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In the case of strong edge turbulence linear features as growth rates and dispersion can be sup-
pressed by small-scale vorticity generated by nonlinear self-sustainment. Measurements by different
diagnostic techniques could still provide finite values. The phase velocity measured by a frequency
dependent technique will be always in the same direction as the background velocity, where a
wavenumber dependent technique measures a phase velocity in the opposite direction. These phase
velocities are a result of the nonlinear redistribution of spectral energy and not a result of the lin-
ear instabilities. It is recommended to verify phase velocity measurements based on a frequency
dependent technique with a wavenumber dependent technique and vice versa.

PACS numbers:

I. INTRODUCTION

The edge of magnetized confined plasmas is subject to
a wide number of different modes resulting from varying
linear instabilities and diverse nonlinear self-organized
phenomena. It is widely thought that an underlying in-
stability grows and excites the turbulence by nonlinear
saturation [1]. During such a process various features
of the underlying instability may be transmitted to the
turbulence [2–4]. Different modes or instabilities can be
distinguished by their size, cross-phase relations between
different quantities (as density, potential, electron and
ion temperature and heat fluctuations) and their disper-
sion relation between wavenumber k and frequency ω.
An overview of the propagation direction, cross-phases
and typical sizes of the most relevant instabilities for the
plasma edge can be found in [5]. As cross-phase rela-
tions are commonly not available in the experiment, the
phase velocity is usually one of the key identifiers for the
underlying instability. At low fluctuation level typically
observed in the plasma core this may be a proper treat-
ment. On the other hand at high fluctuation levels, char-
acteristic for the low confinement regime in the plasma
edge, drift waves can nonlinearly sustain themselves and
linear instabilities can be fairly irrelevant [6, 7]. This is
the reason why turbulence in the plasma edge in the low
confinement regime is expected to be drift-wave domi-
nated [8]. The dispersion relation of drift waves is given
by

ωl =
ue,diaky

1 + (ρsk⊥)2
. (1)

The index l in the frequency ωl is specified to distinguish
the linear frequency from the nonlinear frequency later.
Drift waves exhibit a phase velocity ωl/k close to the elec-
tron diamagentic velocity ue,dia and propagate binormal
(k = ky) to the parallel magnetic field and radial di-
rection (kx). The perpendicular plane is spanned by the
radial and binormal direction (k⊥ = ky+kx). Due to po-

larization effects the phase velocity is reduced by (ρsk⊥)
2

at structures close to the drift-scale ρs =
√
Temi/(eB),

with elementary charge e, magnetic field strength B, ion
mass mi and electron temperature Te.

Measurements in ASDEX Upgrade with Doppler re-
flectometry show no significant phase velocity in the
plasma edge and the measured velocity is approximately
the E ×B background velocity [9] showing also no signs
of dispersion [10]. This has been also observed in W7-AS
[11]. This seems to be in contradiction to drift-waves be-
ing the dominant instability in the plasma edge from a
linear perspective. On the other hand finite phase veloc-
ities have been reported from the plasma core in ASDEX
Upgrade [12, 13] and between plasma core and edge in
Tore Supra [14].

For the purpose of illustration an example of mea-
surements at different wavenumbers is shown in Fig. 1.
The data is shown in normalized dimensionless units
(left hand side and bottom) and in dimension-assigned
units (right hand side and top). The Doppler reflectome-
ter (DR) with a movable mirror allows probed varying
wavenumbers (6 < k⊥ < 12 cm−1) during the discharge,
the poloidal correlation reflectometer (PCR) [10] is sen-
sitive at low wavenumbers (k⊥ < 3 cm−1). The mea-
sured Doppler frequency shows a linear relationship to
the probed wavenumber (Fig. 1a). The measured fre-
quency by the PCR aligns well with the one by DR.
The E × B background velocity has been estimated by
uE×B ≈ (1/en)∇pi ≈ (1/en)∇pe to be around 4 km/s
(indicated by the blue shaded area in Fig. 1), the mea-
sured dispersion in the phase velocity is small (< 0.35
km/s) and is within the error bars of the measurements.
A possible phase velocity is significantly below the elec-
tron diamagnetic velocity which is of the order of uE×B

as indicated by the black shaded line in Fig. 1.

