and describe our fitting procedure. Section III
presents the obtained Fe–H potential and evaluates its
performance against experimental and ab initio data. In
Sec. IV, we employ the potential in tensile test simula-
tions of hydrogen-containing iron. We discuss the impli-
cations and limitations of the study in Sec. V. Finally,
Sec. VI concludes the article with a brief summary.

II. POTENTIAL FORMALISM AND FITTING

PROCEDURE

The reactive Tersoff–Brenner formalism [26–28] used
in this work originates from the concept of bond order
proposed by Pauling [33], and it has been shown [34]
to resemble both the tight-binding scheme [35] and the
embedded-atom method [36, 37]. Since the formalism
has been described extensively elsewhere [34, 38, 39], we
will give here only a brief overview.
The total cohesive energy Ec of the system is written
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as a sum of individual bond energies:

Ec =
∑

i<j

f c
ij (rij)

[

V R
ij (rij)−

bij + bji
2

V A
ij (rij)

]

, (1)

where rij is the distance between atoms i and j, f c is
a cutoff function for the pair interaction, V R is a repul-
sive and V A an attractive pair potential, and bij is a
bond-order term that describes three-body interactions
and angularity. The pair potentials are of the Morse-like
form

V R
ij (r) =

D0ij

Sij − 1
exp

[

−
√

2Sijβij (r − r0ij)
]

, (2)

V A
ij (r) =

SijD0ij

Sij − 1
exp

[

−
√
2βij

√

Sij

(r − r0ij)

]

, (3)

where D0 and r0 are the bond energy and length of the
dimer molecule, respectively. The parameter β is related
to the ground-state vibrational frequency ω and the re-
duced mass µ of the dimer according to

βij =

√

2µijπωij
√

D0ij

. (4)

The bond-order term is given by

bij =
1

√

1 + χij

, (5)

where

χij =
∑

k(6=i,j)

f c
ij (rij) gik (θijk) exp [αijk (rij − rik)] . (6)

Here θijk is the angle between the vectors rij = rj − ri

and rik, and the angular function is defined as

gik (θijk) = γik

[

1 +
c2ik
d2ik

− c2ik
d2ik + (hik + cos θijk)

2

]

,

(7)
where γ, c, d, and h are adjustable parameters. The
range of the interaction is restricted to the next-neighbor
sphere by the cutoff function

f c
ij (r) =







1, r ≤ Rij −Dij ,
1
2 − 1

2 sin
π(r−Rij)

2Dij
, |r −Rij | ≤ Dij ,

0, r ≥ Rij +Dij ,

(8)

where R and D determine the locus and width of the
cutoff interval.
If the analytical potential is used for modeling nonequi-

librium phenomena involving short-distance interactions,
such as high-energy particle irradiation processes or melt-
ing, the short-range part of the potential must be ad-
justed to include a strong repulsive core that follows,
i.a., from the Coulomb repulsion between the positively
charged nuclei. To this end, the potential is modified in

the manner already used for other Tersoff-like many-body
potentials [34, 40]: The total potential Vtot is constructed
by joining the universal Ziegler–Biersack–Littmark po-
tential VZBL [41] with the equilibirium potential Veq us-
ing

Vtot (r) = VZBL (r) [1− F (r)] + Veq (r)F (r) , (9)

where Veq is the potential implied by Eq. (1) and F is the

Fermi function F (r) = {1 + exp [−bF (r − rF)]}−1
. The

values of the parameters bF and rF are chosen manually
such that the potential is essentially unmodified at equi-
librium and longer bonding distances and that a smooth
fit at short separations with no spurious minima is ob-
tained for all realistic coordination numbers.
In order to devise a well-performing Fe–H potential

in the Tersoff–Brenner formalism, we use the following
fitting procedure: The parameter sets for the H–H and
Fe–Fe interactions are taken unchanged from Refs. [27]
and [42], respectively, so that only the parameter set for
the Fe–H interactions is fitted. From the outset, we fix
the parameters pertaining to the properties of the dimer
FeH—i.e., D0, r0, and β—according to their experimen-
tally observed values. To avoid unwanted side effects,
we set the three-index parameters αijk to zero. The val-
ues of the remaining seven parameters (S, γ, c, d, h, R,
and D) are then fitted to a structural database compris-
ing the molecules FeH2 and FeH3, the stoichiometric FeH
with the rock-salt crystal structure, and the energies of
the lowest-lying hydrogen point defects in bcc iron. The
fitting is formulated as a nonlinear least-squares mini-
mization problem, which we solve using the trust-region-
reflective algorithm [43–45] implemented in MATLAB [46].

