
WPMST1-PR(18) 21377

E. Zoni et al.

Solving hyperbolic-elliptic problems on
singular mapped disk-like domains with
the method of characteristics and spline

finite elements

Preprint of Paper to be submitted for publication in
Journal of Computational Physics

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.

This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked

Solving hyperbolic-elliptic problems on singular mapped disk-like domains with
the method of characteristics and spline finite elements

Edoardo Zonia,b,∗, Yaman Güçlüa

aMax-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, Garching 85748, Germany
bTechnische Universität München, Zentrum Mathematik, Boltzmannstraße 3, Garching 85748, Germany

A R T I C L E I N F O

Keywords: Vlasov, Poisson,
semi-Lagrangian, smooth, spline,
finite element

A B S T R A C T

A common strategy in the numerical solution of partial differential equations
is to define a uniform discretization of a tensor-product multi-dimensional log-
ical domain, which is mapped onto a physical domain through a given coordi-
nate transformation. By extending this concept to a multi-patch setting, simple
and efficient numerical algorithms can be employed on relatively complex ge-
ometries. The main drawback of such an approach is the inherent difficulty in
dealing with singularities of the coordinate transformation.

This work suggests a comprehensive strategy for dealing with the most
common situation of disk-like domains with a singularity at a unique pole,
where one edge of the rectangular logical domain is collapsed into one point
of the physical domain (e.g. a circle). We present robust numerical algorithms
for the solution of Vlasov-like hyperbolic equations coupled to Poisson-like
elliptic equations in such geometries. We describe a semi-Lagrangian advec-
tion solver that employs a new set of coordinates to integrate the characteristic
equations in the whole domain, including the pole, and a finite element Poisson
solver based on C1 smooth polar splines (Toshniwal et al., 2017 [1]). The 2D
guiding-center model for magnetized plasmas, mathematically equivalent to a
vorticity model for incompressible inviscid Euler fluids, is then considered to
set up numerical test cases coupling the two solvers. The numerical methods
presented show high-order convergence in the space discretization parameters,
uniformly across the whole domain, with no order reduction effects due to the
singularity. Dedicated examples show that the techniques described can be
applied straightforwardly also in the presence of point charges (or, similarly,
point-like vortices) within the context of particle-in-cell methods.

∗Corresponding author: edoardo.zoni@ipp.mpg.de

November 19, 2018

2

1. Introduction

This work is concerned with the solution of coupled hyperbolic and elliptic partial differential equations on disk-

like domains with a singularity at a unique pole, where one edge of the rectangular logical domain Λ = [0, 1]× [0, 2π)

is collapsed into one point of the physical Cartesian domain Ω via a given coordinate mapping F : Λ 7→ Ω [1]. Our

2D working model is the guiding-center model [2, 3]
∂ρ

∂t
− Ey ∂ρ

∂x
+ Ex ∂ρ

∂y
= 0

−∆φ = ρ
, (1)

with homogeneous Dirichlet boundary conditions φ(∂Ω) = 0. This is tipically used to describe low-density non-

neutral plasmas [4, 5, 6, 7] in a uniform magnetic field B = ẑ, where ẑ is a unit vector perpendicular to the (x, y)

plane, ρ = ρ(t, x, y) is the density distribution function of the plasma charges, φ = φ(t, x, y) is the electric scalar

potential associated to the electric field E = (Ex, Ey) = −∇φ = (−∂φ/∂x,−∂φ/∂y) created by the plasma charges

and ∆ represents the Laplace operator. The 2D velocity field (−Ey, Ex), responsible for the transport of the density

distribution function ρ in (1), represents the E × B drift velocity. System (1) is also mathematically equivalent to the

2D Euler equations for incompressible inviscid fluids, with −ρ representing the vorticity of the fluid and φ a stream

function. Therefore, (1) has been also used in the fluid dynamics community for a variety of studies related to vortex

dynamics and turbulence [8, 9, 10, 11]. The simplest domain we will consider is a circle, which corresponds typically

to a 2D cut of some cylindrical 3D physical setup. Examples of more complex domains will be discussed in section 2

and may arise naturally in the context of plasma models as 2D cuts of complex-shaped toroidal devices (e.g. D-shaped

Tokamaks [12]).

Regarding the numerical solution of (1), we are interested in solving the hyperbolic part (transport advection

equation for ρ) with the method of characteristics and the elliptic part (Poisson’s equation for φ) with a finite element

method based on B-splines. More precisely, the advection equation is solved by computing ρ on a grid following

the characteristics backward in time for a single time step and interpolating at the foot of the characteristics using

the grid values of ρ at the previous time step. This method is referred to as backward semi-Lagrangian method and

was originally investigated in the context of the vorticity advection equation for the barotropic forecasting model by

[13] and later for Vlasov-like transport equations by [14, 15, 16, 17, 18, 19]. One advantage of the semi-Lagrangian

method is avoiding any limitation related to the Courant-Friedrichs-Lewy (CFL) condition [20] in the region close to

the pole, where the grid cells become smaller and smaller. As already pointed out, this scheme works on a structured

logical mesh, which is usually constructed to be conformal to the level curves of some given function (in the physical

applications, they may correspond to magnetic field flux surfaces for plasma models or level curves of the stream

function for fluid models). Since the method is based on the integration of the characteristics backward in time, the

choice of coordinates to be used while performing this integration turns out to be crucial: such coordinates need to

be well-defined in the whole domain, including the pole. The choice we propose, described in details in section 4,

meets this requirement without affecting the robustness, efficiency and accuracy of the numerical scheme. The same

coordinates can be used as well for the forward time integration of the characteristic trajectories of point charges or

point-like vortices.

On the other hand, the elliptic Poisson equation is solved with a finite element method based on B-splines. Again,

to avoid problems in the region close to the pole, we require the advection field (−Ey, Ex) to be at least continuous

there. This means that φ, from which Ex and Ey are obtained by means of derivatives, has to be at least of class C1 in

the neighborhood of the pole (no such issues occur anywhere else far from the pole). For this purpose, we follow the

approach recently developed by [1] to define a set of globally C1 smooth spline basis functions on singular disk-like

domains. A higher degree of smoothness, consistent with the spline degree, may be imposed as well, if needed.

This paper is organized as follows. Sections 2 and 3 define the types of singular mapped disk-like domains we are

interested in and their discrete representation. Sections 4 and 5 describe our hyperbolic advection solver and elliptic

Poisson solver, including some numerical tests. Section 6 describes the coupling of the two solvers and discusses

a variety of test cases in both circular and more complex geometries. A short appendix describes in details the

implementation of the finite element Poisson solver.

2. Singular mapped disk-like domains

We consider polar domains defined by mappings with a singularity at a unique pole. We denote by (s, θ) ∈

[0, 1] × [0, 2π) the logical coordinates on the polar domain and by (x, y) ∈ Ω the physical Cartesian coordinates. In

the following, two analytical examples of such mappings are provided. The first mapping is defined by [21]

x(s, θ) = x̄ + (1 − κ)s cos θ − ∆ s2 ,

y(s, θ) = ȳ + (1 + κ)s sin θ ,
(2)

where κ and ∆ represent the elongation and the Shafranov shift, respectively. The mapping collapses to the pole (x̄, ȳ)

for s = 0: (x(0, θ), y(0, θ)) = (x̄, ȳ) for all θ. The Jacobian matrix of the mapping reads

J =

[
(1 − κ) cos θ − 2 ∆ s (κ − 1)s sin θ

(1 + κ) sin θ (1 + κ)s cos θ

]
,

with determinant

det J = s(1 + κ)[(1 − κ) − 2 ∆ s cos θ] .

The Jacobian determinant vanishes at the pole. Therefore, the Jacobian matrix of the inverse transformation becomes

singular there:

J−1 =
1

s(1 + κ)[(1 − κ) − 2 ∆ s cos θ]

[
(1 + κ)s cos θ (1 − κ)s sin θ
−(1 + κ) sin θ (1 − κ) cos θ − 2 ∆ s

]
.

The second mapping is defined by [22]

x(s, θ) =
1
ε

(
1 −

√
1 + ε(ε + 2 s cos θ)

)
,

y(s, θ) = ȳ +
e ξ s sin θ

2 −
√

1 + ε(ε + 2 s cos θ)
= ȳ +

e ξ s sin θ
1 + ε x(s, θ)

,
(3)

4

where ε and e represent the inverse aspect ratio and the ellipticity, respectively, and ξ is defined as ξ = 1/
√

1 − ε2/4.