In the following, turbulence will be classified in weak
and strong turbulence regimes (Sec. I B). With the help
of simulations (details given in Sec. II) the influence of
the strength of broadband turbulence on the measure-
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FIG. 1: Frequency versus wavenumber measured at the
plasma edge (ρpol = 0.985) of a typical ASDEX Upgrade L-
mode plasma at a temperature of Te = 124 eV, the frequency
is normalized to the cold ion sound speed cs, the wavenumber
to ρs = 0.7 mm calculated with the magnetic field on axis
B = 2.6 T. The frequency broadening ∆f (blue) is about 1/3
of the measured frequency. The corresponding perpendicular
velocity ∂f/∂k is not varying with the wavenumber within
the error bars. The estimate for the E × B velocity is indi-
cated by the blue shaded area, an estimate of the drift-wave
dispersion relation is indicated by the black shaded area.

ments of a phase velocity will be investigated. Different
measurement techniques to determine the phase velocity
will be discussed in Sec. IA. These are studied in a sim-
ulated case of weak turbulence (Sec. III), strong turbu-
lence (Sec. V) and in a regime between weak and strong
turbulence corresponding to the experimental situation
(Sec.IV). It will be shown that the high fluctuation level
of the turbulence (in particular the high level of vorticity
fluctuations) in the plasma edge is strong enough to sup-
press linear features of the plasma turbulence. Measured
finite phase velocities can be a result of the turbulent cas-
cade independent of an underlying instability. Summary
and conclusions are given in Sec. VI.

A. Measured dispersion in dependence of the

measurement technique

To infer spatial characteristics from temporal signals,
experimentally one have to map time to space mainly mo-
tivated by Taylor’s hypothesis of frozen turbulence [15].
It is assumed that at a point the change of turbulent ve-
locity fluctuations in time can be directly related to their
spatial change via the mean convection velocity. Already
in the fifties it was shown that the hypothesis breaks
down and is restricted to a limited range of wavenumbers
(or frequencies) for shear flows [16]. The applicability of
Taylor’s hypothesis also depends on the fluctuation level,
to be valid turbulent velocity fluctuations must be sig-
nificant smaller than the mean velocity [16]. Due to the
power distribution in the wavenumber-frequency plane

P (k, ω), the power of a single frequency will have con-
tributions from multiple wavenumbers. This can result
in a difference between two ways of determining aver-
age wave velocities given by the direction of integration.
One can integrate in wavenumber direction keeping fre-
quency constant or integrate in frequency direction and
keep wavenumber constant. Depending on the shape and
the broadening of the wavenumber-frequency distribu-
tion, this results in different answers as we will see in the
following.
For example by choosing the wavenumber to be con-

stant, k0, we take a cut in the frequency direction. The
average frequency is defined by

〈ω〉(k0) =
∫

P (k0, ω)ωdω
∫

P (k0, ω)dω
. (2)

Doppler reflectometry measures a power spectrum
P (k0, ω) at a given wavenumber k0, from which a

wavenumber dependent phase velocity u(k0) = 〈ω〉(k0)
k0

can be estimated in principle. Since the low frequency
range is often corrupted by the directly reflected mi-
crowave beam this analysis approach is often misleading
and the Doppler shift should be determined by fitting a
Gaussian to the power spectrum.
By choosing a constant frequency ω0 to examine

wave velocities, cuts along the wavenumber direction in
P (k, ω0) give an average wavenumber defined by

〈k〉(ω0) =

∫

P (k, ω0)kdk
∫

P (k, ω0)dk
. (3)

A wave velocity can be estimated by u(ω0) =
ω0

〈k〉 . Mea-

suring a wavenumber by estimating it by the phase differ-
ence of spatially separated points leads to such estimates.
If fluctuations can be represented by an eikonal ∼ exp(iθ)
with θ = kx − ωt the effective or pseudo wavenumber
[17] is given by 〈k〉(ω) = ∂θ

∂x
. Mode numbers of magnetic

signals are usually estimated in this way [18]. Time de-
lay estimation (TDE) works in a similar manner. Also
here the phase is measured at two spatially displaced po-
sitions θ(x, t) and θ(x + ∆x, t). Now the time lag ∆t
is estimated, where both signals are in phase. Hence,
θ(x, t) = θ(x + ∆x, t + ∆t) or k∆x = ω∆t. From this
a frequency dependent phase velocity can be directly in-
ferred uph(ω) =

ω
k
= ∆x

∆t
. The spatial displacement ∆x,

a time delay ∆t and the frequency at which the time de-
lay is measured are determined. Actually also here an
effective phase velocity 〈u〉TDE(ω) = ω

〈k〉TDE

or an ef-

fective wavenumber 〈k〉TDE(ω) = ω
∆x

∆t are estimated.
There are additional problems like propagation into the
radial direction or eddy tilting which can be diminished
by taking into account multiple spatial points, but also
TDE methods including multiple spatial points [19–21]
or velocimetry [22] relies basically on the same assump-
tions. However, if the measured field contains all im-
portant spatial scales of motion it should be in principle
appropriate to the recover the phase velocity. Nearly all
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measurements of velocities done with Langmuir probe
arrays, gas-puff or electron-cyclotron emission imaging,
beam emission spectroscopy, correlation reflectometry,
phase contrast imaging measure an effective wavenum-
ber 〈k〉(ω).
In this study these two different measurement methods

of estimation of phase velocities are investigated in the
case between weak and strong plasma edge turbulence.

