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Abstract	

The paper shows that model-predictive control (MPC) algorithms based on extremely simple 
linear data-driven models can be used for plasma kinetic control in tokamaks. Such control-
oriented models are identified using a two-time-scale approximation, i.e. considering the 
kinetic plasma dynamics as a singular perturbation of a quasi-static equilibrium, which itself 
is governed by the flux diffusion equation. This technique takes advantage of the large ratio 
between the time scales involved in magnetic and kinetic transport, and is applied here to the 
simultaneous control of the safety factor profile, q(x), and of the poloidal β parameter, βp, on 
EAST. The actuators are the LHCD system at 4.6 GHz, the ICRH system, and optionally the 
plasma surface loop voltage. The models are two-time-scale state-space models identified 
using datasets obtained from fast, open loop nonlinear METIS simulations, with random 
actuator modulations. In closed loop, an observer provides, in real time, an estimate of the 
system states and of the mismatch between measured and predicted outputs, which ensures 
control robustness to model errors. Based on this information, the controller predicts the 
behavior of the system over a given time horizon and computes the optimum actuation, taking 
the actuator constraints into account. For plasma parameters typical of the high-βp steady state 
operation scenarios on EAST, nonlinear closed loop simulations show that various q(x) 
profiles and βp waveforms can be tracked in about 2.5 s and 0.2 s, respectively. 

Keywords: tokamaks, steady state operation scenarios, plasma control, profile control, model-
predictive control, plasma simulation, plasma heating and current drive. 

 

1.	Introduction	

Simultaneous magnetic and kinetic plasma control based 
on extremely simple linear data-driven models identified 
using a two-time-scale approximation has been developed in 
recent years [1]. Ideally, first-principles plasma transport 
models could be preferred as they should have a universal 
domain of validity, but despite their increasing complexity, 

they still depend on many uncertain parameters and their 
accuracy cannot be widely assessed, even in their linearized 
version for real-time control applications. So the idea here is 
to free oneself from the complexity of such models and to 
reduce the control computational cost, at the expense of a 
more restricted applicability (e.g. to a given device, actuator 
set and operation scenario). In the so-called ARTAEMIS 
two-time-scale models and in the associated control 
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algorithms, the fast component of the kinetic plasma 
dynamics, including in particular momentum and thermal 
diffusion, is considered as a singular perturbation of a quasi-
static equilibrium, which itself is governed on the resistive 
timescale by the flux diffusion equation. The system 
identification problem is thus made tractable by the partial 
decoupling of the slow and fast dynamics. Combined with 
linear-quadratic optimal control theory, the effectiveness of 
this approach to simultaneously control the plasma poloidal 
flux profile, ψ(x), and the normalized pressure parameter, βN, 
in non-inductive, high-βN discharges was demonstrated 
experimentally on the DIII-D tokamak [2]. Using the same 
approach, simultaneous control of the safety factor profile, 
q(x), and plasma pressure was also achieved in closed loop 
nonlinear plasma transport simulations [3]. However, in such 
simulations the desired steady state q-profiles were obtained 
either much too slowly, or after a large undershoot of the 
safety factor in the plasma core with respect to its target 
value and a damped oscillation. A non-monotonic approach 
of the q-profile to its target profile is not desirable, as it may 
lead to MHD instabilities during the build up of the plasma 
equilibrium.  

In view of upcoming profile control experiments on 
EAST, recent work was therefore dedicated to the 
development of new algorithms combining, for the first time, 
the simplicity of the ARTAEMIS models based on singular 
perturbation theory with model-predictive control (MPC) 
techniques [4]. For the applications presented in this paper, 
the control actuators are: off-axis lower hybrid current drive 
(LHCD) power at 4.6 GHz, central ion cyclotron resonance 
heating (ICRH) power at 33 MHz and, optionally, the plasma 
surface loop voltage, Vsurf. The goal is to control the q-profile 
and the poloidal β parameter, βp, in a high-βp fully non-
inductive operation scenario. It was already shown earlier for 
several other tokamaks [1-3] that two-time-scale models can 
satisfactorily approximate the coupled response of the 
magnetic and kinetic plasma parameters and profiles to 
relatively large random variations of the heating and current 
drive actuators available on a particular device, in a given 
operation scenario. Such models have therefore been easily 
identified for EAST by applying the ARTAEMIS system 
identification procedure [1] to simulated data obtained from 
the nonlinear METIS plasma simulator [5], with random 
open loop actuator modulations. A new ARTAEMIS MPC 
controller has been synthesized and coupled with the METIS 
code for non-linear closed loop control simulations. Then, in 
order to tune the adjustable controller parameters, extensive 
simulations have been performed with various target q-
profiles, and with different βp target waveforms. The 
validation of the new MPC algorithm from these results is 
the main objective of this paper. 