The mapping collapses to the pole ((1−
√

1 + ε2)/ε, ȳ) for s = 0: (x(0, θ), y(0, θ)) = ((1−
√

1 + ε2)/ε, ȳ) for all θ. The

Jacobian matrix of the mapping reads

J =
e ξ

1 + ε x(s, θ)


−

1 + ε x(s, θ)
1 − ε x(s, θ)

cos θ
e ξ

1 + ε x(s, θ)
1 − ε x(s, θ)

s sin θ
e ξ

sin θ +
ε s sin θ cos θ
1 − ε2 x2(s, θ)

s cos θ −
ε s2 sin2 θ

1 − ε2 x2(s, θ)


with determinant

det J =
e ξ s

ε2 x2(s, θ) − 1
.

Again, the Jacobian determinant vanishes at the pole. Therefore, the Jacobian matrix of the inverse transformation

becomes singular there:

J−1 =
ε2 x2(s, θ) − 1

e ξ s


s cos θ −

ε s2 sin2 θ

1 − ε2 x2(s, θ)
−

1 + ε x(s, θ)
1 − ε x(s, θ)

s sin θ
e ξ

− sin θ −
ε s sin θ cos θ
1 − ε2 x2(s, θ)

−
1 + ε x(s, θ)
1 − ε x(s, θ)

cos θ
e ξ


In all examples considered in this work the mapping (2) is set up with the parameters shown in Table 1 and the

0.5 0.0 0.5
x

1.0

0.5

0.0

0.5

1.0

y

1.0 0.5 0.0 0.5 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Fig. 1: Singular disk-like domains: mapping (2) (left) and (3) (right). Lines originating from the pole are isolines at constant θ, lines concentric
around the pole are isolines at constant s.

mapping (3) is set up with the parameters shown in Table 2. Figure 1 shows the physical domains obtained with these

mappings.

x̄ ȳ κ ∆

0.08 0 0.3 0.2

Table 1: Parameters used to initialize the mapping (2).

ȳ ε e

0 0.3 1.4

Table 2: Parameters used to initialize the mapping (3).

3. Discrete spline mappings

In practical applications it may not be possible to have an analytical description of the mapping that represents the

physical domain of interest, as for the examples discussed above. Moreover, as already pointed out in the introduction,

we are going to solve the elliptic equation in (1) with a finite element method based on a set of globally C1 smooth

spline basis functions, obtained from standard tensor-product splines by imposing appropriate constraints [1]. Our

numerical method is therefore based on a machinery inherently defined at the discrete level. Hence, we need to have

a discrete counterpart of the analytical singular mapped disk-like domains discussed in the previous section.

We start by defining a 2D tensor-product spline basis {Bi1i2 (s, θ) = Bs
i1

(s)Bθi2 (θ)}i1,i2 , with i1 = 1, . . . , n1 and

i2 = 1, . . . , n2, of B-splines of degree p1 with open knots in s ∈ [0, 1] and 2π-periodic B-splines of degree p2 in

θ ∈ [0, 2π). The domain along each direction is decomposed into 1D intervals, also referred to as cells, whose limit

points are known as break points. More precisely, the domain along s is decomposed into nc
1 = n1 − p1 cells with

nb
1 = nc

1 + 1 = n1 − p1 + 1 break points s1, . . . , snb
1

and the domain along θ is decomposed into nc
2 = n2 cells with

nb
2 = nc

2 + 1 = n2 + 1 break points θ1, . . . , θnb
2
. From the break points, we define a knot sequence of nb

1 + 2p1 open knots

along s,

s1 , . . . , s1︸ ︷︷ ︸
p1

, s1 , . . . , snb
1
, snb

1
, . . . , snb

1︸ ︷︷ ︸
p1

,

and a knot sequence of nb
2 + 2p2 periodic knots along θ,

θnb
2−p2+1 , . . . , θnb

2︸ ︷︷ ︸
p2

, θ1 , . . . , θnb
2
, θ1 , . . . , θp2︸ ︷︷ ︸

p2

.

Due to the open knot sequence, the basis functions Bs
i1

(s) satisfy the following properties:

Bs
1 (0) = 1 , Bs

i1 (0) = 0 for 2 ≤ i1 ≤ n1 ,

Bs
n1

(1) = 1 , Bs
i1 (1) = 0 for 1 ≤ i1 ≤ n1 − 1 .

(4)

Moreover, their derivatives satisfy the following property:

(Bs
1)′(0) = −(Bs

2)′(0) , 0 , (Bs
i1)′(0) = 0 for 3 ≤ i1 ≤ n1 .

6

We now define a discrete counterpart of our analytical singular mapped disk-like domains based on this spline

basis. We denote such discrete mappings by F : [0, 1] × [0, 2π) 7→ Ω and define them as F(s, θ) = (x(s, θ), y(s, θ)),

with

x(s, θ) = x̄ Bs
1(s) +

n1∑
i1=2

n2∑
i2=1

cx
i1i2 Bs

i1 (s)Bθi2 (θ) ,

y(s, θ) = ȳ Bs
1(s) +

n1∑
i1=2

n2∑
i2=1

cy
i1i2

Bs
i1 (s)Bθi2 (θ) ,

where (x̄, ȳ) represents the pole. The control points (cx
i1i2
, cy

i1i2
) are obtained by interpolating the corresponding an-

alytical mapping on the so-called Greville points [23, 24], which are averages of the knots generally lying near the

parameter values corresponding to a maximum of the basis functions:

ξi =
1
p

(ti+1 + ti+2 + · · · + ti+p) ,

where we denoted by (t0, t1, . . . , tm) the knots associated to a generic spline basis of degree p. We note that all the

control points at i1 = 1 are equal: (cx
1i2
, cy

1i2
) = (x̄, ȳ). Moreover, (4) implies that (x(0, θ), y(0, θ)) = (x̄, ȳ) for all θ:

the whole s = 0 line in the logical domain collapses to the pole and the mapping takes a unique value there. From a

geometric point of view, a uniform rectangular logical domain is mapped through the mapping F to a polar domain,

with one edge collapsing to the pole. F is such that Ck smooth splines in the logical domain remain Ck smooth

everywhere except at the pole when mapped onto the polar domain.

4. Semi-Lagrangian advection solver

We now consider the 2D hyperbolic advection equation in (1)

∂ρ

∂t
− Ey ∂ρ

∂x
+ Ex ∂ρ

∂y
= 0 (5)

and denote by A = (Ax, Ay) = (−Ey, Ex) the 2D advection fields, for simplicity. These are assumed to be well-

behaved on the physical Cartesian domain Ω. However, at the discrete level they are represented by splines and

need therefore to be evaluated in the logical coordinates (s, θ). We now discuss the optimal choice of coordinates

for the backward tracing of the characteristic trajectories associated to (5). It is natural to think of integrating the

characteristic equations in either Cartesian or logical coordinates. Therefore, we first discuss these two choices in the

following. The characteristic equations in Cartesian coordinates (x, y) readẋ

ẏ

 =

Ax(t, s(x, y), θ(x, y)
)

Ay(t, s(x, y), θ(x, y)
) .

This is well defined everywhere in the domain, but becomes computationally expensive if the mapping (s, θ) 7→ (x, y)

is not easy to invert. The characteristic equations in logical coordinates (s, θ) are[
ṡ
θ̇

]
= J−1

[
Ax(t, s, θ)
Ay(t, s, θ)

]
, (6)

where J−1 is the Jacobian of the inverse mapping,

J−1 =
JC

det J
,

with JC being the transpose of the cofactor matrix of J. The characteristic equations (6) are not defined at the pole,

because J−1 is singular there. We then suggest to introduce new coordinates (X,Y),[
X
Y

]
=

[
s cos θ
s sin θ

]
,

which we name pseudo-Cartesian coordinates (Figure 2). For a circular mapping, pseudo-Cartesian coordinates

reduce to the standard Cartesian ones. The Jacobian of the new transformation (s, θ) 7→ (X,Y) is simply

J =

[
cos θ −s sin θ
sin θ s cos θ

]
.

The characteristic equations in pseudo-Cartesian coordinates (X,Y) areẊ
Ẏ

 = (JJ−1)−1

Ax(t, s(X,Y), θ(X,Y)
)

Ay(t, s(X,Y), θ(X,Y)
) . (7)

We first note that the mapping (s, θ) 7→ (X,Y) is easier to invert than the original mapping (s, θ) 7→ (x, y):[
s
θ

]
=

[√
X2 + Y2

atan2(Y, X)

]
,

where atan2(Y, X) returns the principal value of the argument function applied to the complex number X + iY in the

range (−π, π] (which must then be shifted appropriately to the domain interval [0, 2π)). Moreover, the product of

Jacobian matrices appearing in (7) turns out to be well-behaved in the whole logical domain, including the pole. More

precisely, the singularity coming from the inverse Jacobian

J−1 =


cos θ sin θ

−
1
s

sin θ
1
s

cos θ


when s→ 0 is cancelled by the matrix elements of J. The product JJ−1 in general looks like

JJ−1 =


∂x
∂s

cos θ −
1
s
∂x
∂θ

sin θ
∂x
∂s

sin θ +
1
s
∂x
∂θ

cos θ

∂y
∂s

cos θ −
1
s
∂y
∂θ

sin θ
∂y
∂s

sin θ +
1
s
∂y
∂θ

cos θ

 . (8)

From an analytical point of view, (8) holds for all values of s except at the pole s = 0. From a numerical point of

view, (8) holds for all values of s sufficiently far from the pole, as far as the factor 1/s does not become too large.