B. Turbulence regimes

The distinction between weak and strong turbulence
goes back to Kadomtsev [1] and the latest review can be
found in Ref. [23]. The regimes of turbulence are dis-
tinguished by the strength of fluctuations represented by
spectral broadening. The frequency broadening is defined
by

∆ω(k) =

√

∫

P (k, ω)ω2dω
∫

P (k, ω)dω
− 〈ω〉2. (4)

The wavenumber broadening is defined by

∆k(ω) =

√

∫

P (k, ω)k2dk
∫

P (k, ω)dk
− 〈k〉2. (5)

In the picture of weak turbulence a wave-like instabil-
ity grows and its nonlinear saturation is responsible for
the turbulence. To retain its wave-like features the fre-
quency is similar to the linear eigenfrequency 〈ω〉 ∼ ωl

and the growth rate is smaller than the linear eigenfre-
quency γl ≪ ωl. The weak turbulence regime is also
called wave turbulence. The growth rate of the instabil-
ity is balanced by nonlinear saturation γl ∼ ∆ω. Weak
turbulence is characterized by small frequency broaden-
ing ∆ω ≪ ωl.
In the strong turbulence regime the nonlinearities dom-

inate and the turbulence is independent of the excitation
process. Strong turbulence is characterized by strong
frequency broadening ∆ω exceeding the analytically ex-
pected eigenfrequency ∆ω ≫ ωl. As a result strong tur-
bulence does not feature a linear wave frequency due
to the short decorrelation time τ ≈ 1/∆ω resulting in
γl ≪ ∆ω, ωl ≪ ∆ω. Equivalent considerations are valid
for the wavenumber.
That the nonlinearity is not dominant in the weak tur-

bulence case does not mean that it does not lead to a
redistribution of spectral energy and cascades are not
present. It just means that the turbulent spectral power
P (k, ω) is tightly bound to the linear dispersion relation
in the wavenumber-frequency plane as indicated by the
grey region in Fig. 2a. Along the dispersion relation the
spectral power can be redistributed and a cascade can
be observed as indicated by the blue upper spectrum in
Fig. 2a. However, vertical and horizontal cuts through
the wavenumber-frequency plane, corresponding to fre-
quency (wavenumber) spectra at a given wavenumber

FIG. 2: Artist’s view of spectral features of weak and strong
turbulence.

(frequency), show no cascades and just the dispersion.
In the case of strong turbulence (Fig. 2b) the dispersion
relation can be neglected and the spectral power mainly
follows the Doppler shift of the background flow. Due
to the strong nonlinearity the spectral power spreads in
all directions with the tendency to lower frequencies and
wavenumbers in the two-dimensional case. These can be
also observed in the frequency (wavenumber) spectra at
a given wavenumber (frequency).

II. SIMULATION SET UP

Simulations of circular plasma cross-section with
toroidal axisymmetry have been carried out with the
three-dimensional gyrofluid electromagnetic turbulence
model GEMR [24, 25]. GEMR simulates the densities,
parallel velocities, parallel and perpendicular tempera-
tures and parallel and perpendicular parallel heat fluxes
for ions and electrons, respectively. The coordinate sys-
tem is aligned with the equilibrium magnetic field. Al-
though being a δ-f limited code the gradients evolve
freely and GEMR is a global model. Details on the self-
consistent treatment of the profiles and MHD equilibrium
can be found in Ref. [24]. The main input paramters
of GEMR are a smallness parameter δ = ρs/a, a nor-
malized plasma beta β and a normalized collisionality
ν = aνe/cs with νe the inverse Braginskii electron colli-
sion time. Simulations have been carried out at ASDEX
Upgrade parameters (R = 1.65 m, a = 0.5 m, B = 2.4
T, qs = 4.6). The coordinate system (x, y, s) is in the
radial, binormal and parallel direction to the magnetic
field. The simulations are performed on a 128× 512× 16
grid, where only the drift plane (128 × 512) at the out-
board midplane is analyzed here. The simulations cover
the region 0.96 < ρ < 1.04.
Typical experimental parameters at the last closed flux

surface (LCFS) as the reference flux surface are chosen.
The case corresponding to the experimental situation
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FIG. 3: Strong turbulence case: Radial electric field (black
solid line), ion pressure contribution (red dashed line) and
sheath potential (blue dotted line) to the radial electric field.