III. OBTAINED POTENTIAL

The optimized parameter values for the analytical Fe–
H potential are given in Table I. We also show the pa-
rameter values used for the H–H and Fe–Fe potentials;
it should be noted, however, that during the fitting pro-
cess, H–H and Fe–Fe interactions play a role only in the
evaluation of the hydrogen point-defect energies.
Table II presents the fitting database together with

the results from the analytical potential. The potential
exactly reproduces the experimentally observed dimer
properties that are also in good agreement with all the
ab initio calculations. For the linear trimer FeH2, the ex-
perimentally measured bond lengths of Refs. [47] and [48]
are, respectively, 1.1% and 2.1% greater than the analyti-
cal prediction, while differing from each other by roughly
the same relative amount. The analytical potential yields
a bond length for the trigonal planar FeH3 molecule that
falls between the values given by the different ab initio

calculations. The lattice constant a, bulk modulus B,
and its pressure derivative B′ for the rock-salt FeH are
also in line with the DFT results.
Table III lists the formation energies of hydrogen point
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Table I. Tersoff–Brenner parameters [Eqs. (1)–(8)] for the Fe–
H system. The H–H potential is taken from Ref. [27] and the
Fe–Fe potential from Ref. [42]; the Fe–H potential is derived
in this work. The parameters αijk are zero in all cases.

H–H Fe–Fe Fe–H
D0 (eV) 4.7509 1.5 1.630
r0 (Å) 0.7414 2.29 1.589
β (Å−1) 1.9436 1.4 1.875
S 2.3432 2.0693 4.000
γ 12.33 0.01158 0.01332
c 0.0 1.2899 424.5
d 1.0 0.3413 7.282
h 1.0 −0.26 −0.1091
R (Å) 1.40 3.15a 2.497
D (Å) 0.30 0.2 0.1996

bF (Å
−1

) 15.0 2.9 16.0
rF (Å) 0.35 0.95 1.0

a In Sec. IV, we use R = 3.5 Å for the Fe–Fe interactions.

defects as obtained using DFT and our analytical poten-
tial. The formation energies are defined as

Ef = Edef (NFe, NH)−NFeEc (Fe)−NHEc (H) , (10)

where Edef (NFe, NH) is the total cohesive energy of the
defect-containing cell with NFe iron and NH hydrogen
atoms; Ec (Fe) and Ec (H) are the atomic cohesive ener-
gies of bcc iron and the H2 molecule, respectively. For the
analytical potentials of Table I, Ec (Fe) = −4.280 eV and
Ec (H) = −2.375 eV. A summary of the DFT methods is
provided in the Appendix.
Due to the low solubility and high mobility of hydro-

gen in iron, as well as the high probability of trapping
at defect sites at low temperatures, little direct evidence
for the site occupancy exists. Indirect evidence indicates
that H resides in the tetrahedral (T) site of bcc Fe, with
an experimental value of 0.296 eV per atom for the dis-
solution energy of H in Fe [61]. According to the DFT
results in Table III, the T site is more stable, both for
the unrelaxed and relaxed structures. The DFT calcu-
lations also indicate that the octahedral (O) site occu-
pancy gains significantly more stabilization from lattice
distortion than the T site does. This is because the O
site undergoes a greater structural distortion than the T
site, which can be understood heuristically by consider-
ing the sizes of the two sites: Using the lattice constant
aFe = 2.86 Å, the radii of the T and O sites are 0.36 Å and
0.19 Å, respectively. The hydrogen atom has a covalent
radius of 0.37 Å, so it fits better in the T site and causes
smaller lattice distortions than in the O site. The same
argument also explains why the energy of the substitu-
tional defect decreases only slightly when relaxed. The
analytical potential qualitatively reproduces this behav-
ior and yields very good quantitative agreement for all
three relaxed defect energies.
Regarding the diffusion of hydrogen in bcc iron,