The description of the scenario chosen for the open loop 
METIS simulations and of the linear ARTAEMIS model 

used in the MPC controller for the closed loop simulations 
will be the subject of the next section. Then, in section 3, the 
details of the MPC algorithm will be described. Finally, the 
results of control simulations where the q(x) and βp targets 
have been varied will be presented in sections 4 and 5. 
Examples with flat or monotonic q-profiles, and with 
different βp waveforms will be discussed. 

2.	METIS	simulations	and	ARTAEMIS	semi-empirical	
state	space	models	

The ARTAEMIS model used in the present work 
describes the coupled time evolution of ψ(x,t) = Ψ(x,t) - 
Ψb(t) where x is a normalized radial coordinate defined 
below, Ψ(x,t) is the poloidal magnetic flux profile in Webers 
and Ψb(t) its value at the plasma boundary, of 
ι (x,t) =1 q(x,t) , and of the slow (quasi-static) and fast 
components of βp(t) (βp,S and βp,F, respectively), with βp(t) = 
βp,S(t) + βp,F(t). Details concerning this approximation and the 
identification of a two-time-scale plasma response model 
from experimental or simulated data are given in references 
[1-3]. The general structure of the model is postulated from 
the projection onto radial basis functions (cubic splines) of a 
set of coupled plasma response equations that only depend 
on x and t, and which stem from the linearized flux-averaged 
plasma transport equations. A lumped-parameter, linear time-
invariant, control-oriented model is thus obtained, in which 
all distributed variables and unknown operators reduce to 
finite dimension vectors and matrices. It combines a slow 
dynamic model, which couples ψ and βp, 

!XS (t) = AS ⋅ XS (t)+ BS ⋅US (t) (1)  

ψ(t) =CΨ ⋅ XS (t) (2)  

β p,S (t) =CS ⋅ XS (t)+DS ⋅US (t) (3)  

and a fast dynamic model, 

!XF (t) = AF ⋅ XF (t)+ BF ⋅UF (t) (4)  

β p,F (t) =Cβ ⋅ XF (t) (5)  

where AS and AF are regular matrices with negative 
eigenvalues. The vector U, containing the actuator inputs, is 
also split into a slow and a fast component (U = US + UF). 
The q-profile is controlled through its inverse, 

ι (x,t) = ι(x,t) (2π ) =1 q(x,t)
 

= − ∂ψ(x,t) ∂x⎡⎣ ⎤⎦⋅ ∂Φ(x,t) ∂x⎡⎣ ⎤⎦
−1

(6)  

where Φ(x, t) is the toroidal magnetic flux in Webers, Φmax = 
Φ(x=1) is its value at the plasma boundary, which is assumed 
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constant, and x=(Φ/Φmax)1/2. After linearization around the 
reference plasma equilibrium and projection of ψ(x,t) and of 
ι (x,t) on the radial basis functions, the vector ι (t) can 
therefore be related to the vector ψ(t) through a linear output 
equation, 

ι (t) = Γι ⋅ψ(t) =Cι ⋅ XS (t) (7)  

In order to identify the various matrices in the 
ARTAEMIS model corresponding to the selected operation 
scenario on EAST, a large number of nonlinear simulations 
were performed using the METIS plasma simulator [5] tuned 
for the reference discharge #62946, until a fair agreement 
with experimental data and interpretative TRANSP 
simulation results was obtained. This procedure was 
previously used for DIII-D and is described in reference [3]. 
The resulting datasets were then used in the ARTAEMIS 
system identification algorithm [1-3]. 