Therefore, we assume that (8) holds for s ≥ ε, for a given small ε. For s = 0 we note that the products
1
s
∂x
∂θ

and
1
s
∂y
∂θ

turn out to be well-behaved. More precisely, we have

lim
s→0

∂x
∂θ

= 0 and lim
s→0

∂y
∂θ

= 0 ,

8

1.0 0.5 0.0 0.5
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

X

Y

1.0 0.5 0.0 0.5 1.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

X

Y

Fig. 2: Pseudo-Cartesian coordinates: the light-grey grids represent the grids in the pseudo-Cartesian coordinates (X,Y) for the mappings (2) (left)
and (3) (right), initialized with the parameters in Tables 1 and 2, respectively.

and, expanding in s around the pole,
∂x
∂θ

= s
∂2x
∂s ∂θ

(0, θ) + O(s2) ,

∂y
∂θ

= s
∂2y
∂s ∂θ

(0, θ) + O(s2) ,

we obtain

lim
s→0

1
s
∂x
∂θ

=
∂2x
∂s ∂θ

(0, θ) ,

lim
s→0

1
s
∂y
∂θ

=
∂2y
∂s ∂θ

(0, θ) .

Therefore, the matrix elements of JJ−1 at the pole take the values

JJ−1(0, θ) =


∂x
∂s

(0, θ) cos θ −
∂2x
∂s ∂θ

(0, θ) sin θ
∂x
∂s

(0, θ) sin θ +
∂2x
∂s ∂θ

(0, θ) cos θ

∂y
∂s

(0, θ) cos θ −
∂2y
∂s ∂θ

(0, θ) sin θ
∂y
∂s

(0, θ) sin θ +
∂2y
∂s ∂θ

(0, θ) cos θ

 .
For the mapping (2) we get

(JJ−1)−1(0, θ) =


1 + κ

1 − κ2 0

0
1 − κ
1 − κ2

 ,
and for the mapping (3)

(JJ−1)−1(0, θ) =


−
√

1 + ε2 0

0
2 −
√

1 + ε2

e ξ

 .

To connect the two approaches in a smooth way, for 0 < s < ε we interpolate linearly the value at the pole and the

value at s = ε:

(JJ−1)−1(s, θ) =

(
1 −

s
ε

)
(JJ−1)−1(0, θ) +

s
ε

(JJ−1)−1(ε, θ) .

The parameter ε can be chosen arbitrarily small, as far as it is consistent with the overall numerical accuracy of our

scheme. For the numerical tests discussed in this work we always set ε = 10−12.

4.1. Numerical tests

We test the advection solver for a 2D rotating advection field

Ax = ω(yc − y) ,

Ay = ω(x − xc) ,

with ω = 2π and (xc, yc) = (0.25, 0.0). For a given time step ∆t, the analytical flow field reads

x(t + ∆t) = xc + (x(t) − xc) cos(ω∆t) − (y(t) − yc) sin(ω∆t) ,

y(t + ∆t) = yc + (x(t) − xc) sin(ω∆t) + (y(t) − yc) cos(ω∆t) .

The numerical solution is compared to the analytical one obtained from this flow field. The initial condition is set to

a superposition of cosine bells with elliptical cross sections:

ρ(t = 0, x, y) =
1
2

[
G
(
r1(x, y)

)
+ G(r2(x, y)

)]
,

with G(r) defined by

G(r) =

cos
(
πr
2a

)4
r < a

0 elsewhere
,

and r1(x, y) and r2(x, y) defined by

r1(x, y) =

√
(x − x0)2 + 8(y − y0)2 ,

r2(x, y) =

√
8(x − x0)2 + (y − y0)2 .

Standard tensor-product spline interpolation with no smoothness constraints at the pole is employed. We test the

solver on the mapping (3) initialized with the parameters in Table 2 and with a = 0.3.

A measure of the error is obtained by taking the maximum in time of the spatial L2-norm of the numerical error,

i.e. the discrepancy between the numerical solution and the analytical one at each mesh location:

E = max
t

√∫∫
dx dy [ρ(t, x, y) − ρex(t, x, y)]2 . (9)

Tabel 3 shows the convergence of the scheme while decreasing the time step and keeping the CFL number constant

using a 3rd order Runge-Kutta method for the time integration of the characteristics and cubic splines.

We note that there are no order reduction effects due to the singularity. Standard tensor-product spline interpolation

with no smoothness constraints at the pole turns out to work fine in the presence of analytical advection fields, provided

our choice of coordinates for the time integration of the characteristic trajectories.

10

1.0 0.5 0.0 0.5 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y
(xc, yc)

 (x, y)

0.002

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 3: Numerical test of the advection solver: contour plot of the density ρ at a given time.

Time step ∆t Mesh Ns × Nθ Error (L2) Order Error (L∞) Order

0.1 64 × 128 3.20 × 10−2 3.53 × 10−1

0.1/2 128 × 256 4.06 × 10−3 2.98 4.34 × 10−2 3.02

0.1/4 256 × 512 5.08 × 10−4 3.00 5.09 × 10−3 3.09

0.1/8 512 × 1024 6.37 × 10−5 3.00 6.13 × 10−4 3.05

0.1/16 1024 × 2048 7.97 × 10−6 3.00 7.52 × 10−5 3.03

Table 3: Convergence of the advection solver using a 3rd order Runge-Kutta method for the integration of the characteristics and cubic splines.

5. Finite element Poisson solver

We now come to the 2D elliptic Poisson equation in (1)

− ∆φ = ρ . (10)

As already pointed out, we are going to solve this equation with a finite element method based on B-splines. Following

an isogeometric analysis approach, the same spline basis used to construct the discrete spline mappings will be used

as a basis for our finite element method. We recall that we want the potential φ returned by our elliptic solver to be

at least of class C1 in the neighborhood of the pole, in order to then get by means of derivatives advection fields for

the transport of ρ which are at least continuous at the pole. This is achieved by imposing appropriate C1 smoothness

constraints on the spline basis while solving the linear system obtained from the weak form of (10). A systematic

approach to define a set of globally C1 smooth spline basis functions on singular disk-like domains was developed in

[1] and we will now recall its basic ideas in the following ([1] actually suggested a more general procedure valid also

if a higher degree of smoothness is required).

5.1. C1 smooth polar basis

The idea is to impose the C0 and C1 requirements by imposing appropriate constraints on the degrees of freedom

corresponding to i1 = 1, 2 for all i2. More precisely, the basis functions corresponding to these degrees of freedom are

replaced by three basis functions, properly defined as linear combinations of the existing ones. In order to guarantee

the properties of partition of unity and positivity, [1] suggests to use barycentric coordinates to construct these linear

combinations. Taking a triangle enclosing the pole and the first row of control points (cx
2 i2
, cy

2 i2
), with vertices

V1 = (x̄ + τ, ȳ) ,

V2 =

(
x̄ −

τ

2
, ȳ +

√
3

2
τ
)
,

V3 =

(
x̄ −

τ

2
, ȳ −

√
3

2
τ
)
,

with τ given by

τ = max
[
max

i2
(−2(cx

2 i2 − x̄)),max
i2

((cx
2 i2 − x̄) −

√
3(cy

2 i2
− ȳ)),max

i2
((cx

2 i2 − x̄) +
√

3(cy
2 i2
− ȳ))

]
,

we denote by (λ1, λ2, λ3) the barycentric coordinates of any point with respect to the vertices of this triangle:

λ1(x, y) =
1
3

+
2
3

1
τ

(x − x̄) ,

λ2(x, y) =
1
3
−

1
3

1
τ

(x − x̄) +

√
3

3
1
τ

(y − ȳ) ,

λ3(x, y) =
1
3
−

1
3

1
τ

(x − x̄) −

√
3

3
1
τ

(y − ȳ) .

Then, the three new basis functions are defined as

Bl(s, θ) =

2∑
i1=1

n2∑
i2=1

el
i1i2 Bs

i1 (s)Bθi2 (θ) ,

with l = 1, 2, 3, and the coefficients el
1 i2

and el
2 i2

given by

el
1 i2 = λl(x̄, ȳ) , el

2 i2 = λl(cx
2 i2 , c

y
2 i2

) .