Jiang and Carter [62] used DFT to obtain the Ar-

rhenius equation for the diffusion coefficient, Ddiff =

D
(0)
diff exp (−Ea/kBT ), where D

(0)
diff = 1.5 × 10−7 m2s−1

and the activation energy Ea = 0.088 eV corresponds
to direct hopping between two neighboring T sites. On
the other hand, since H is easily trapped by impurities
in Fe, the diffusion coefficients of H in Fe from labora-
tory measurements show a large scatter: Hayashi and
Shu [64] compile experimental values of Ea in the range
from 0.035 eV to 0.142 eV. Using our analytical poten-
tial and the nudged elastic band method [65], we obtain
Ea = 0.112 eV for the nearest-neighbor T → T migration
barrier. This value falls within the experimental range
and is in good agreement with the DFT result.

IV. EFFECT OF HYDROGEN ON TENSILE

TESTING OF IRON

As a demonstration of possible applications of the de-
rived Fe–H potential (Table I), we employ it in MD simu-
lations [66] to investigate the effect of hydrogen impurity
atoms on the stress–strain response of crystalline iron
subjected to uniaxial tensile stress. We consider two
types of computational cells of NFe = 8640 iron atoms,
one consisting of a regular bcc lattice of 12×12×30 unit
cells and one containing a bcc bicrystal with a grain-
boundary plane (001) at its center; the latter is illus-
trated in Fig. 1. Both cells have aFe = 2.86 Å, and pe-
riodic boundary conditions are imposed in all three di-
rections. The axis and angle of rotation for the grain
boundary are chosen as 〈100〉 and 53.13◦, so that due
to the periodic boundary conditions, the structure corre-
sponds to a stack of symmetric tilt boundaries with a sep-
aration distance of ∼39 Å and a grain-boundary energy of
[Ecell −NFeEc (Fe)] /2A = 6.49 Jm−2, where Ecell is the
total energy of the computational cell and A = 286 Å2 is
its cross-sectional area perpendicular to the [001] direc-
tion. In crystallographic notation [67], the grain bound-
ary can be described as 53.13◦ [100] (01̄2̄) / (01̄2).

To introduce the impurities into system, we randomly
place a variable number NH of hydrogen atoms into the
computational cell, subject to the condition that the
added atoms are at a minimum distance of 1.55 Å from
the already existing atoms. For NH, we use the values
87, 174, 260, 346, 432, 519, 605, 691, 778, and 864, which
corresponds to atomic hydrogen concentrations [defined
as n = NH/ (NFe +NH)] of 0.0, 1.0, 2.0, 2.9, 3.9, 4.8, 5.7,
6.5, 7.4, 8.3, and 9.1 percent, respectively. We let the
stresses in the hydrogen-containing cell relax to zero by
evolving the system for 20 ps at 300K while applying the
Berendsen pressure control [68] in all directions.
Next, exertion of uniaxial tension in the z direction

is modeled in a quasistatic, stepwise manner: First, we
increase the length Lz of the simulation box by 0.02 Å,
scaling the z coordinates of all atoms by the ratio of the
new and previous Lz. Second, we evolve the system for
50 ps with fixed Lz, while applying the Berendsen pres-
sure control in the x and y directions and the Berendsen
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Table II. Properties of the Fe–H molecular and rock-salt phases as obtained from experiments, ab initio calculations, and the
analytical potential (AP) derived in this work. The notation is as follows: rb, bond length; k, wave number for the ground-state
vibrational frequency; Ec, cohesive energy; a, lattice constant; B, bulk modulus; B′, pressure derivative of the bulk modulus.
For the abbreviations of the ab initio methods, see Table IV in the Appendix.