The reference scenario around which the linear response 
model was identified was a steady state, fully non-inductive 
single-null H-mode discharge, at a toroidal magnetic field, BT 
= 2.5 T, central electron density, ne0 ≈ 3.5x1019 m-3, and 
plasma current, Ip = 0.42 MA.  The discharge had been 
obtained using LHCD (0.6 MW at 2.45 GHz and 2 MW at 
4.6 GHz), 0.32 MW of ICRH at 33 MHz and 0.3 MW of 
ECRH (electron cyclotron resonance heating) at 140 GHz. 
The transition to H-mode occurred at 3.1 s with an H-factor, 
H98(y,2) ~ 1.1. The steady state poloidal β and internal 
inductance parameters were βp = 1.3 and li = 1.2, 
respectively, and the q-profile exhibited a small negative 
shear in the plasma core, with a minimum q around 1.5 and 
q0 ~ 2 on axis. The plasma parameter profiles are obtained 
from EFIT magnetic equilibrium reconstructions, which are 
available in real-time using magnetic and kinetic 
measurements, including interfero-polarimetry data from the 
POINT diagnostic. Two important parameters characterizing 
the identified models are the largest (negative) eigenvalues of 
AS and AF, found as -1.19 and -24.8 s-1, which correspond to 
time constants τS = 0.840 s and τF = 0.040 s for the resistive 
(slow model) and thermal (fast model) diffusion timescales, 
respectively. 

3.	State	observer,	model	errors	and	MPC	controller	
design	

In order to make the controller robust to model 
uncertainties, the identified model is augmented with an 
output disturbance model, which is used to estimate the 
mismatch between measured and predicted outputs in steady 
state [6]. Thus, at each time step, an observer provides a new 
estimate of the evolving system states and of the steady state 
errors, and the controller uses the augmented model with 
constant errors to predict the behavior of the system over a 

future time horizon. In its continuous time version1, the 
augmented model reads: 

!XS (t) = AS ⋅ XS (t)+ BS ⋅US (t) (8)  
!XF (t) = AF ⋅ XF (t)+ BF ⋅UF (t) (9)  

!dι (t) = 0 (10)  

!dβ (t) = 0 (11)  

ι (t) =Cι ⋅ XS (t)+ dι (t) (12)  

β p (t) =CS ⋅ XS (t)+DS ⋅US (t)+Cβ ⋅ XF (t)+ dβ (t) (13)  

where dι(t) and dβ(t) are disturbance vectors representing the 
errors on ι (t)  and βp(t), respectively, US(t) is obtained 
through a simple low-pass filter and UF(t) = U(t) - US(t). The 
filter cutoff frequency, ffilt = 1/τfilt, is chosen during the 
model identification and is such that τF << τfilt << τS. The 
filter states that allow US(t) and UF(t) to be computed in the 
observer at time t are transmitted to the controller with the 
estimated system states and disturbances and with the real-
time measurements of the controlled variables, ιm(t)  and 

βp,m(t). 
The state and disturbance estimator is a classical 

Luenberger observer based on the augmented system above, 
and is designed as follows: 

!̂XS (t) = AS ⋅ X̂ S (t)+ BS ⋅US (t)+ K11 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  
+K12 ⋅ −β p,m(t)+CS ⋅ X̂ S (t)+DS ⋅US (t)+Cβ ⋅ X̂ F (t)+ d̂β (t)( ) (14)

 

!̂XF (t) = AF ⋅ X̂ F (t)+ BF ⋅UF (t)+ K21 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  
+K22 ⋅ −β p,m(t)+CS ⋅ X̂ S (t)+DS ⋅US (t)+Cβ ⋅ X̂ F (t)+ d̂β (t)( ) (15)

 

!̂dι (t)
!̂dβ (t)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= K31 ⋅ −ιm(t)+Cι ⋅ X̂ S (t)+ d̂ι (t)( )  

+K32 ⋅ −β p,m(t)+CS ⋅ X̂ S (t)+DS ⋅US (t)+Cβ ⋅ X̂ F (t)+ d̂β (t)( ) (16)

 
where symbols with a hat represent the estimates of the 
system states and disturbances, and the Ki,j matrices are 
chosen so that [K31 K32] is non singular, and the estimator is 
stable and converges rapidly. The observer then tracks the 

																																																													
1 For notation convenience, the systems presented in this paper are 
continuous-time systems. Their conversion to discrete-time systems 
is straightforward and was carried out for the controller 
implementation on the METIS simulator and on EAST. 
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measurements without steady state error ( !̂dι =
!̂dβ = 0 ). In 

addition, by definition, the fast variables UF, XF and βp,F 
vanish in steady state, and the observer therefore satisfies 
(the ∞ symbol indicates steady state): 