5.2. Finite element solver

We now consider a more general version of Poisson’s equation (10) including a finite set of point charges, denoted

with the label l, of charges ql and positions (xl, yl):

− ∆φ = ρ +
∑

l

ql δ(x − xl)δ(y − yl) . (11)

Moreover, we assume that φ satisfies homogeneous Dirichlet boundary conditions at the boundary of the Cartesian

domain Ω, namely φ(∂Ω) = 0. The weak form of (11) is∫
Ω

dΩ∇φ · ∇B j1 j2 =

∫
Ω

dΩ ρ B j1 j2 +
∑

l

qlB j1 j2 (sl, θl) ∀ j1, j2 ,

12

with (sl, θl) = F−1(xl, yl). We first expand φ and ρ on the basis functions Bi1i2 as

φ =

n1∑
i1=1

n2∑
i2=1

φi1i2 Bi1i2 , ρ =

n1∑
i1=1

n2∑
i2=1

ρi1i2 Bi1i2 ,

obtaining

n1∑
i1=1

n2∑
i2=1

φi1i2

∫
Ω

dΩ∇Bi1i2 · ∇B j1 j2 =

n1∑
i1=1

n2∑
i2=1

ρi1i2

∫
Ω

dΩ Bi1i2 B j1 j2 +
∑

l

qlB j1 j2 (sl, θl) ∀ j1, j2 .

We now introduce the stiffness and mass tensors

S i1i2 j1 j2 =

∫
Ω

dΩ∇B j1 j2 · ∇Bi1i2 ,

Mi1i2 j1 j2 =

∫
Ω

dΩ B j1 j2 Bi1i2 ,

and rewrite our equation as

n1∑
i1=1

n2∑
i2=1

S j1 j2i1i2 φi1i2 =

n1∑
i1=1

n2∑
i2=1

M j1 j2i1i2 ρi1i2 +
∑

l

qlB j1 j2 (sl, θl) ∀ j1, j2 . (12)

For each finite element we introduce 1 + p1 Gauss-Legendre quadrature points and weights along s and 1 + p2 Gauss-

Legendre quadrature points and weights along θ:

(s1,ws
1), . . . , (s1+p1 ,w

s
1+p1

) ,

(θ1,wθ
1), . . . , (θ1+p2 ,w

θ
1+p2

) ,
(13)

and perform the integrations above on each finite element (superscript e) in the logical domain as

S e
i1i2 j1 j2 =

1+p1∑
q1=1

1+p2∑
q2=1

√
det G(sq1 , θq2) ws

q1
wθ

q2


∂

∂s
B j1 j2 (sq1 , θq2)

∂

∂θ
B j1 j2 (sq1 , θq2)


T

G−1(sq1 , θq2)


∂

∂s
Bi1i2 (sq1 , θq2)

∂

∂θ
Bi1i2 (sq1 , θq2)

 ,
Me

i1i2 j1 j2 =

1+p1∑
q1=1

1+p2∑
q2=1

√
det G(sq1 , θq2) ws

q1
wθ

q2
B j1 j2 (sq1 , θq2) Bi1i2 (sq1 , θq2) ,

where G is the metric matrix. Equation (12) can then be written in matrix form by using a multi-index notation. More

precisely, defining the multi-indices I = (i1, i2) and J = (j1, j2) we write (12) as∑
I

S JI φI =
∑

I

MJI ρI +
∑

l

qlBJ(sl, θl) ∀J ,

or in the more compact matrix form

S · φ =M · ρ +
∑

l

ql b(sl, θl) , (14)

where we introduced the matrices S and M with elements S JI and MJI , respectively, the vectors φ, ρ and b(sl, θl)

with elements φI , ρI and BJ(sl, θl), respectively, and the · product denoting the usual matrix-vector multiplication.

The C1 smoothness constraint is imposed by projecting the matrices and vectors in (14) onto the sub-space of C1

smooth polar splines by applying

P =

(
L 0
0 I

)
,

where L contains the barycentric coordinates of the control points. More precisely, the stiffness and mass matrices S

andM are projected to S∗ = PT SP andM∗ = PT MP, respectively, and the vectors φ, ρ and b(sl, θl) are projected

to φ∗ = PT φ, ρ∗ = PT ρ and b∗(sl, θl) = PT b(sl, θl), respectively. Therefore, (14) reads

S∗ · φ∗ =M∗ · ρ∗ +
∑

l

ql b∗(sl, θl) . (15)

The linear system (15) is then solved with an iterative conjugate gradient method [25, 26] and the resulting solution

is projected back onto the tensor-product space. More details about the implementation of the solver are discussed in

Appendix A.

5.3. Numerical tests

We first test the Poisson solver on a circular mapping looking for a solution φex of the form

φex(x, y) = (1 − x2 − y2) cos(2πx) sin(2πy) ,

which satisfies homogeneous Dirichlet boundary conditions at s =
√

x2 + y2 = 1 and corresponds to a density ρ of

the form

ρ(x, y) = 4
[
2π2(1 − x2 − y2) + 1

]
cos(2πx) sin(2πy) − 8π

[
x sin(2πx) sin(2πy) − y cos(2πx) cos(2πy)

]
.

A measure of the error is obtained by computing the spatial L2-norm of the numerical error, i.e. the discrepancy

between the numerical solution φ(x, y) and the exact one φex(x, y) at each mesh location:

E =

√∫∫
dx dy [φ(x, y) − φex(x, y)]2 .

Table 4 shows the convergence of the solver while increasing the mesh size using cubic splines.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Numerical solution: (x, y)

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Numerical error: ex

4

3

2

1

0

1

2

3

4×10 8

Fig. 4: Numerical test of the Poisson solver on a circular mapping: solution (left) and numerical error (right).

14

Mesh Ns × Nθ Error (L2) Order Error (L∞) Order

32 × 64 7.78 × 10−6 1.24 × 10−5

64 × 128 3.91 × 10−7 4.31 5.95 × 10−7 4.38

128 × 256 2.22 × 10−8 4.14 3.36 × 10−8 4.15

256 × 512 1.33 × 10−9 4.06 2.00 × 10−9 4.07

512 × 1024 8.12 × 10−11 4.03 1.22 × 10−10 4.04

Table 4: Convergence of the Poisson solver on a circular mapping using cubic splines.

0.5 0.0 0.5
x

1.0

0.5

0.0

0.5

1.0

y

Numerical solution: (x, y)

0.25

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.5 0.0 0.5
x

1.0

0.5

0.0

0.5

1.0

y

Numerical error: ex

8

6

4

2

0

2

4

6

8×10 9

Fig. 5: Numerical test of the Poisson solver on the mapping (2) initialized with the parameters in Table 1: solution (left) and numerical error (right).

We then test the solver on the mapping (2) looking for a separable solution φex of the form

φex(s, θ) = s2(1 − s2) cos(θ) ,

which satisfies homogeneous Dirichlet boundary conditions at s = 1. Table 5 shows again the convergence of the

solver while increasing the mesh size using cubic splines.

5.4. Evaluation of the electric field

The advection fields for the transport of ρ are obtained from the potential φ by means of derivatives. This section

suggests a strategy to evaluate the gradient of φ while taking into account the singularity at the pole. We first denote

by φ̂ = φ ◦ F the composition of φ with the mapping (i.e. φ̂ must be evaluated in the logical domain) and φ̂i1i2 the

coefficients of its spline representation:

φ̂(s, θ) =

n1∑
i1=1

n2∑
i2=1

φ̂i1i2 Bs
i1 (s)Bθi2 (θ) .

Mesh Ns × Nθ Error (L2) Order Error (L∞) Order

32 × 64 8.17 × 10−7 2.18 × 10−6

64 × 128 4.71 × 10−8 4.12 1.25 × 10−7 4.12

128 × 256 2.85 × 10−9 4.05 7.55 × 10−9 4.05

256 × 512 1.75 × 10−10 4.03 4.65 × 10−10 4.02

512 × 1024 1.09 × 10−11 4.01 2.88 × 10−11 4.01

Table 5: Convergence of the Poisson solver on the mapping (2) initialized with the parameters in Table 1 using cubic splines.

The components of its gradient in the logical domain ∇̂φ̂ =

(
∂φ̂

∂s
,
∂φ̂

∂θ

)T
are given by

∂φ̂

∂s
(s, θ) =

n1∑
i1=1

n2∑
i2=1

φ̂i1i2 Bs′
i1 (s)Bθi2 (θ) ,

∂φ̂

∂θ
(s, θ) =

n1∑
i1=1

n2∑
i2=1

φ̂i1i2 Bs
i1 (s)Bθ′i2 (θ) .