Experiment Ab initio calculations AP

FeH Ref. [49] Ref. [50] Ref. [51] CI/ECP [52] CASSCF/MRCI [53] MRCPA(4) [54] MRSDCI+Q [54]
rb (Å) 1.589 1.578 1.588 1.596 1.582 1.589
Ec/atom (eV) −0.815 −0.71 −0.965 −0.90 −0.94 −0.815
k (cm−1) 1774 1701 1643 1735 1778 1774
FeH2 linear Ref. [47] Ref. [48] CASSCF [55] CI [55] B3LYP [56] B3LYP/ECP [57]
rb (Å) 1.6484 1.665 1.746 1.689 1.645 1.647 1.630
Ec/atom (eV) −0.8751
FeH3 planar D3h UHF [58] SDQ-MBPT(4) [58] CCSD(T) [58]
rb (Å) 1.667 1.603 1.609 1.619
Ec/atom (eV) −1.044
FeH rock salt USPEX [59] MBPP-CA [60] FLAPW-BH [60]
a (Å) 1.828 1.839 1.833 1.839
Ec/atom (eV) −3.518
B (GPa) 270.8 216 200 238.9
B′ 4.25 3.7 3.7 4.749

Table III. Formation energies Ef in units of eV for hydrogen point defects in bcc iron. For the DFT methods, see the Appendix.

Experiment DFT calculations AP
Defect Ref. [61] PAW-GGA [62] USPP-GGA [63] This work This work
Tetrahedral interstitial, unrelaxed 0.29 0.484 0.515
Tetrahedral interstitial, relaxed 0.296 0.20 0.30 0.234 0.240
Octahedral interstitial, unrelaxed 0.76 0.822 1.186
Octahedral interstitial, relaxed 0.33 0.259 0.256
Substitutional defect, unrelaxed 2.855 4.027
Substitutional defect, relaxed 2.526 3.145

temperature control [68] at 300K, and extract the axial
normal stress σzz as a time average over the last 25 ps.
These two steps are repeated 500 times, resulting in a
maximum strain of 11–13%. We carry out the whole pro-
cedure for different values of NH and average the results
for each NH over ten independent initial configurations
of H atoms.
Since the tensile tensile testing simulations are car-

ried at 300K, we have increased the value of the cutoff
parameter R for the Fe–Fe potential [42] to 3.5 Å from
the original 3.15 Å. Otherwise, the second-nearest neigh-
bors of the bcc iron would—due to thermal vibrations—
experience the onset of the cutoff function [Eq. (8)], re-
sulting in an unphysical increase in the Young’s modulus
of elasticity E = σzz/εzz, where εzz denotes the nor-
mal tensile strain. By extending R to the middle of the
second- and third-nearest-neighbor distances, this effect
is avoided.
Figure 2(a) shows the average stress–strain curves for

the regular monocrystalline (bulk) bcc iron, for six differ-
ent atomic hydrogen concentrations. Figure 2(b) depicts
the corresponding curves for the grain-boundary system,
and Fig. 3 combines data from the two configurations.

To quantify the stress–strain response in the linear,
elastic regime, we determine the Young’s modulus E at

different values of the hydrogen concentration n. This
is done by performing a linear least-squares fit to each
of the stress–strain curves in Fig. 2. In the case of the
bulk system, we use the fitting intervals εzz ∈ [0, 0.010]
for n < 2%, [0.010, 0.020] for 1% < n < 3%, and
[0.015, 0.025] for n > 3%; for the grain-boundary system,
they are εzz ∈ [0, 0.010] for n < 5% and [0.005, 0.015] for
n > 5%. The reason for not always starting the fitting
interval from zero strain is that due to the high mobility
of hydrogen in iron, there was some reorganization of the
hydrogen atoms during the first few steps of the stretch-
ing procedure, producing nonlinear stress-strain behav-
ior. As can be seen from Fig. 2(a), the nonlinearity is
particularly pronounced for bulk samples with large n.

Figure 4(a) shows the obtained Young’s moduli at
300K for n ∈ [0, 0.1] [69]. The error bars are calculated
as the standard deviation of each set of ten simulations.
Considering first pure iron at 0K, its Young’s moduli
can be determined directly from the elastic moduli pre-
dicted by the potential [42, 70]. This gives the values
115GPa for the bulk bcc and 164GPa for a bcc system
in which the lattice is rotated by the same angle and
in the same direction as in our grain-boundary system.
When the temperature is increased, the Young’s moduli
are expected to decrease. For pure iron at 300K, our
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Figure 1. (Color online) (a) Perspective and (b) side views
of the computational cell used for the grain-boundary sys-
tem with an atomic hydrogen concentration of 2.0%. Iron
atoms (NFe = 8640) are shown in gray (light) and hydrogen
atoms (NH = 260) in blue (dark). The dimensions of the
cell are 34 Å× 38 Å× 78 Å, and periodic boundary conditions
are imposed in all three directions. The cell contains sym-
metric tilt boundaries in its top/bottom and middle sections.
(b) Neighboring grains are tilted about the z axis by the an-
gle ∠POR = 53.13◦ with respect to each other; the vectors
~OP and ~OR correspond to equivalent lattice directions in the
adjacent grains. The vector ~OQ lies along the grain boundary.