X̂ S ,∞ = −AS
−1 ⋅BS ⋅U∞ (17)

 
and 

KS ⋅U∞ =
ιm,∞ − d̂ι,∞

β p,m,∞ − d̂β ,∞

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(18)

 

with 

KS =
−Cι ⋅ AS

−1 ⋅BS
−CS ⋅ AS

−1 ⋅BS +DS

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

(19)  

The controller objective is to make ιm,∞  and βp,m,∞ equal 

to ιtarget  and βp,target, respectively (offset-free control), or as 

close as possible if the dimension of the image space of KS 
spun by the actuators is smaller than the number of 
controlled variables. In order to avoid combinations of 
actuators which would lead to unnecessary actuation cost, a 
singular decomposition of KS will be used and the allowed 
actuator space will be limited to the first nsvd singular vectors 
of KS, i.e. U = Tsvd·V, where nsvd (the dimension of V) is a 
free parameter. At each time step, the MPC algorithm then 
solves a quadratic programming (QP) problem using the 
predicted evolution of the augmented system over a time 
horizon, τH, which is chosen of the order of τS, or smaller. A 
long time horizon may not be meaningful because the 
prediction is made with the assumption that the estimated 
error at time t will be constant between t and t + τH. The QP 
problem to be solved at time t reads as follows: 

For t ≤ t’ ≤ t + τH, find V(t’) that minimizes 

IH (t) = dt '
t
t+τH∫ dx

0
1
∫ µ(x)2 ι (x,t ')− ιtarget (x)

⎡
⎣

⎤
⎦
2⎧

⎨
⎩

⎫
⎬
⎭  

+ dt '
t
t+τH∫ λkin

2 β p (t ')−β p,target
⎡
⎣

⎤
⎦
2⎧

⎨
⎩

⎫
⎬
⎭  

+ dt '
t
t+τH∫ λ fast

2 ⋅ XF (t ')
2 + R ⋅ U (t ')−U∞

⎡⎣ ⎤⎦
2⎧

⎨
⎩

⎫
⎬
⎭
(20)  

with U(t’) = Tsvd·V(t’), subject to the actuator constraints 

L·U(t’) ≤ M, while XS(t’), XF(t’), ι (t ') , βp(t’), dι(t’) and dβ(t’) 
evolve according to the augmented system, with the initial 
conditions: 

XS (t ' = t) = X̂ S (t) , XF (t ' = t) = X̂ F (t) , dι (t ' = t) = d̂ι (t) and 

dβ (t ' = t) = d̂β (t) . In order to keep the computation time 

small, V(t’) is constrained as piecewise constant functions 
with only nnodes independent unknowns equidistributed over 
the horizon τH. The free parameters µ(x) and λkin are weights 
given to the various variables to be controlled,  λfast is a 
weight given to the fast model states that can moderate the 
kinetic control response time, and R is a positive matrix that 
can moderate the controller actuation effort. Once the QP 
problem has been solved, the first sample U(t’=t) is used for 
the actuator commands at time t. The minimized cost 
function penalizes, with appropriate weights, the deviations 
of the predicted controlled outputs from their targets, as well 
as the actuator power if R ≠ 0. Another way to moderate the 
actuation effort and avoid overshoots and oscillations is to 
reshape the targets waveforms in IH(t) so that they approach 

the set-points exponentially from their current values, ιm(t)
and βp,m(t), with a time constant, τtarget, of the order of τS [4]. 