Their value at the pole s = 0 is

∂φ̂

∂s
(0, θ) =

n1∑
i1=1

n2∑
i2=1

φ̂i1i2 Bs′
i1 (0)Bθi2 (θ) = Bs′

1 (0)
n2∑

i2=1

(φ̂1 i2 − φ̂2 i2)Bθi2 (θ) ,

∂φ̂

∂θ
(0, θ) =

n1∑
i1=1

n2∑
i2=1

φ̂i1i2 Bs
i1 (0)Bθ′i2 (θ) .

The physical Cartesian components of the gradient are then obtained from the ones in logical coordinates through the

inverse of the Jacobian matrix:

∇φ(s, θ) = (J−1)T (s, θ) ∇̂φ̂(s, θ) . (16)

From an analytical point of view, (16) holds for all values of s except at the pole s = 0, where the inverse Jacobian is

not defined. From a numerical point of view, (16) holds for all values of s sufficiently far from the pole, as far as the

inverse Jacobian does not become too large. Therefore, we assume that (16) holds for s ≥ ε, for a given small ε. For

s = 0 all the information is contained in the partial derivative of φ̂ with respect to s, while the partial derivative with

respect to θ goes to zero. The partial derivative with respect to s takes a different value for each value of θ. Recalling

that a partial derivative has the geometrical meaning of a directional derivative along a tangent-basis vector, and given

that φ is of class C1, the idea is to combine two given values corresponding to two different values of θ and extract

from them the physical Cartesian components of the gradient at the pole. The two chosen values of θ must correspond

to linearly independent directions, so that from

∂φ̂

∂s
(0, θ1) = ∇φ · es = (∇φ)x

∂x
∂s

(0, θ1) + (∇φ)y
∂y
∂s

(0, θ1) ,

∂φ̂

∂s
(0, θ2) = ∇φ · es = (∇φ)x

∂x
∂s

(0, θ2) + (∇φ)y
∂y
∂s

(0, θ2) ,

16

the two components (∇φ)x and (∇φ)y can be obtained. Each possible couple of linearly indepentent values of θ should

produce the same result. To connect the two approaches in a smooth way, for 0 < s < ε we interpolate linearly the

value at the pole and the value at s = ε:

∇φ(s, θ) =

(
1 −

s
ε

)
∇φ(0, θ) +

s
ε
∇φ(ε, θ) .

The parameter ε can be chosen arbitrarily small, as far as it is consistent with the overall numerical accuracy of our

scheme. For the numerical tests discussed in this work we always set ε = 10−12.

6. Self-consistent test case: guiding-center model

We now address the solution of the 2D guiding-center model
∂ρ

∂t
− Ey ∂ρ

∂x
+ Ex ∂ρ

∂y
= 0

−∆φ = ρ
, (17)

which couples the hyperbolic transport equation and Poisson’s equation in a self-consistent model. Physical quantities

conserved by the model are the total mass and energy

M(t) =

∫
dx dy ρ(t, x, y) ,

W(t) =

∫
dx dy |E(t, x, y)|2 .

(18)

These integrals are computed using the Gauss-Legendre quadrature points (13) on each finite element (superscript e)

as for the assembly of the stiffness and mass matrices in the finite element solution of Poisson’s equation:

Me(t) =

1+p1∑
q1=1

1+p2∑
q2=1

√
det G(sq1 , θq2) ws

q1
wθ

q2
ρ(t, sq1 , θq2) ,

We(t) =

1+p1∑
q1=1

1+p2∑
q2=1

√
det G(sq1 , θq2) ws

q1
wθ

q2
|E(t, sq1 , θq2)|2 .

(19)

We denote the relative errors for the conservation of the invariants in (18) as EM and EW, respectively:

EM(t) =
M(0) −M(t)
M(0)

,

EW(t) =
E(0) − E(t)
E(0)

.

(20)

Before describing the actual numerical tests we performed on this model, it is necessary to briefly discuss our time-

advancing strategy and how we deal with the problem of defining an equilibrium density on complex mappings while

initializing our simulations.

6.1. Time integration

The time integrator we decided to use is the second order explicit integrator described in [27]. The strategy is

based on a predictor-corrector procedure, where high order temporal accuracy is built up from lower order predictions.

Considering the backward tracing of the characteristic trajectories for the density distribution ρ, denoting by X the 2D

grid coordinates and by A the 2D advection fields, a first order prediction is given by

X(1) = X − A(X)∆t ,

where ∆t is the chosen time step. From X(1) an intermediate density ρ(1) can be computed by means of interpolation

and intermediate advection fields A(1) can be computed from ρ(1) by solving Poisson’s equation. Given the first order

prediction, a second order accurate scheme is given by

X(2) = X −
1
2

[
A(X(1)) + A(1)(X)

]
∆t .

In the presence of point charges (or point-like vortices), this second order scheme reduces to Heun’s method (also

known as “explicit trapezoidal rule”):

X(1) = X + A(X)∆t ,

X(2) = X +
1
2

[
A(X) + A(1)(X(1))

]
∆t .

The time step should be small enough to resolve the background phase-space flow field and its variation in time.

6.2. Numerical equilibria

As already pointed out, defining an equilibrium density ρ and a corresponding equilibrium potential φ for the

system (17) becomes non-trivial on complex mappings. In the case of circular mappings, any axisymmetric density

function ρ(s, θ) = ρ̄(s), independent of the angle variable θ, turns out to be an equilibrium for the transport equation

in (17). For more complex mappings we follow a numerical procedure suggested by [28] and references therein to

compute an equilibrium couple (ρ, φ). The equilibrium is determined by the eigenvalue problem of finding (φ, σ) ∈

H1×R such that −∆φ = σ f (φ), with given f such that f ′(φ) , 0 in some limited domain Ω, with boundary conditions

such that the Poisson equation −∆φ = ρ, with a fixed source ρ, is well-posed (we consider here only homogeneous

Dirichlet boundary conditions φ(∂Ω) = 0). Given initial data (φ0, σ0) we solve for i ≥ 1

ρi = σi−1 f (φi−1) ,

φ∗i = −∆−1ρi ,

φi = c φ∗i ,

σi = cσi−1 ,

(21)

iterating over i. The normalization parameter c can be set by choosing either a maximum value φ̄ for φ or a maximum

value ρ̄ for ρ. In the first case c reads c = φ̄/||φ∗i ||∞, while in the second case it turns out to satisfy the equation

c f (c ||φ∗i ||∞) = ρ̄/σi−1. The eigenvalue problem does not have a unique solution, but the algorithm is supposed to

converge to the ground state, i.e. the eigenstate with minimum eigenvalue. Figure 6 illustrates for example the

equilibrium obtained in this way for f (φ) = φ2 with ρ̄ = 1 on a circular mapping and on the mapping (3) initialized

with the parameters in Table 2.

18

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Equilibrium density

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.5 0.0 0.5 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Equilibrium density

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 6: Numerical equilibrium density ρ obtained with f (φ) = φ2 and ρ̄ = 1 on a circular mapping (left) and on the mapping (3) (right) initialized
with the parameters in Table 2.

6.3. Numerical test: diocotron instability

As a first test we investigate the evolution of the diocotron instability in circular geometry. From a physical point

of view, this corresponds to studying a non-neutral plasma in cylindrical geometry, where the plasma particles are

confined radially by a uniform axial magnetic field with a cylindrical conducting wall located at the outer boundary.

Following [4], we consider an initial density profile ρ(t = 0, r, θ) corresponding to an annular layer, namely

ρ(t = 0, r, θ) =


1 + ε cos(mθ) r− ≤ r ≤ r+

0 elsewhere
, (22)

where we denote the logical coordinate s by r, as it corresponds precisely to a standard radial coordinate. A uniform

equilibrium density is perturbed with a radial-independent perturbation with azimuthal mode number m and amplitude

ε. Following the linear dispersion analysis in [4], we obtain the dispersion relation for the complex eigenfrequency ω(
ω

ωD

)2
− bm

ω

ωD
+ cm = 0 , (23)

where ωD is the diocotron frequency (ωD = 1/2 in our units), and bm and cm are given by

bm = m
[
1 −

(r−

r+

)2]
+ (r+)2m − (r−)2m ,

cm = m
[
1 −

(r−

r+

)2][
1 − (r−)2m

]
−

[
1 −

(r−

r+

)2m][
1 − (r+)2m

]
.

If 4cm > b2
m, then the oscillation frequencies resulting from (23) form complex conjugate pairs. The solution with

Imω > 0 corresponds to the diocotron instability and describes how rapidly the fluctuating potential grows, as we

write the full electric potential as the sum of an equilibrium time-indepedent potential φ0(r) and a fluctuating compo-

nent δφ(t, r, θ):

φ(t, r, θ) = φ0(r) + δφ(t, r, θ)ei(mθ−ωt) .