FIG. 4: Strong turbulence case: Wavenumber spectra of nor-
malized potential (blue), density (black) and ion tempera-
ture (red) fluctuations. At low wavenumbers potential per-
turbations are strongest corresponding to ballooning modes,
at higher wavenumbers density and potential fluctuations are
similar and the ion temperature fluctuations are strongest
pointing to ITG-drift-wave turbulence.

(Sec. IV) is at ne = 2 ·1019 m−3, Te = Ti = 120 eV corre-
sponding to δ = 1.32 ·10−3, β = 8.39 ·10−5 and ν = 4.08.
The gradient scale lengths are fixed and not allowed to
evolve, chosen to be Ln = 0.5LTe = 0.5LTi = 2.5 cm
as in the experimental situation. The strong turbulence
case (Sec. V) is at ne = 2 · 1019 m−3, Te = Ti = 100
eV corresponding to δ = 1.20 · 10−3, β = 6.99 · 10−5 and
ν = 5.88. Initial gradient scale lengths have been chosen
to be Ln = 0.5LTe = 0.5LTi. All simulations have been
done on a 128 × 512 × 16 grid. The radial resolution is
0.65 ρs, the resolution of the binormal plane is 0.55 ρs.
Under these conditions we expect drift-wave turbulence
[8].
In the strong turbulence case (Sec. V) the gradi-

ents evolve. During the initial phase the density gra-
dient relaxes and the ion temperature gradient effec-
tively steepens up compared to the density gradient
Ln = (2/3)LTi = 5 cm. The radial electric field is shown
in Fig. 3, it is dominated by its ion pressure contribution
in the confined region and by the sheath potential in the

FIG. 5: Weak turbulence case: Wavenumber-frequency power
spectrum P (k, ω) of density fluctuations at ρ = 0.5 in the
plasma frame in the late growth phase (a) and in the satu-
rated phase (b). Frequency broadening shown by the blue
solid line compared to the average frequency in the plasma
frame shown by black solid (red dotted line) in the growth
(saturated) phase, respectively (c). The rms vorticity level is
indicated by the gray area. The linear eigenfrequency (black
line) exceeds both the frequency broadening and rms vorticity
level.

scrape-off layer. Depending on the wavenumber the tur-
bulence shows different features. At low wavenumbers
(kρs < 0.2) potential perturbations are strongest corre-
sponding to resistive ballooning modes (see Fig. 4). At
higher wavenumbers (kρs > 0.2) density and potential
fluctuation amplitudes are similar which is characteris-
tic for drift-wave turbulence. At even higher wavenum-
bers (kρs > 0.6) the ion temperature fluctuations are
strongest pointing to ITG-drift-wave turbulence.
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For the sake of completeness also a weak turbulence
case is presented in Sec. III. Weak turbulence can be
obtained for small gradients appearing for example in the
core. The reference surface has been chosen to be at ρ =
0.5 with ne = 4.5 ·1019 m−3, Te = Ti = 2 keV. The cover
the region 0.3 < ρ < 0.7 with a gradient scale lengths
of LTi = LTe = 0.3Ln = 20 cm. In such a case ITG
turbulence can be expected. The corresponding GEMR
input parameters are δ = 5.38 · 10−3, β = 3.15 · 10−3 and
ν = 0.03. The results are shown in the following section
III.