4.	Simulations	of	the	safety	factor	and	βp	control	on	
EAST	

To illustrate and validate the new ARTAEMIS MPC 
control algorithm presented above, we shall now describe the 
results of nonlinear closed loop simulations in a high-βp non-
inductive scenario on EAST. The simulations were 
performed by inserting the METIS code at the output of the 
controller in a MATLAB®/Simulink model, and feeding the 
appropriate METIS outputs back into the controller. Many 
plasma parameters or profiles such as the plasma shape, BT, 
ne0, etc., will be assumed independent of the actuators and 
were fixed external inputs to the code, together with all the 
chosen METIS options for modeling the various physical 
phenomena. The time evolution of these parameters and 
profiles was based on the actual experimental data from shot 
#62946 until t = 3.2 s when control was switched-on. They 
were held constant afterwards. Also, constant feedforward 
LHCD at 2.45 GHz (0.6 MW) and ECRH (0.3 MW) were 
used in all simulations, as in the reference shot. For t ≥ 3.2 s, 
at each time step with a sampling time of 20 ms, the 4.6 GHz 
LHCD and 33 MHz ICRH actuator powers were prescribed 
by the controller and the evolution of all the plasma 
parameters and profiles that depend on the injected power 
(e.g. Ip, Vsurf, li, βp, Ψ(x, t), q(x, t), temperature profiles, etc.) 
was simulated. The controller filter cutoff and the number of 
nodes during the horizon were chosen as τfilt = 0.2s and 
nnodes = 2, respectively, and have been unchanged for all the 
simulations presented below. The constraint matrices L and 
M were defined as to bound the 4.6 GHz LHCD power to 0 ≤ 
PLHCD ≤ 3 MW and the ICRH power to 0 ≤ PICRH ≤ 1.5 MW. 
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All the simulations presented in this paper were performed 
in the current control mode in which the surface loop voltage 
is used to track a given Ip waveform, as in the reference 
discharge. When the plasma state is relatively close to the 
required equilibrium, the controller can also be used in the 
voltage control mode where Vsurf can either be fixed to zero 
for non-inductive operation, or be used as a profile control 
actuator in addition to LHCD and ICRH. The plasma current 
is then allowed to float within some bounds, but it is 
regulated through the control of the safety factor across the 
entire plasma cross-section (0 ≤ x ≤ 0.9). 

 

 
 
Figure 1. q0 control with LHCD only. Top: q0(t) (red solid), 
q0,target(t) (red dashed) and qmin(t) (blue) vs time. Middle: βp vs 
time (not controlled). Bottom: 4.6 GHz LHCD actuator power 
(red) and feedforward powers: ICRH (blue) and ECRH plus 
2.45GHz LHCD (magenta). 
 

4.1	Control	of	the	safety	factor	with	LHCD	

The simplest test of the controller is to track a given target 
value of the safety factor at a given normalized radius, using 
the 4.6 GHz LHCD actuator only. In this case, offset-free 
MPC is possible with the controller synthesis described in 
section 3, as was proved in reference [6] when the number of 
controlled variables is equal to the number of actuators or 
smaller. At constant plasma current, the most sensitive area 
to control q(x) is the plasma core, and in particular the 
magnetic axis. An example is displayed on Fig.1 where the 
controller was requested to track subsequently three different 
target values of q0 = q(x=0), namely q0,target = 1.1, 3.5 and 
1.7. The ICRH power was fixed (0.32 MW), and the 
controller parameters were chosen as nsvd = 1 (since there is 
only one actuator), R = 0, τtarget = τH = τS = 0.84 s. The 

weight function, µ(x), was replaced by the Dirac distribution, 
δ(0)=1 and δ(x≠0)=0, and λkin = λfast = 0 since there is no 
kinetic control. Fig.1 also shows the time evolution of the 
minimum q(x) across the plasma and of βp. The tracking of 
the different q0 targets in the time intervals 3.2s ≤ t ≤ 7.1s, 
7.2s ≤ t ≤ 13.1s and 13.2s ≤ t ≤ 18s, respectively, is 
performed in about 2 to 3 s, i.e. a few resistive times, and 
without steady state offset. The time evolution of the 
minimum q-value (top frame, blue trace) indicates that the 
second q0 target yields a q-profile with a strong negative 
shear in the plasma core (minimum value qmin = 1.7). The 
bottom frame shows the evolution of the 4.6 GHz LHCD 
power requested by the controller and of the constant 
feedforward ICRH, ECRH and 2.45 GHz LH powers. 

 

 
 
Figure 2. q(x) control with µ(x)=1 for 0 ≤ x ≤ 0.5 and with LHCD 
only. Achieved q(x) at t=3.2s (black), 7.1s (magenta), 13.1s (red 
solid), and 18s (blue solid). Target profiles are constant during 
these intervals (diamond symbols). Dashed lines are profiles 
achieved with q0 control only (see Fig.1). 
 