The quantity of interest in this regard is the L2-norm of the fluctuating potential

||φ(t, r, θ) − φ0(r)||L2 =

√∫
dx dy

[
φ(t, r, θ) − φ0(r)

]2
,

where the integration is again performed on the Gauss-Legendre quadrature points (13). In order to represent the initial

density profile in the space of tensor-product splines we modify (22) by a radial smoothing to avoid discontinuities:

ρ(t = 0, r, θ) =


[
1 + ε cos(mθ)

]
exp

[
−

(r − r̄
d

)p]
r− ≤ r ≤ r+

0 elsewhere
, (24)

with r̄ := (r+ + r−)/2 and d = (r+ − r−)/2. If the smoothing layer is small enough, we can still rely on the analytical

result obtained for the dispersion relation in the case of the sharp annular layer (22). The numerical results have been

verified against the analytical dispersion relation for a perturbation with azimuthal mode number m = 9 and amplitude

ε = 10−4. The numerical growth rate is in good agreement with the analytical one, Imω = 0.17963095941144, for

20 . t . 50. This time interval corresponds to the linear growth phase. At time t ≈ 50, the system enters its non-

linear phase. The simulation is run with Nr × Nθ = 128 × 256 and ∆t = 0.002. Additional parameters defining the

initial condition (24) have been set to r− = 0.45, r+ = 0.50 and p = 50. Numerical results are illustrated in Figures 7

and 8. For the conservation of mass and energy we get

max
t∈[0,70]

|EM(t)| ≈ 1.6 × 10−4 , max
t∈[0,70]

|EW(t)| ≈ 2.1 × 10−4 .

The time evolution of the relative errors on these conserved quantities is shown in Figure 9.

6.4. Numerical test: vortex merger

In the context of incompressible inviscid 2D Euler fluids, we can observe the merger of two macroscopic vortices

by setting up initial conditions qualitatively similar to those described in [5]. We consider an equilibrium obtained

with the numerical procedure (21) with f (φ) = φ with φ̄ = 1 and add on top of that Gaussian perturbations of the form

δρ = ε exp
[
−

(x − x0)2 + (y − y0)2

2σ2

]
,

with amplitude ε = 10−4, width σ = 0.08 and centered in (x0, y0) = (0.08,−0.14) and (x0, y0) = (−0.08, 0.14),

respectively. The initial perturbation and its evolution in time are shown in Figure 10. The simulation is run with

Nr × Nθ = 128 × 256 and time step ∆t = 0.001. For the conservation of mass and energy we get

max
t∈[0,10]

|EM(t)| ≈ 1.1 × 10−7 , max
t∈[0,10]

|EW(t)| ≈ 1.3 × 10−7 .

The time evolution of the relative errors on these conserved quantities is shown in Figure 11.

6.5. Numerical test: point-like vortex dynamics

We also investigate the dynamics of point-like vortices (or point charges) on a non-uniform equilibrium, following

the discussion in [11]. Our aim is to show that the numerical approaches suggested in this work can be applied

straightforwardly in the context of particle-in-cell methods. The examples discussed here can be considered as limit

20

0 10 20 30 40 50 60 70
t

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

||
0||

L2

Numerical instability (mode m = 9)
Analytical growth rate: Im() 0.18

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Density at t = 0

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Potential at t = 0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8×10 2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Electric field magnitude |E| at t = 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5×10 2

Fig. 7: Numerical simulation of the diocotron instability. From left to right, from top to bottom: L2-norm of the electric potential, contour plots of
density ρ, electric potential φ and electric field magnitude |E| at initial time t = 0.

cases of usual particle-in-cell simulations, as we will include only one single point-like vortex (or point charge) in the

system. Since our strategy turns out to work well for this extreme scenario, we do not expect issues to appear when

dealing with the usual case of large numbers of particles. For a circular mapping, we consider an equilibrium density

of the form

ρ(r) =


1 − 1.25 r r ≤ 0.8

0 r > 0.8
.

Figure 12 shows the local stream lines of the advection field near positive and negative point-like vortices at the initial

time in a rotating frame where the point-like vortices are initially at rest. This is obtained in practice by rotating given

coordinates (x, y) at time t as
x′ = x cos(−ωt) − y sin(−ωt) ,

y′ = x sin(−ωt) + y cos(−ωt) ,

where ω = 0.3332 represents the angular velocity of the background. Figure 13 show results for point-like vortices

of intensity q = ±0.0025 at the initial position r = 0.4 and θ = 0, again viewed in a rotating frame (time is here

normalized as T = 0.1668 t). As explained in [11], positive point-like vortices (clumps) drift transverse to the shear

0 10 20 30 40 50 60 70
t

10 10

10 9

10 8

10 7

10 6

10 5

10 4

10 3

||
0||

L2

Numerical instability (mode m = 9)
Analytical growth rate: Im() 0.18

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Density at t = 50

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Potential at t = 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8×10 2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Electric field magnitude |E| at t = 50

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5×10 2

Fig. 8: Numerical simulation of the diocotron instability. From left to right, from top to bottom: L2-norm of the electric potential, contour plots of
density ρ, electric potential φ and electric field magnitude |E| at time t = 50 (end of the linear phase).

0 10 20 30 40 50 60 70
t

1.7

1.1

0.5

0.1 ×10 4

0 10 20 30 40 50 60 70
t

2.2

1.4

0.6

0.2 ×10 4

Fig. 9: Numerical simulation of the diocotron instability: time evolution of the relative errors on the total mass (left) and energy (right).

flow, up the background vorticity gradient, while negative point-like vortices (holes) drift down the gradient. Figure

14 shows the time evolution of the vortices’ radial position. The simulation is run with Nr × Nθ = 256× 512 and time

step ∆t = 0.005. The time step is chosen small enough to resolve the oscillations due to the self-force experienced by

the point-like vortices. Special techniques may be used to reduce self-force effects on non-uniform meshes (or even

unstructured meshes) [29], but they will not be considered in this work. Our numerical results are in agreement, both

22

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Vorticity at t = 0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2×10 4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Vorticity at t = 3.5

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2×10 4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Vorticity at t = 6.5

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2×10 4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Vorticity at t = 10

1.2

1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2×10 4

Fig. 10: Vortex merger on a circular mapping: contour plot of the vorticity at different times (numerical equilibrium has been subtracted).

0 2 4 6 8 10
t

1.2

0.5

0.2 ×10 7

0 2 4 6 8 10
t

1.5

0.7

0.1 ×10 7

Fig. 11: Vortex merger on a circular mapping: time evolution of the relative errors on the total mass (left) and energy (right).

qualitatively and quantitatively, with the ones discussed in [11]. For the conservation of mass and energy we get

max
T∈[0,5.838]

|EM(T)| ≈ 6.9 × 10−6 , max
T∈[0,5.838]

|EW(T)| ≈ 8.4 × 10−3

for the positive point-like vortex and

max
T∈[0,5.838]

|EM(T)| ≈ 6.9 × 10−6 , max
T∈[0,5.838]

|EW(T)| ≈ 7.3 × 10−3

for the negative point-like vortex. The time evolution of the relative errors on these conserved quantities is shown

in Figure 15. Similar simulations on the mapping (3), initialized with an equilibrium obtained with the numerical

0.30 0.35 0.40 0.45 0.50
x

0.10

0.05

0.00

0.05

0.10

y

Stream lines of advection field (clump)

0.30 0.35 0.40 0.45 0.50
x

0.10

0.05

0.00

0.05

0.10

y

Stream lines of advection field (hole)

Fig. 12: Local stream lines of the advection field near positive (clump) and negative (hole) point-like vortices in a rotating frame.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Density at T = 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Density at T = 5.838

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Density at T = 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Density at T = 5.838

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 13: Dynamics of positive (top) and negative (bottom) point-like vortices on a circular mapping: contour plot of the density at different times
in a rotating frame.

24

0 1 2 3 4 5 6
T

0.28

0.30

0.32

0.34

0.36

0.38

0.40

r

Time evolution of radial position (clump)

0 1 2 3 4 5 6
T

0.40

0.41

0.42

0.43

0.44

0.45

r

Time evolution of radial position (hole)

Fig. 14: Time evolution of the radial position of positive (clump) and negative (hole) point-like vortices.