simulations yield 101GPa for the bulk and 141GPa for
the grain-boundary system. The experimental value [71]
for the bulk system at 300K is 132GPa [72].
For both configurations, hydrogen is observed to in-

duce softening of the material, i.e., to reduce E. The ef-
fect is noticeably stronger for the bulk system: when the
hydrogen concentration increases from zero to 9.1%, the
Young’s modulus of the bulk system decreases by 55%,
whereas for the grain-boundary system the decrease is
only 22%. One possible explanation for this difference is
that most of the hydrogen atoms in the grain-boundary
system resided within 10 Å from one of the boundaries.
Therefore, the concentration of hydrogen in the intact

lattice was significantly lower than the nominal hydrogen
concentration n (e.g., at n = 0.09 it was less than 4%),
while in the bulk system, the two figures were obviously
equal and the H atoms were homogeneously distributed
throughout the computational cell.
Let us next investigate the extreme plastic behavior in

terms of the tensile strength σTS, defined as the maxi-
mum stress reached by the stress-strain curve. The re-
sulting values for the bulk and grain-boundary crystals
are presented as a function of the atomic hydrogen con-
centration n in Fig. 4(b). From there, we see that the
addition of hydrogen decreases the tensile strength of
both configurations. This can be understood by noting
that the H atoms introduce disorder in the Fe lattice.
As in the case of the Young’s modulus, the decrease is
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Figure 2. (Color online) Uniaxial nominal stress σzz as a func-
tion of normal tensile strain εzz for (a) monocrystalline bulk
iron and (b) an iron bicrystal with a symmetric tilt bound-
ary (Fig. 1). The legend shows the atomic hydrogen concen-
tration for each curve. Uniaxial tension is exerted along the
z axis, perpendicular to the grain-boundary plane.

more substantial in the bulk than in the grain-boundary
system. Without hydrogen, their tensile strengths are
approximately equal (σTS = 7.31GPa for the bulk and
7.27GPa for the grain-boundary system). At a hydro-
gen concentration of 9.1%, however, the tensile strength
of the bulk system has decreased by 54%, while in the
grain-boundary system the decrease is only 29%. The
reason for the weaker effect in the grain-boundary sys-
tem is likely the same as mentioned above for the Young’s
modulus.
Introduction of hydrogen into the system also modifies

the shape of the stress–strain curves near the maximum
stress. For pure bulk iron, there is a sudden drop in the
stress at 9% strain [Fig. 2(a)]. Visual inspection of the
simulation system [73] reveals that this is caused by a
slip process that creates stacking-fault ribbons extend-
ing through the system in the z direction. A similar but
less distinct drop occurs for the grain-boundary system
[Fig. 2(b)]. In this case, the stacking fault cannot extend
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Figure 3. (Color online) Comparison of the uniaxial
stress–strain responses of bulk [see Fig. 2(a)] and grain-
boundary [Fig. 2(b)] iron crystals for atomic hydrogen con-
centrations of 0% and 4.8%.

through the whole system because the grain boundary in-
terrupts the crystal structure. The presence of hydrogen
smooths the abrupt drops by significantly disturbing the
crystal lattice already before the stacking-fault ribbons
appear.

V. DISCUSSION

We have developed an analytical Tersoff–Brenner po-
tential for interactions between hydrogen and iron atoms.
It was fitted to a set of experimental and ab initio data on
iron hydride molecules, rock-salt-structured crystalline
FeH, and hydrogen point defects in iron. The obtained
potential reproduces the experimentally measured bond
energy, bond length, and ground-state vibrational fre-
quency of the FeH dimer and describes with good accu-
racy the molecules FeH2 and FeH3 as well as the rock-salt
FeH. The point-defect energies it predicts are also con-
sistent with our own DFT calculations.
The constructed potential enables atomistic computer