III. MARGINAL WEAK TURBULENCE

REGIME ∆ω < ωl

For the purpose of introduction we start to study a
weak turbulence case. The wavenumber-frequency power
spectrum P (k, ω) of density fluctuations in the plasma
frame of reference at ρ = 0.5 are shown in Fig. 5a in the
late growth phase of the simulation. The directions are
defined positive for ion diamagnetic direction and nega-
tive in the electron diamagnetic direction. As ω/k is pos-
itive a clear phase velocity in ion diamagnetic direction
can be observed, which is a signature of ITG turbulence.
From Eq. (2) the linear phase velocity can be measured,
which is shown by the black line in Fig. 5c. Most of the
turbulence activity is restricted to this very narrow line.
This situation corresponds to the weak turbulence case,
beside it is not saturated yet. The turbulence saturates to
a fluctuation level of about ñ/n ≈ 1%. In the saturated
phase the turbulence gets more broadband as shown by
Fig. 5b. The averaged frequency 〈ω〉 as shown by the red
dotted line in Fig. 5c is reduced compared to the growth
phase, but a phase velocity in ion diamagnetic direction is
clearly observable. The averaged frequency 〈ω〉 is above
the frequency broadening 〈ω〉 > ∆ω (shown by the blue
line in Fig. 5c). Therefore, this case is in the weak tur-
bulence regime even though not ideal as the frequency
does not exceed the broadening much. With respect to
the linear frequency (shown by the black line in Fig. 5c)
the turbulence is in the weak turbulence regime. The
underlying instability (ITG) can imprint its linear phase
velocity to the turbulence. The linear frequency signifi-
cantly exceeds the frequency broadening ωl ∼ 〈ω〉 ≫ ∆ω
and rms vorticity (that will be important later, indicated
by the gray region in Fig. 5c).

IV. MARGINAL STRONG TURBULENCE

REGIME ∆ω & ωl

In the experimental situation in ASDEX Upgrade usu-
ally a significant frequency broadening is present, how-
ever, it does not exceed the averaged frequency. In
Fig. 1 the frequency broadening as estimated from the
Doppler reflectometry is ∆fmeas/〈fmeas〉 ≈ 0.3. There-
fore typical L-mode plasmas at the plasma edge in AS-

FIG. 6: Marginal strong turbulence case: Wavenumber (a)
and frequency (b) broadening shown by blue solid lines com-
pared to the average wavenumber and frequency shown by
red dashed lines. Also the drift-wave eigenfrequency is shown
included as a black line and the rms vorticity level is indicated
by the grey area. Data is shown in the laboratory frame of
reference.

FIG. 7: Marginal strong turbulence case: Wavenumber-
frequency power spectrum P (k, ω) of density fluctuations at
ρ = 0.980 (a), the mode at kρs = 0.1 is an interchange mode.
Frequency averaged frequency 〈ω〉(k) (red dashed line), the
mean E × B velocity ω = uE×Bk (blue solid line), phase ve-
locity by wavenumber average ω/〈k〉 (red dotted line), fitted
mean of the Gaussian in dependence of wavenumber (black
dashed line) and measured phase velocity by TDE (black
dotted line) (b). Data is shown in the laboratory frame of
reference.

DEX Upgrade are closer to a weak turbulence regime.
Due to the turbulence the frequency is broadened by
∆ω(k) = k∆u+uE×B∆k+∆k∆u, where ∆k is the non-
linear wavenumber broadening and ∆u is the nonlinear
broadening or the velocity spectrum. The measured fre-
quency broadening is not only due to fluctuations at the
probing wavenumber k0 but also due to the finite spectral
resolution ∆k0 probed [26, 27], resulting in a frequency
broadening 2π∆fdiag = ∆k0 · u. Taking ∆k0 = 2.2 cm−1

cm we get ∆fdiag/∆fmeas ≈ 0.5. As ∆fdiag gives ba-
sically the sensitivity of the diagnostics it is likely that
∆fmeas provides the correct estimate of the frequency
broadening by the turbulence. At least it is not higher
∆ω < 2π∆fmeas. In a conservative approach the mini-
mum frequency broadening by the turbulence would be
∆ω > 2π(∆fmeas − ∆fdiag), therefore ∆ω/〈ω〉 ≈ 0.15–
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0.3.