0 1 2 3 4 5 6
T

2

1

4

7 ×10 6

0 1 2 3 4 5 6
T

1

4

9 ×10 3

0 1 2 3 4 5 6
T

2

1

4

7 ×10 6

0 1 2 3 4 5 6
T

8

5

2

1 ×10 3

Fig. 15: Dynamics of positive (top) and negative (bottom) point-like vortices on a circular mapping: time evolution of the relative errors on the
total mass (left) and energy (right).

procedure (21) with f (φ) = φ2 and ρ̄ = 1, show the same qualitative behavior for clumps and holes (Figure 16). The

final time t = 35 corresponds to the normalized time T = 5.838 considered before. For the conservation of mass and

energy we get

max
t∈[0,35]

|EM(t)| ≈ 1.6 × 10−5 , max
t∈[0,35]

|EW(t)| ≈ 6.9 × 10−3

for the positive point-like vortex and

max
t∈[0,35]

|EM(t)| ≈ 3.6 × 10−6 , max
t∈[0,35]

|EW(t)| ≈ 5.7 × 10−3

for the negative point-like vortex. The time evolution of the relative errors on these conserved quantities is shown in

Figure 17.

7. Conclusions and outlook

A comprehensive strategy for solving systems of coupled hyperbolic and elliptic partial differential equations

as the 2D example (1) on mapped disk-like domains with a singularity at a unique pole, where one edge of the

1.0 0.5 0.0 0.5 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Density at t = 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.5 0.0 0.5 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Density at t = 35

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.5 0.0 0.5 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Density at t = 0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0 0.5 0.0 0.5 1.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Density at t = 35

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 16: Dynamics of positive (top) and negative (bottom) point-like vortices on the mapping (3) initialized with the parameters in Table 2: contour
plot of the density at different times.

0 5 10 15 20 25 30 35
t

1.75

0.75

0.25 ×10 5

0 5 10 15 20 25 30 35
t

1

3

7 ×10 3

0 5 10 15 20 25 30 35
t

4.0

1.5

1.0 ×10 6

0 5 10 15 20 25 30 35
t

6.0

2.5

1.0 ×10 3

Fig. 17: Dynamics of positive (top) and negative (bottom) point-like vortices on the mapping (3) initialized with the parameters in Table 2: time
evolution of the relative errors on the total mass (left) and energy (right).

rectangular logical domain is collapsed into one point of the physical domain, has been presented. A new set of

coordinates, named pseudo-Cartesian coordinates, has been suggested for the time integration of the characteristics of

26

the hyperbolic equation of the system. Such coordinates turn out to be well-defined everywhere in the computational

domain, including the pole, and provide a straightforward and relatively simple solution for dealing with singularities

while solving advection problems. They reduce to standard Cartesian coordinates in the case of a circular mapping.

Moreover, a finite element Poisson solver based on the recently developed arbitrarily smooth polar splines [1] has

been implemented and tested. In the present work only C1 smoothness was imposed at the pole, but a higher degree of

smoothness, consistent with the spline degree, may be considered as well, if needed. Several test cases in the simplest

case of a circular domain and in more complex geometries have been carried out; the numerical methods presented

here show overall high-order convergence in the space discretization parameters, uniformly across the computational

domain, including the pole. Moreover, the techniques discussed can be easily used in the context of particle-in-cell

methods and are not necessarily restricted to semi-Lagrangian schemes, which were here discussed in more details.

The range of physical problems that can be approached following the ideas presented in this work includes Vlasov-

Poisson fully kinetic models as well as drift-kinetic and gyrokinetic models for magnetized plasmas, and turbulence

models for incompressible inviscid Euler fluids in the context of fluid dynamics.

Acknowledgments

We would like to thank Eric Sonnendrücker for introducing us to the idea of using C1 smooth spline basis functions

and for constantly supporting this work, Ahmed Ratnani and Jalal Lakhlili for helping us with the implementation

of the finite element Poisson solver and the choice of the data structure to be used for that purpose, Omar Maj and

Camilla Bressan for helping us with the problem of finding numerical equilibria on complex mappings. This work has

been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom

research and training program 2014-2018 under grant agreement No 633053. The views and opinions expressed

herein do not necessarily reflect those of the European Commission.

Appendix A. Finite element Poisson solver: implementation

The code implementation is described using Fortran notation for multi-dimensional arrays, namely lower and up-

per bounds for a given index can be set arbitrarily (default lower bound, if not specified, is 1). As already pointed

out, the linear system resulting from the finite element discretization of Poisson’s equation is solved with an iterative

conjugate gradient method. Therefore, we are only interested in discussing how we perform matrix-vector multipli-

cations when storing matrices and vectors with the data structure discussed in the following. The stiffness and mass

matrices A and M are stored in the stencil format

A(−p1 : p1,−p2 : p2, 1 : n1, 1 : n2) ,

M(−p1 : p1,−p2 : p2, 1 : n1, 1 : n2) .

The arrays of coefficients u and f are stored in the stencil format

u(1 − p1 : n1 + p1, 1 − p2 : n2 + p2) ,

f (1 − p1 : n1 + p1, 1 − p2 : n2 + p2) .

For given indices i1, i2, k1 and k2 we define

j∗1 = (i1 + k1 − 1) mod (n1) + 1 ,

j∗2 = (i2 + k2 − 1) mod (n2) + 1 .

The matrix-vector multiplication is implemented as follows. Given two stencil vectors x and y and a stencil matrix S ,

we have

y(i1, i2) =

p1∑
k1=−p1

p2∑
k2=−p2

S (k1, k2, i1, i2) x(j∗1, j∗2) ,

with i1 = 1, . . . , n1, i2 = 1, . . . , n2. The buffer values are then filled as

y(1 − p1 : 0, :) = y(1 − p1 + n1 : n1, :) , y(n1 + 1 : n1 + p1, :) = y(1 : p1, :) ,

y(:, 1 − p2 : 0) = y(:, 1 − p2 + n2 : n2) , y(:, n2 + 1 : n2 + p2) = y(:, 1 : p2) .

The C1 projections of the stiffness and mass matrices are stored as block operators composed by the following four

blocks: 
Bdd(1 : 3, 1 : 3) Bsd(1 : 3, 1 : p1, 1 : n2)

Bds(1 : p1, 1 : n2, 1 : 3) Bss(−p1 : p1,−p2 : p2, 1 : n1 − 2, 1 : n2)

 .
The matrix-vector multiplication for the off-diagonal blocks Bsd and Bds is implemented as follows. Given a stencil

vector x and a dense vector y, we have

y(i) =

p1∑
j1=1

n2∑
j2=1

Bsd(i, j1, j2) x(j1, j2) ,

with i = 1, . . . , 3. Given a dense vector x and a stencil vector y, we have

y(i1, i2) =

3∑
j=1

Bds(i1, i2, j) x(j) ,

with i1 = 1, . . . , p1 and i2 = 1, . . . , n2. The buffer values are filled as described above and all remaining values are set

to zero. The block L of the projection matrix containing the barycentric coordinates is also stored with three indices,

namely L(1 : 2, 1 : n2, 1 : 3) given by

L(i1, i2, l) = λl(cx
jk, c

y
jk) ,

with i1 = 1, 2, i2 = 1, . . . , n2, l = 1, . . . , 3, j = (i−1)/n2 +1 and k = (i−1) mod (n2)+1, with i = (i1−1)n2 + i2. Here,

λl(cx
jk, c

y
jk) are the barycentric coordinates evaluated at the spline coefficients cx

jk, c
y
jk (control points) of the spline

mapping. The C1 projections of vectors are stored as block vectors composed by the following two blocks:
Vd(1 : 3)

Vs(1 − p1 : (n1 − 2) + p1, 1 − p2 : n2 + p2)

 .
Given a stencil matrix S , the four blocks of its C1 projection are obtained as follows. The block Bdd is given by

Bdd(i, j) =

2∑
i1=1

n2∑
i2=1

L(i1, i2, i) T (i1, i2, j) ,

28

with i, j = 1, . . . , 3 and T given by

T (i1, i2, l) =

p1∑
k1=−p1

p2∑
k2=−p2

S (k1, k2, i1, i2) L(j∗1, j∗2, l) ,

with i1 = 1, 2, i2 = 1, . . . , n2, l = 1, . . . , 3, provided that j∗1 ≤ 2 (all remaining elements are set to zero). The block Bsd

is given by

Bsd(l, j∗1 − 2, j∗2) =

p1∑
k1=−p1

p2∑
k2=−p2

L(i1, i2, l) S (k1, k2, i1, i2) ,

with i1 = 1, 2, i2 = 1, . . . , n2, l = 1, . . . , 3, provided that j∗1 ≤ 2 + p1 (all remaining elements are set to zero). The

block Bds is given by

Bds(i1 − 2, i2, l) =

p1∑
k1=−p1

p2∑
k2=−p2

S (k1, k2, i1, i2) L(j∗1, j∗2, l) ,

with i1 = 1, . . . , 2 + p1, i2 = 1, . . . , n2, l = 1, . . . , 3, provided that j∗1 ≤ 2 (all remaining elements are set to zero). The

block Bss is given by

Bss(k1, k2, i1, i2) = S (k1, k2, i1 + 2, i2) ,

with i1 = 1, . . . , n1 − 2, i2 = 1, . . . , n2, k1 = −p1, . . . , p1 and k2 = −p2, . . . , p2, provided that j′1 = 2 + j1, with

j1 = (i1 − 1 + k1) mod (n1 − 2) and j′1 = (i1 + 1 + k1) mod (n1) (all remaining elements are set to zero). Given a

stencil vector v, the two blocks of its C1 projection are obtained as follows. The block Vd is given by