simulations of a wide range of materials problems involv-
ing iron and hydrogen. Since it can also model nonequi-
librium phenomena such as sputtering and the formation
of mixed materials, the potential is well-suited for MD
studies of plasma–wall interactions in fusion reactors. In
view of the recent design updates of the ITER reactor,
which would result in direct exposure of steel to the fu-
sion plasma [17], being able to incorporate both iron and
hydrogen into these investigations is an important ad-
vancement.
In Sec. IV, we applied the potential to tensile-test sim-

ulations of iron in two different configurations, a bulk bcc
monocrystal and a symmetric tilt boundary, using differ-
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Figure 4. (Color online) (a) Young’s modulus E = σzz/εzz
and (b) the tensile strength σTS as functions of the atomic
hydrogen concentration for bulk bcc iron (triangles) and for
the grain-boundary system (circles). The error bars are calcu-
lated as the standard deviation of ten simulations. The lines
are guides to the eye.

ent concentrations n of hydrogen impurity atoms. The
simulations indicated that hydrogen softens iron; i.e., the
Young’s modulus and the tensile strength decrease when
the hydrogen concentration increases. The effect was
much stronger in the bulk bcc monocrystal than in the
tilt-boundary system. This was explained by noting that
most of the hydrogen in the grain-boundary system was
concentrated near the grain boundaries, thereby leaving
the rest of the system depleted in hydrogen in comparison
to the bulk system, where hydrogen was homogeneously
distributed.
Our simulations demonstrate that the potential can be

used to study hydrogen-induced embrittlement phenom-
ena in iron and steel. We emphasize that the current
simulation setup is constructed as a simple model sys-
tem for potential testing. In likely experimental scenar-
ios, most H would (due to its low solubility) be trapped in
defects or in grain boundaries. Thus, the potential’s pre-
diction of hydrogen-induced grain-boundary weakening
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is at least qualitatively consistent with the well-known
effect of grain-boundary embrittlement by H in steels [3–
8]. Future work could examine this more systematically
for other grain boundaries and hydrogen distributions.

VI. SUMMARY

We constructed a DFT-based interatomic potential
for the Fe–H system in the Tersoff–Brenner formalism.
The potential can be directly combined with our previ-
ously developed potential for the stainless steel Fe–Cr–C
system. We applied the new potential to investigating
the effect of hydrogen on the mechanical properties of
monocrystalline bulk Fe and an Fe bicrystal with a grain
boundary. In both cases, hydrogen was found to soften
the material, reducing the Young’s modulus as well as
the tensile strength.

ACKNOWLEDGMENTS

We thank T. Ahlgren, C. Björkas, F. Granberg, K. O.
E. Henriksson, A. Lasa, and M. Nagel for insightful dis-
cussions. We are grateful for the computational resources
granted by the CSC – IT Center for Science in Espoo,
Finland. P. K. acknowledges financial support from the
Finnish Cultural Foundation and the Magnus Ehrnrooth
Foundation. This project has been carried out within the
framework of the EUROfusion Consortium and has re-

ceived funding from the European Union’s Horizon 2020
research and innovation programme under grant agree-
ment number 633053. The views and opinions expressed
herein do not necessarily reflect those of the European
Commission.

Appendix: Ab initio methods

Here we outline our DFT calculations of the hydrogen
point-defect energies in Table III. They were performed
with the SIESTA code [74], were spin-polarized within
the collinear approximation, and used the generalized
gradient approximation (GGA) with the Perdew–Burke–
Ernzerhof exchange-correlation functional [75]. Core
electrons were replaced by nonlocal norm-conserving
pseudopotentials, and valence electrons were described
by linear combinations of numerical pseudoatomic or-
bitals. We represented the charge density on a real-
space grid with a spacing of ∼ 0.07 Å and employed a
Methfessel–Paxton smearing [76] of 0.3 eV. Interstitial H
calculations used a 54-atom supercell with a 4× 4× 4 k-
point grid, while the substitutional H calculations used
a 128-atom cell with a 3 × 3 × 3 k-point grid. Zero-
point energy corrections, calculated for hydrogen within
the Einstein approximation, are included in our quoted
values.
In Tables II and III, we also employed a number of ab-

breviations for the ab initio methods used in other stud-
ies. The abbreviations are defined in Table IV.
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