A weak turbulence regime in the plasma edge seems
not to be easily accessible in GEMR. By fixing the back-
ground profiles to the initial conditions a reduction in
the spectral broadening can be obtained. Beside at very
low frequencies the averaged frequency strongly exceeds
the frequency broadening 〈ω〉(k) ≫ ∆ω(k) (Fig. 6b)
by 〈ω〉(k)/∆ω(k) ≈ 4 − −7. This is of a similar or-
der as in the experimental observation (Fig. 1) where
the averaged frequency exceeds the frequency broaden-
ing by 〈ω〉(k)/∆ω(k) ≈ 1.5 − −3.5 (taking into account
broadening by diagnostic effects discussed above this fac-
tor maybe assumed to be〈ω〉(k)/∆ω(k) ≈ 3 − −7). At
these low frequencies an interchange instability is present.
As seen in Fig. 7b 〈ω〉(k) ≈ uE×Bk and no significant
wavenumber shift is observed. Approximating velocities
by the center of gravity of the frequency [28] as done
by Eq. (2) is not the usual evaluation method. Com-
monly a Gaussian is fitted to the logarithmic power spec-
trum P (k0, ω). The center of the Gaussian is equal-
ized to the Doppler shift as the advection velocity. Also
using such procedure the background velocity is recov-
ered. The averaged wavenumber 〈k〉(ω) strongly ex-
ceeds the wavenumber broadening ∆k(ω) up to roughly
(a/cs)ω < 20 (Fig. 6a). For low frequencies with low
frequency broadening ((a/cs)ω < 20) the phase veloc-
ity follows the background velocity only ω/〈k〉 ≈ uE×Bk
(Fig. 7b). At higher frequencies with significant broaden-
ing in wavenumber space (Fig. 6a) a propagation in elec-
tron diamagnetic direction is observed (Fig. 7b). How-
ever, this shift is mainly due to the presence of an inter-
change mode at kρs ≈ 0.1 (Fig. 7a). Also note that the
measurements in ASDEX Upgrade do not cover this re-
gion. Also a frequency dependent diagnostic will usually
not evaluate Eq. (3), but instead estimate the velocity
by correlation. Indeed the velocity estimated with TDE
using a spatial separation of about 5 mm (black dotted
line in Fig. 7b) recovers the background velocity (blue
solid line in Fig. 7b) as shown by the overlap of the lines
in Fig. 7b). In summary, this simulation does not show
any significant phase velocity in the plasma frame nor
dispersion.

How linear features can get lost in drift-wave turbu-
lence can be found in Ref. [29], which is shortly sum-
marized here. In the weak turbulence picture the linear
growth rate balances the nonlinear broadening γl ∼ ∆ω.
This is not the case for fully developed drift-wave turbu-
lence in the plasma edge; the linear growth rate is much
smaller than the rms vorticity γl ≪ 〈Ω̃〉rms [29]. As the
nonlinear spectral transfer is done mainly by the vortic-
ity equation, the rms vorticity should be of the order of
the frequency broadening 〈Ω̃〉rms ∼ ∆ω. Regarding the
aspect γ ∼ ∆ω fully developed drift-wave turbulence is
not in the weak turbulence regime [29].

At the beginning of the simulation the transition to
turbulence occurs and the growth phase can be studied.
Below t < 30 cs/a the turbulence is exponentially grow-
ing as seen by the amplitude in Fig. 8a. The growth

FIG. 8: Marginal strong turbulence case: Density fluctuation
level (a), vorticity fluctuation level (b), vorticty, growth rate
γl, turbulence gradient drive rate (c) at the beginning of the
simulation.

rate is about γl ≈ 0.2 cs/a and is carried mainly by an
interchange mode at kρs ≈ 0.1. As the density fluctua-
tion level increases also the rms vorticity level increases.
The vorticity is calculated by Ω̃ = ∇2

⊥(φ̃+ p̃i) and takes
electrostatic potential and ion pressure fluctuations into
account. At t ≈ 25 cs/a the rms vorticity exceeds the
linear growth rate. Shortly after this at (t ≈ 35 cs/a)
the growth rate drops to zero. Also the turbulence gra-
dient drive rate 〈ũxñ〉〈dn/dr〉/ñ2 drops strongly. The
turbulence level saturates. The turbulence has to gener-
ate its own vorticity through nonlinear self-sustainment
[6, 7]. Similar to a background shear the nonlinear vor-
ticity scatters small-structures apart before they can feel
a linear instability. As a consequence linear features as
the linear growth rate or propagation velocity can get
lost. The growth rate γl ≈ 0.2 cs/a is much below
〈Ω〉rms at 6–14 a/cs, the vorticity rms level of the elec-
trostatic potential fluctuations only is between 3–6 a/cs.
As the drift wave phase velocity is much higher than
the growth rate ωl ≫ γl it might survive. In Fig. 6b
the black line shows the drift-wave dispersion relation
ωl = ue,diaky/(1 + ρ2s(kx + ky)

