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Abstract. On the basis of the ideal-mhd equilibrium code VMEC [1]
supplemented by transformation of its results into magnetic coordinates it is
shown how current sheets, radially widened by the finite grid size, at rational
values of rotational transform in 3d toroidal equilibria can be removed by variation
of the equilibrium geometry.
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1. Introduction

Recently it has been stated that the 3d equilibrium
code VMEC cannot compute current sheets at rational
values of rotational transform in 3d toroidal mhd
equilibria [2]. On the other hand, the existence
of magnetic islands and current sheets in three-
dimensional slab-geometry equilibria has been proven
[3] and, more recently [4], VMEC has been verified
for force-free large-aspect-ratio circular cross-section
equlibria against linear ideal-mhd equilibrium theory in
the limit of nested surfaces. Here, it will be shown that
an evaluation of the equilibrium results of general 3d
toroidal equilibria obtained with VMEC can find the
signature of current sheets, computationally radially
widened by the finite radial grid size, in calculating
the equilibrium.
Boozer’s coordinates [5] s, θ, φ (flux label, poloidal and
toroidal coordinate) are used for the evaluation [6]
of the equilibrium results. In these coordinates, the
covariant component of ~B, Bs, has been named β̃
because the inhomogeneous part of its equation when
formulated as a differential equation along fieldlines√

g ~B · ∇β̃ = p′(
√
g − V ′)

is proportional to the derivative of the pressure with
respect to the flux coordinate. Here, g is the Jacobian,
V (s) the volume enclosed by the flux surface with label
s.

The radial dependency of the homogeneous part
of β̃ on rational magnetic surfaces, ιperiod = n/m,
is proportional to δ(s− sres) and is related to the
force-free current density sheet necessary for rational
magnetic surfaces to exist [7]. In order to describe
β̃ completely, an equivalent expression, calculating it
from the geometry directly, is used

β̃ = (−FT ′gφs + FP
′gθs)/

√
g

where gφs and gθs are elements of the Jacobian and
FT and FP toroidal and poloidal flux, respectively.
This expression is computed for various radial grid
sizes so that the contribution of the resonance can be
extrapolated to infinite radial grid size. Then a suitable
boundary coefficient of the equilibrium investigated
can be selected to eliminate the resonant contribution.

2. Case studies

Three physically different types of configurations are
investigated: a vacuum field, a force-free equilibrium,
and a finite-β equilibrium.
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Figure 1. Poincaré plot of a vacuum field; solid line: VMEC.

a) A vacuum field
If a vacuum field with an outer smooth magnetic

surface and an inner island chain at a resonance is
recomputed as a zero-β equilibrium with nested sur-
faces, a surface current density appears at the reso-
nance. Here, this is demonstrated starting from a sim-
ple l=2 stellarator with 9 periods and rotational trans-
form unity occurring in the confinement region. This
configuration is changed into a 3-period configuration
by a resonant m = 3, n = 3 perturbation so that an
m = 3 island chain appears at ι = 1. Figure 1 shows a
cross-section of the VMEC boundary and the vacuum
field solution for this boundary as obtained from an
outside surface current density [8].

Figure 2 shows the resonant component of β̃ as
obtained from VMEC. The δ-function character of
the resonant β̃ component is apparent and verified
by integrating β̃31 between its zeroes closest to the
resonance. These integrals depend only weakly on
the mesh-width and their convergence is linear with
decreasing mesh-widths, see Fig.3.

b) Force-free equilibrium
A two-period quasi-axisymmetric configuration

[9], a tokamak-stellarator hybrid, is selected because
low-order resonances (e.g. ι per period, ιp = 1/3) occur
which should be of particular importance. Its β = 0
equilbrium is investigated at its ι = 2/3 resonance.
Again, the signature of a δ-function behaviour of β̃31
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Figure 2. β̃(m = 3, n = 1) as a function of s for various gridsizes
(149, 307, 613, 1223) in VMEC.
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Figure 3. The values of the integrals between the zero values
adjacent to the resonance as a function of mesh-widths in the
vacuum field case.

smoothed by finite radial grid sizes is clearly seen in
Fig. 4.

A search for a parameter of the equilibrium
boundary [9] which is effective in reducing the
amplitude of β̃31 at the resonance yields the boundary
coefficient Z(m = 2, n = 0) whose values for
eliminating the singularity in β̃(m = 3, n = 1) only
weakly depend on radial grid size, see Fig. 5, and
turn out to converge quadratically with the grid-point
distance to 0.1126.

One expects that the shape of the magnetic
surfaces should reflect a resonant current sheet and its
elimination. This is seen in Fig. 6 where the two cases
are compared with respect to |∇s|2: elimination of the
current sheet eliminates the resonance signature in the
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Figure 4. The m = 3, n = 1 Fourier component of β̃ as a
function of the flux label for various grid sizes in the force-free
case. The insets show the values of the integrals between the
zero values adjacent to the resonance 2/3 at 0.4123.
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Figure 5. The same as in Fig. 4, now for various grid sizes
and associated values of Zm=2,n=0 which render β̃ a locally odd
function at the resonance. Please note the difference in vertical
scale between Fig. 4 and here.

m=3, n=1 Fourier component of |∇s|2.
The change of the geometry of the configuration

is shown in Fig. 7 where the flux surface cross-
section is shown in that symmetry plane in which the
smallest deviation from a circular cross occurs: a small
reduction in triangularity is seen.

c) Finite-pressure equilibrium
For 3D equilibria obtained under the assumption

of flux surfaces at finite β, a stronger divergence than
above dominates the behavior of the equilibrium at
a resonance. The parallel current density exhibits
a 1/(s − sres) singularity if the pressure gradient
does not vanish [6]. MHD-stable equilibria require
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Figure 6. The m = 3, n = 1 Fourier component of |∇s|2 as
a function of the flux label without (dashed) and with (solid)
elimimation of the resonance in the force-free case.

Figure 7. Flux surfaces without (red) and with (blue) the choice
of Z(m=2, n=0) which eliminates the surface current density at
the resonance
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Figure 8. Various grid sizes and associated values of Zm=2,n=0

render β̃ an odd function at the resonance. Please note the
difference in vertical scale between Fig. 5 and here.

a pressure profile flattening at the resonance so that
this procedure is routinely applied in stability studies
of 3D equilibria. This procedure is applied here,
too. The inhomogeneous solution for β̃ then exhibits
a resonant Fourier component which vanishes in the
immediate neighbourhood of the resonance and is
approximately odd outside the small pressure-flattened
region. Therefore, vanishing of the even part of the
solution (the δ-function widened by the finite grid size)
is indicated by the local oddness of the resonant Fourier
component.

Figure 8 shows results at < β >≈ 0.03 for the
same configuration as considered in case study b. The
change of the boundary coefficient Z20 needed to obtain
the above property is similar to the one for β = 0 and
converges linearly to Z20 = 0.09.

3. Discussion

The results found above should be checked with
3d equilibrium codes which do not assume nested
magnetic surfaces as, by way of example, current
versions of PIES [10] and HINT [11] .
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