Distributed control of the q-profile can also be performed 
using piecewise linear weight functions, µ(x), defined and 
equal to 0 or 1 at the radial knots of the basis functions, xk = 
0, 0.1, 0.2, …1. In this case, genuine offset-free control 
cannot be sought but the controller is designed to achieve a 
least-square minimization of the radially integrated error 
signals, as can be seen in the definition of the cost function 
IH(t). When Ip is fixed, there is no need to control the safety 
factor in the outer edge of the plasma. However, it is 
important to select target profiles that are accessible (or 
nearly accessible) with the available actuators so that the 
least-square approach is meaningful. In practice such profiles 
can be obtained offline from open loop simulations using a 
plasma simulator such as METIS, or using more 
sophisticated models. For comparison with the previous case, 
an example is shown in Fig.2 with three different q-profile 

1

2

3

4

q 0, q
m

in

0

1

2

p

5 10 15
Time (s)

0

1

2

Po
w

er
 (M

W
)

 PICRH

 PLHCD

 PECRH + P2.45GHz

0 0.2 0.4 0.6 0.8 1
Normalized radius

0

1

2

3

4

5

6

Sa
fe

ty
 fa

ct
or

, q
 (x

)
q = 3

q = 2
q = 3/2
q = 1



Nuclear	Fusion	XX	(XXXX)	XXXXXX	 D.	Moreau	et	al		

	 6	 	
	

targets having the same values as in Fig.1 but with µ(xk) = 1 
for 0 ≤ xk ≤ 0.5. The target q-profiles were chosen from 
METIS simulations with powers different from the reference 
discharge, and are represented by diamond symbols. The 
other controller parameters, constraints and feedforward 
powers were the same as for the previous example. The q-
profile at the start of control (t = 3.2s) is shown by the black 
curve on Fig.2. The first target profile was a monotonic 
profile with q0 = qmin = 1.1 (represented by magenta 
diamonds), and was tracked for 3.2s ≤ t ≤ 7.1s. The profile 
represented by the magenta line is the achieved q-profile at t 
= 7.1s, in steady state. It is achieved with no offset, showing 
that the chosen target is consistent with the family of plasma 
equilibriums that can be obtained in this scenario with the 
available feedback and feedforward actuators. At this time, 
the target profile is suddenly changed into the negative shear 
safety factor profile with q0 = 3.5 and qmin = 1.7 (red 
diamonds) until t = 13.1s when the target profile is changed 
again to the weak shear profile with q0 = 1.7 and qmin = 1.6 
(blue diamonds). The controller behaves very similarly as in 
Fig.1, but with a small steady state offset on axis, which is 
compensated by a better tracking of the target profile up to 
x=0.5 (including the region of minimum q). The solid red 
and blue lines are the profiles achieved at t = 13.1 s and t = 
18s, respectively. For comparison, the dashed lines on Fig.2 
represent the profiles achieved in the previous case, i.e. with 
q0 control only, at the same times. 

 

 
 
Figure 3. Distributed q(x) control and slow βp control with LHCD 
and ICRH. Top: q0(t) (red solid, the dotted red line is from discrete 
q0 and βp control for comparison), q0,target(t) (red dashed) and 
qmin(t) (blue). Middle: βp(t) (red solid) and βp,target(t) (blue). 
Bottom: LHCD (red) and ICRH (blue) actuator powers. βp control 
starts at 4.2s while q(x) control starts at 3.2s. The dash-dot lines 
are from fast βp control. 

4.2	Simultaneous	control	of	q(x)	and	βp	with	LHCD	and	
ICRH	based	on	the	slow	ARTAEMIS	model	

The two-time-scale ARTAEMIS models describe the fast 
kinetic dynamics of the plasma as a singular perturbation of a 
quasi-static equilibrium, which is slowly evolving due to the 
coupling between the kinetic and the magnetic plasma 
parameters. Local dependences of the plasma transport 
coefficients on the safety factor profile or on the magnetic 
shear are well-known examples of the various causes that 
lead to such coupled dynamics. When attempting to control 
simultaneously the safety factor profile and some other 
kinetic plasma parameters (e.g. βp or βN), it may be 
unnecessary or even sometimes undesirable to request 
changes of such parameters on a timescale that is too short 
compared to the resistive evolution of the plasma 
equilibrium. Restricting the model to the zero-order 
equations in the singular perturbation analysis, i.e. to the 
slow model, will result in a slower kinetic control, but it may 
preserve a quasi-static equilibrium relationship between 
various plasma parameters during the transient evolution 
from an initial plasma state to the desired high performance 
steady state. Among other advantages of neglecting the fast 
model altogether is that it reduces the dimension of the QP 
problem to be solved and therefore alleviates the real-time 
computations at each time step. This would be mostly 
beneficial for the control of kinetic profiles (e.g. temperature, 
rotation) rather than of a scalar like βp. 