2) (see Eq. (1)) is approx-
imated by ue,diak/(1 + 2ρ2sk

2) assuming isotropic struc-
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tures kx = ky. The drift-wave eigenfrequency is in a
similar order of magnitude as the spectral broadening
ωl ≈ ∆ω (blue line in Fig. 6b). Note one should com-
pare not the eigenfrequency ωl(kl) at a particular scale
with its spectral broadening ∆ω(kl) only, since the drift
wave ωl(kl) is disturbed by the scales different to itself

k 6= kl. The total rms vorticity level Ω̃ indicated by the
gray shaded area in Fig. 6b) is at least similar to the lin-
ear eigenfrequency and mostly exceeds it (black line in
Fig. 6b) which seems to be sufficient to mix and disturb
the drift wave during its propagation and no typical drift-
wave phase velocity is measured. The results confirm
that the small-scale vorticity is generated at a rate simi-
lar to the diamagnetic drift frequency [7]. The structures
are only advected by the background flow. The present
regime shows features of strong turbulence γl ≪ ∆ω, but
as the eigenfrequency is close to the frequency broaden-
ing ωl ≫ ∆ω is not fulfilled. Therefore, the presented
regime is closer to strong than to weak turbulence.

V. STRONG TURBULENCE REGIME ∆ω ≫ ωl

FIG. 9: Strong turbulence case: Wavenumber (a) and fre-
quency (b) broadening shown by blue solid lines compared to
the average wavenumber and frequency shown by red dashed
lines. The broadening exceeds the averaged values but is of
the same order of magnitude. Data is shown in the laboratory
frame of reference.

In these simulations the spectral broadening exceeds
the averaged value for both the frequency and wavenum-
ber (Fig. 9). As the broadening does not exceed the
averaged values by orders of magnitude (∆ω/〈ω〉 ≈ 3

2 ,

∆k/〈k〉 ≈ 4
3 ) the simulations seem to be marginal in the

strong turbulence regime.
A typical wavenumber-frequency spectrum of density

fluctuations of the drift plane at the outboard midplane
is shown in Fig. 10. The power distribution follows more
or less the mean convective velocity as indicated by the
white solid line ω = uE×Bk. The mean convective ve-
locity is in electron diamagnetic direction, which is here
defined negative. In Fig. 10 it appears like the turbulence
amplitude is symmetrically spread around ω = uE×Bk.

FIG. 10: Strong turbulence case: Wavenumber-frequency
power spectrum P (k, ω) of density fluctuations at ρ = 0.995.
Data is shown in the laboratory frame of reference.

FIG. 11: Strong turbulence case: Averaged frequency 〈ω〉 in
dependence of the wavenumber (a) and averaged wavenumber
〈k〉 in dependence of the frequency ω (b) (both red solid lines)
in comparison with the mean convective velocity ω = uE×Bk
(blue dashed line) in electron diamagnetic direction. The
phase velocities in the plasma frame are indicated by the ar-
rows. The l.h.s. shows a phase velocity in ion diamagnetic
direction, the r.h.s. shows a phase velocity in electron dia-
magnetic direction. The measured velocity as measured by a
Doppler is included by the dotted black line in (a), the mea-
sured velocity as measured by a TDE technique is included
as a black dotted line in (b). Data is shown in the laboratory
frame of reference.

By integrating in frequency space to estimate the mean
frequency (Eq. (2)) a propagation in ion diamagnetic di-
rection in the plasma frame is observed (see Fig. 11a).
This is expected for ITG-modes. However, if we integrate
in wavenumber space to estimate the mean wavenum-
ber (Eq. (3)) and plot the frequency above this averaged
wavenumber, modes at higher wavenumber propagate
in electron diamagentic direction in the plasma frame
(Fig. 11b), which is characteristic for drift waves. Indeed
estimating the velocity by TDE using a spatial displace-
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ment of 5 mm results in the phase velocity as shown by
the black dotted line in Fig. 11b which is roughly two
times the background E ×B velocity. As the E ×B ve-
locity is roughly the ion diamagnetic velocity in electron
diamagnetic direction the corresponding phase velocity
as measured by TDE is the electron diamagnetic veloc-
ity as expected for electrostatic drift waves.
In summary, the structures propagate in ion diamag-

netic direction at a given wavenumber and in electron
diamagetic direction at a given frequency. In a linear
framework this seems impossible.
The reason of the discrepancy of different phase veloc-

ities 〈ω〉/k and ω/〈k〉 is the nonlinear broadening. In the
case of drift-wave turbulence the power is transferred to
low frequencies and low wavenumbers [30–33] leading to
the power being skewed to low wavenumbers and low fre-
quencies. This is called the inverse energy cascade [34].
At a given wavenumber k the power is transferred to low
frequencies responsible for a reduction of the effective fre-
quency 〈ω〉 and therefore also propagation velocity 〈ω〉/k
compared to the background velocity. As in this exam-
ple the background velocity is in the electron diamagnetic
direction this leads to a propagation in ion diamagnetic
direction in the plasma frame. At a given frequency ω the
power is transferred to lower wavenumbers. This leads
to a reduction of the effective wavenumber 〈k〉 at this
frequency and therefore to an increase of the effective
propagation velocity ω/〈k〉. As in this example the back-
ground velocity is in the electron diamagnetic direction
the propagation velocity in the plasma frame is also in
the electron diamagnetic velocity (Eq. (1)).