Vd(l) =

2∑
i1=1

n2∑
i2=1

L(i1, i2, l) v(i1, i2) ,

with l = 1, . . . , 3. The block Vs is given by

Vs(i1 − 2, i2) = v(i1, i2) ,

with i1 = 3, . . . , n1 and i2 = 1, . . . , n2. The buffer values are set to zero along the s direction and filled applying

periodicity along the θ direction. Homogeneous Dirichlet boundary conditions are imposed by setting

Bss(k1, k2, i1, i2) = 0 ,

with i1 = 1, . . . , n1 − 2, i2 = 1, . . . , n2, k1 = −p1, . . . , p1 and k2 = −p2, . . . , p2, provided that i > (n1 − 3)n2 or

j > (n1−3)n2, with i = (i1−1)n2 + i2 and j = (j1−1)n2 + j2, with j1 = (i1−1+k1) mod (n1−2) and j2 = (i2−1+k2)

mod (n2), and by setting

Vs(n1 − 2, i2) = 0 ,

with i2 = 1, . . . , n2.

References

[1] Deepesh Toshniwal, Hendrik Speleers, Ren R. Hiemstra, and Thomas J.R. Hughes. Multi-degree smooth polar splines: A framework for
geometric modeling and isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 316:1005–1061, 2017. doi:
10.1016/j.cma.2016.11.009.

[2] T. M. O’Neil. New Theory of Transport Due to Like-Particle Collisions. Phys. Rev. Lett., 55:943–946, 1985. doi: 10.1103/PhysRevLett.55.
943.

[3] D. H. E. Dubin and T. M. O’Neil. Two-dimensional guiding-center transport of a pure electron plasma. Phys. Rev. Lett., 60:1286–1289,
1988. doi: 10.1103/PhysRevLett.60.1286.

[4] Ronald C Davidson. Physics of Nonneutral Plasmas. Imperial College Press and World Scientific Publishing Co. Pte. Ltd., 2001.
[5] C.F. Driscoll, D.Z. Jin, D.A. Schecter, and D.H.E. Dubin. Vortex dynamics of 2D electron plasmas. Physica C: Superconductivity, 369(1):

21–27, 2002. doi: 10.1016/S0921-4534(01)01216-3.
[6] M. Sengupta and R. Ganesh. Inertia driven radial breathing and nonlinear relaxation in cylindrically confined pure electron plasma. Physics

of Plasmas, 21(2), 2014. doi: 10.1063/1.4866022.
[7] M. Sengupta and R. Ganesh. Linear and nonlinear evolution of the ion resonance instability in cylindrical traps: A numerical study. Physics

of Plasmas, 22(7), 2015. doi: 10.1063/1.4927126.
[8] R. Ganesh and J. K. Lee. Formation of quasistationary vortex and transient hole patterns through vortex merger. Physics of Plasmas, 9(11):

4551–4559, 2002. doi: 10.1063/1.1513154.
[9] David A. Schecter and Daniel H. E. Dubin. Vortex Motion Driven by a Background Vorticity Gradient. Phys. Rev. Lett., 83:2191–2194,

1999. doi: 10.1103/PhysRevLett.83.2191.
[10] D. A. Schecter, D. H. E. Dubin, K. S. Fine, and C. F. Driscoll. Vortex crystals from 2D Euler flow: Experiment and simulation. Physics of

Fluids, 11(4):905–914, 1999. doi: 10.1063/1.869961.
[11] David A. Schecter and Daniel H. E. Dubin. Theory and simulations of two-dimensional vortex motion driven by a background vorticity

gradient. Physics of Fluids, 13(6):1704–1723, 2001. doi: 10.1063/1.1359763.
[12] L.A. Artsimovich. Tokamak devices. Nuclear Fusion, 12(2):215, 1972.
[13] J. S. Sawyer. A semi-Lagrangian method of solving the vorticity advection equation. Tellus, 15(4):336–342, 1963. doi: 10.3402/tellusa.

v15i4.8862.
[14] Eric Sonnendrücker, Jean Roche, Pierre Bertrand, and Alain Ghizzo. The Semi-Lagrangian Method for the Numerical Resolution of the

Vlasov Equation. Journal of Computational Physics, 149(2):201–220, 1999. doi: 10.1006/jcph.1998.6148.
[15] N. Besse and E. Sonnendrcker. Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. Journal of

Computational Physics, 191(2):341–376, 2003. doi: https://doi.org/10.1016/S0021-9991(03)00318-8.
[16] V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik,

and L. Villard. A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation. Journal of Computational Physics, 217(2):395–423,
2006. doi: https://doi.org/10.1016/j.jcp.2006.01.023.

[17] V. Grandgirard, Y. Sarazin, X. Garbet, G. DifPradalier, Ph. Ghendrih, N. Crouseilles, G. Latu, E. Sonnendrücker, N. Besse, and P. Bertrand.
GYSELA, a full-f global gyrokinetic Semi-Lagrangian code for ITG turbulence simulations. AIP Conference Proceedings, 871(1):100–111,
2006. doi: 10.1063/1.2404543.

[18] Nicolas Crouseilles, Michel Mehrenberger, and Eric Sonnendrücker. Conservative semi-Lagrangian schemes for Vlasov equations. Journal
of Computational Physics, 229(6):1927–1953, 2010. doi: 10.1016/j.jcp.2009.11.007.

[19] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud, N. Crouseilles, G. Dif-Pradalier, Ch. Ehrlacher, D. Esteve, X. Garbet, Ph. Ghen-
drih, G. Latu, M. Mehrenberger, C. Norscini, Ch. Passeron, F. Rozar, Y. Sarazin, E. Sonnendrcker, A. Strugarek, and D. Zarzoso. A 5D
gyrokinetic full-f global semi-Lagrangian code for flux-driven ion turbulence simulations. Computer Physics Communications, 207:35–68,
2016. doi: https://doi.org/10.1016/j.cpc.2016.05.007.

[20] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen,
100(1):32–74, 1928. doi: 10.1007/BF01448839.

[21] N. Bouzat, C. Bressan, V. Grandgirard, G. Latu, and M. Mehrenberger. Targeting realistic geometry in Tokamak code Gysela. ArXiv e-prints,
2017.

[22] Olivier Czarny and Guido Huysmans. Bézier surfaces and finite elements for MHD simulations. Journal of Computational Physics, 227(16):
7423–7445, 2008. doi: 10.1016/j.jcp.2008.04.001.

[23] William J. Gordon and Richard Riesenfeld. B-spline curves and surfaces. In R. E. Barnhill and R. F. Riesenfeld, editors, Computer Aided
Geometric Design, Academic Press, Inc., 1974.

[24] Gerald Farin. Curves and Surfaces for Computer-Aided Geometric Design. Academic Press, 1993.
[25] Magnus R. Hestenes and Eduard Stiefel. Methods of conjugate gradients for solving linear systems. Journal of Research of the National

Bureau of Standards, 49(6), 1952.
[26] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics. Springer Science & Business Media, 2010.
[27] Tao Xiong, Giovanni Russo, and Jing-Mei Qiu. High Order Multi-dimensional Characteristics Tracing for the Incompressible Euler Equation

and the Guiding-Center Vlasov Equation. Journal of Scientific Computing, 77(1):263–282, 2018. doi: 10.1007/s10915-018-0705-y.
[28] Tatsuoki Takeda and Shinji Tokuda. Computation of MHD Equilibrium of Tokamak Plasma. Journal of Computational Physics, 93(1):1–107,

1991. doi: 10.1016/0021-9991(91)90074-U.
[29] M. T. Bettencourt. Controlling Self-Force for Unstructured Particle-in-Cell (PIC) Codes. IEEE Transactions on Plasma Science, 42(5):

1189–1194, 2014. doi: 10.1109/TPS.2014.2313515.

	Introduction
	Singular mapped disk-like domains
	Discrete spline mappings
	Semi-Lagrangian advection solver
	Numerical tests

	Finite element Poisson solver
	C1 smooth polar basis
	Finite element solver
	Numerical tests
	Evaluation of the electric field

	Self-consistent test case: guiding-center model
	Time integration
	Numerical equilibria
	Numerical test: diocotron instability
	Numerical test: vortex merger
	Numerical test: point-like vortex dynamics

	Conclusions and outlook
	Finite element Poisson solver: implementation