 

 
 
Figure 4. Combined distributed q(x) control and slow βp control 
with LHCD and ICRH. Achieved q(x) at t=3.2s (black), 5.1s 
(magenta), 7.1s (blue), 9.1s (cyan), 9.6 (green) and 12.5s (red). 
These times are shown on Fig.3 by vertical lines. The target q-
profile is constant (diamond symbols) and µ(x)=1 for 0 ≤ x ≤ 
0.5. βp control starts at 4.2s while q(x) control starts at 3.2s. 

 
An example of the simultaneous control of q(x) and βp on 
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depicted on Fig.3 and Fig.4. Four different βp targets were 
tracked, βp,target = 1.2 from t = 4.2s to t = 5.1s, and βp,target = 
2, 1.5 and 2.5 for 5.2s ≤ t ≤ 7.1s, 7.2s ≤ t ≤ 9.1s and t ≥ 9.2s, 
respectively. The q-profile is controlled from t = 3.2s and 
between x = 0 and x = 0.5 (µ(x) = 1 for 0 ≤ x ≤ 0.5), and the 
target q-profile is constant while βp changes. As before, R = 
0 and λfast = 0 (no fast model), but here τtarget = τH = τS/2 = 
0.42 s and, for t ≥ 4.2s, nsvd = 2 and λkin = 1 (normalized 
variables are used in the controller). Fig.3 shows the time 
evolution of q0, qmin, the target and achieved βp, and the 
actuator powers. Fig.4 shows the achieved q-profiles at the 
start of the control phase and at the end of each constant 
βp,target phases, and the target q-profile. An additional profile 
is shown at t = 9.6s, which corresponds to the largest 
transient q0 offset during the transition to the βp = 2.5 plasma 
equilibrium (Fig.3). As mentioned before, steady state offsets 
generally remain with distributed q-profile control due to the 
insufficient number of actuators. The q-profile offset is 
mostly apparent near the magnetic axis where the safety 
factor is highly sensitive to any perturbation. The steady state 
q0 offset disappears when only q0 and βp are controlled, as 
shown by the dotted red trace on Fig.3 (top frame) at t = 7.1s, 
9.1s and 12.5s. 

 

 
 
Figure 5. Combined q0 and fast βp control from t=3.2s with LHCD 
and ICRH. Top: q0(t) (red solid, the dotted red line is from 
distributed q(x) and fast βp control for comparison), q0,target(t) (red 
dashed) and qmin(t) (blue). Middle: βp(t) (red solid) and βp,target(t) 
(blue). Bottom: LHCD (red) and ICRH (blue) powers. The dash-
dot lines are from slow βp control. 

 

 
 
Figure 6. Combined q0 and fast βp control with LHCD and ICRH. 
Achieved profiles at t=3.2s (black), 5s (green), 9s (blue), 13s 
(magenta), and 18s (red). These times are shown on Fig.5 by 
vertical lines. The dotted lines are from distributed q(x) and fast βp 
control for comparison. The q(x) targets (diamond symbols) are 
held constant during these time intervals. βp and q(x) control starts 
at 3.2s. 

4.3	Faster	control	of	βp	using	the	two-time-scale	
ARTAEMIS	model	

To illustrate the combination of MPC with singularly 
perturbed dynamic models with two time scales, we describe 
now the simultaneous control of q(x) and βp including the 
first-order perturbation of the identified model, i.e. the fast 
model and states, in the control algorithm. The effect can be 
seen on Fig.3 where we have superimposed the result of the 
fast βp control using λfast = 1.5 (dash-dot lines). Another 
example shown on Fig.5 and Fig.6 combines a βp ramp 
request for 3.2s ≤ t ≤ 5s up to βp = 2.5, either with fast 
control (λfast = 3, solid lines) or without (dashed lines), 
followed by the tracking of three different q-profiles at 
constant βp, either with distributed q(x) control (dotted lines) 
or with discrete q0 control (solid lines). Here τH = τS = 0.84 s, 
τtarget = 2τS = 1.68s, nsvd = 2 and λkin = 1. The first q-profile 
target has q0 = 2.1 and qmin = 1.6, the second one has q0 = qmin 

= 1.4, and the last one has q0 = 3.5 and qmin = 1.7 with a large 
negative magnetic shear over a broad region of the plasma (x 
≤ 0.32). Note that increasing τtarget results in a smooth 
approach to the various q0 targets (Fig.5). 