FIG. 12: Strong turbulence case: Wavenumber-frequency
power spectrum P (k, ω) of density fluctuations at ρ = 0.995.
Data is shown in the plasma frame of reference. Averaged
frequencies and wavenumbers are shown by the white lines.

By mapping the wavenumber-frequency power spec-
trum P (k, ω) to the plasma frame P (k, ω − uE×Bk) it
has to be taken into account that in the present case
the background velocity is time dependent uE×B(t).

Therefore, every sub time interval has to be mapped
in the plasma frame and the ensemble average is done
afterward. The wavenumber-frequency power spectrum
P (k, ω)in the plasma frame is shown in Fig. 12. It ex-
hibits clear broadband characteristics. No signs of dis-
persion are observable. As in the present regime no eigen-
frequency ωl = 〈ω〉−uE×Bk is detectable, ωl ≪ ∆ω. We
have seen in Sec. IV that also the growth rate is neg-
ligible γ ≪ ∆ω. Therefore, the presented regime is not
only marginal but clearly in the strong turbulence regime
(ωl, γl ≪ ∆ω).
A shift to low frequencies due to the nonlinear energy

transfer as observed by the red line in Fig. 11a is not
observed by the Doppler reflectometry [9–11] (Fig. 1b).
By fitting a Gaussian the skewed part on the top of the
spectrum which is the result of the cascade is basically
ignored. In the average (Eq. (2)) the impact of this non-
linear shift is much stronger as the power is taken lin-
early and not logarithmicly into account. The result-
ing Doppler shift is shown by the black dotted line in
Fig. 11a. The Doppler shift is more or less dispersion-
less and very close to the mean E ×B velocity, which is
basically in agreement with Refs.[9–11].

VI. DISCUSSION AND CONCLUSION

Plasma edge turbulence is characterized by high fluc-
tuation levels. In particular the high level of small-scale
vorticity fluctuations exhibiting strong shearing rates ex-
ceeding the growth rate by orders of magnitude [7] and
are of comparable level to the eigenfrequencies of instabil-
ities coming into consideration. Thereby linear features
as growth rates and dispersion can be suppressed. This
seems to be the reason of the vanishing phase velocity
in the above shown typical case for ASDEX Upgrade
L-mode discharges (Fig. 1). These small-scale vortic-
ity fluctuations are generated by through nonlinear self-
sustainment [6, 7, 29, 32]. It is important to note that the
vorticity exhibits contribution from electrostatic poten-
tial and the ion pressure perturbations, where the later
increases with the ion to electron temperature ratio which
cannot be neglected in the plasma edge.
For even stronger turbulence measurements of the

phase velocity could still provide finite values. The non-
linear spectral energy distribution can be observed in
wavenumber-frequency space. Broadband plasma edge
turbulence shows a power law behavior in wavenumber
and frequency space which is a result of energy trans-
fer mainly from high to low wavenumbers and frequen-
cies. Some energy is also transferred in the other di-
rection. This is the dual cascade characteristic for two-
dimensional turbulence. Due to the shift of energy away
from the line ω = uE×Bk to low wavenumbers, the
wavenumber averaged phase velocity u(ω) = ω/〈k〉 will
be in direction of the background velocity. As a result of
the energy transfer to low frequencies in the lab frame,
the frequency averaged phase velocity u(k) = 〈ω〉/k will
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be in the opposite direction as the background velocity.
Only if the system is in the weak turbulence regime

ωl ≫ ∆ω ∼ γl the phase velocity can be used as an
indicator for the underlying instability. This should be
the case for core turbulence where the fluctuation level
and hence 〈Ω̃〉rms and ∆ω are much lower. For high
confinement regimes the fluctuation levels are lower, but
the difference to L-mode is not as strong as the cases
compared in the present study. This requires detailed in-
vestigations in the future. For example in H-mode quasi
coherent modes with low frequency broadening [35] and
in I-mode a weakly coherent mode with high frequency
broadening [36, 37] are observed. In general it can be rec-
ommended to verify phase velocity measurements based

on a frequency dependent technique with a wavenumber
dependent technique and vice versa.
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