Finally, on Fig.7 and Fig.8, combinations of four different 
values of βp,target = 1.5, 2, 2.5 and 3, and three different q-
profiles are tracked successively using the same distributed 
q(x) control as before, with τH = τS = 0.84 s, τtarget = 2τS = 
1.68s, nsvd = 2 and λkin = 1. Again, one can compare the 
results with fast control (λfast = 3, solid lines) and without 
(dashed lines). The q-profile targets are all reached in about 
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2.5 s (≈ 3 resistive times) and the actuators adjust to reach 
the various βp targets within about 0.2s (≈ 5τF) with fast 
control and 0.4-0.5s (≥ 10τF or 0.5τS) with slow control, 
while restoring the desired q-profile shape after each large βp 
perturbation. 

 

 
 
Figure 7. Distributed q(x) and fast βp control with LHCD and 
ICRH. Top: q0(t) (red solid), q0,target(t) (red dashed) and qmin(t) 
(blue). Middle: βp(t) (red solid) and βp,target(t) (blue). Bottom: 
LHCD (red) and ICRH (blue) actuator powers. The dash-dot lines 
are from slow βp control. 

 

 
 
Figure 8. Distributed q(x) and fast βp control with LHCD and 
ICRH. Achieved q(x) at t=3.2s (black), 5s (yellow), 9s (green), 13s 
(cyan), 17s (blue), 21s (magenta), 25s (red). These times are 
shown on Fig.7 by vertical lines. βp and q-profile targets (diamond 
symbols) are held constant during these time intervals. µ(x)=1 for 
0 ≤ x ≤ 0.5. 

5.	Conclusions	and	perspectives	

For complex systems with multiple time scales such as 
tokamak plasmas, model-predictive control can be combined 
with singular perturbation theory to synthesize fast 
controllers based on extremely simple, data-driven, two-
time-scale models. This has been demonstrated for the first 
time in this work through extensive non-linear simulations 
for the high βp operation scenario in the EAST tokamak. 
Simultaneous control of the plasma safety factor profile and 
of the poloidal β parameter was achieved using LHCD and 
ICRH actuators. The offset-free MPC algorithm used here 
includes a real-time estimation of the model errors. This 
yields a more accurate and more robust performance than the 
linear-quadratic optimal control used previously with similar 
models (see Ref. [3]). Incorporating feedforward control, 
better robustness to perturbations, and possibly real-time 
adaptive model identification can lead to further 
improvements. The technique should now be assessed 
experimentally on EAST. It can also be easily extended to 
the simultaneous control of the q-profile and other kinetic 
variables or profiles (e.g. βN, ion or electron temperature, 
plasma rotation, or fusion reaction rate in burning plasmas). 

Acknowledgements	

This work has been carried out within the framework of 
the EUROfusion Consortium and has received funding from 
the Euratom research and training programme 2014-2018 
under grant agreement No 633053. The views and opinions 
expressed herein do not necessarily reflect those of the 
European Commission. 

References	

[1] Moreau D., Mazon D., Walker, M.L. et al., 2015 Nucl. Fusion 
51 063009 

[2] Moreau D., Walker M.L., Ferron J.R. et al., 2013 Nucl. Fusion 
53 063020 

[3] Moreau D., Artaud J.F., Ferron J.R. et al., 2015 Nucl. Fusion 55 
063011 

[4] Maciejowski J.M., Predictive Control with Constraints, Pearson 
Education Limited, Harlow, England (2002) 

[5] Artaud J.F., Imbeaux F., Garcia J. et al., 2018 Nucl. Fusion 58 
105001 

[6] Borrelli F., Morari M., “Offset free model predictive control”, 
46th IEEE Conference on Decision and Control (Proc. IEEE 
Conf. New Orleans, USA, 2007), WePI19.2 

 
 

0.5
1

1.5
2

2.5

q 0, q
m

in

0

1

2

3

p

5 10 15 20
Time (s)

0

1

2

Po
w

er
 (M

W
)

 PICRH

 PLHCD

9 9.2 9.4
2

2.5
3

0 0.2 0.4 0.6 0.8 1
Normalized radius

0

1

2

3

4

5

6

Sa
fe

ty
 fa

ct
or

, q
 (x

)

q = 3

q = 2
q = 3/2
q = 1


