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The soft X-ray emission provides valuable insight into processes happening inside of the high-temperature
plasma. A standard method of deriving the local emissivity pro�les of plasma from the line of sight integrals
measured by pinhole cameras is the tomographic inversion. Such an inversion is challenging due to its ill-
conditioned nature and because the reconstructed pro�les depend not only on the quality of the measurements
but also on the used inversion algorithm.
This paper provides a detailed description of several tomography algorithms, which solve the inversion

problem of Tikhonov regularization with linear computational complexity in number of basis functions. The
possibility of combining these methods with Minimum Fisher Information regularization is demonstrated,
and various statistical methods for the optimal choice of the regularization parameter are investigated with
emphasis on their reliability and robustness. Finally, the accuracy and capability of the method is demon-
strated by reconstructions of the experimental SXR pro�les, with poloidal asymmetric impurity distribution
from the ASDEX Upgrade tokamak.

PACS numbers: 52.25.Vy, 52.25.Xz
Keywords: Plasma, tomography, tokamaks, Tikhonov regularization

I. INTRODUCTION

High Z materials like tungsten are expected to be an
essential part of plasma-facing components (PFC) of the
future fusion reactor devices1{3. An unavoidable sputter-
ing of these materials caused by plasma wall interaction
leads to an in
ux of the heavy impurities to the plasma.
Radiation losses from the partially stripped high Z ions
can be bene�ciary at the plasma edge because the power
exhaust in the divertor is signi�cantly reduced. However,
intensive cooling in the plasma core leads to the deterio-
ration of the fusion performance4. Moreover, unfavorable
impurity transport conditions in the plasma core can be
responsible for impurity accumulation and a consequent
radiative collapse of the plasma.
The essential tool for monitoring the spatial impu-

rity distribution is the soft X-ray (SXR) radiation.
High-Z ions from metal PFC typically dominate the
SXR radiation over the low-Z impurities and bulk ions
Bremsstrahlung. The local impurity density can be esti-
mated from the known relation between the SXR radia-
tion and impurity density as it is shown in Refs. 4 and 5.
The spatial information about the SXR radiation is pro-
vided by several pinhole cameras surrounding the plasma.
The low number of available lines of sight and sparse
coverage of the plasma leads to a non-trivial ill-posed in-
version problem of the limited angle tomography6, i.e.
tomography with relatively few cameras.
A large number of various algorithms have been pro-

posed for solving the SXR tomography. Among them,

a)Electronic mail: todstrci@ipp.mpg.de.

the most common are methods based on series expan-
sion like Cormack-Bessel or Fourier-Bessel7, maximum
entropy methods8, and Tikhonov regularization based
pixel methods9,10. However, the very steep dependence
of tungsten SXR radiation on the electron temperature
along with peaked temperature and tungsten density pro-
�les results in very steep and localized gradients in the
SXR radiation. The presence of such features requires
a high dynamic range of the tomographic reconstruction
(up to 3 orders of magnitude) in order to resolve the ra-
diation pro�le from the core to the edge, which excludes
most of the preceding method. The best results are typi-
cally obtained by employing weakly nonlinear algorithms
like Minimum Fisher Information (MFI)9 and Minimum
normalized gradient method (MNGR)11. A common
drawback of the existing algorithms used to solve the
pixel methods is cubic computational complexity. The
improved algorithms described in this manuscript enable
to �nd a solution to this particular inversion problem
with linear complexity in a number of pixel basis func-
tions. Additionally, various methods for a robust and
automatic choice of the optimal regularization level are
investigated. The performance of the proposed tomo-
graphic methods is veri�ed by reconstruction of the SXR
emissivity from hundreds of discharges from the ASDEX
Upgrade tokamak (AUG).

AUG is a mid-sized tokamak with R = 1:65m,
a = 0:5m, Ip � 1:4MA, Bt � 3:1T equipped with a
tungsten covered wall12. The metal wall and high heating
input power provided by 8 neutral beam injection (NBI)
delivering up to 20MW, 6MW of ion cyclotron heating
and 3.5MW of electron cyclotron heating make this toka-
mak well suited for power exhaust studies relevant for
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future fusion reactors. The SXR diagnostic is regularly
used for the analysis of the impurity transport13,14, MHD
instabilities15 and poloidal asymmetries of the plasma16.
All these measurements can bene�t from the high-quality
tomographic methods described in this article.
The current paper is organized as follows: Section 2

contains a description of the AUG SXR diagnostic, which
features a progressive design well suited for the tomogra-
phy. In Section 3, we give an overview of the tomography
problem and Tikhonov regularization method followed by
the thorough derivation of the used algorithms in Sec. 4.
Various methods for the optimal choice of the regulariza-
tion level are examined in Section 5. Additionally, since
the reconstruction is always subject to experimental er-
rors, a detailed investigation of variance and bias is done
in Sec. 6. Finally, the performance of the proposed meth-
ods on the real SXR pro�les from is AUG presented in
Sec. 7.

II. SXR DIAGNOSTIC ON AUG

The current design of the AUG SXR system is, with
a few minor changes, operational since the year 200617.
The diagnostic consists of 15 miniature heads assembled
to 8 cameras named F,. . . ,M resulting in a total of 208
lines of sight. The cameras H, I and J have three heads;
camera K has two and cameras F,G, L and M have only
one head due to spatial constraints in the divertor and
between the wall tiles. The design of all heads is identi-
cal with the focal length of 14.0mm and the slit of size
0.3�5.0mm2. The arrays of SXR-diodes are centered
perpendicularly to the axis of the heads.
Each head is equipped with a linear array of 35 Cen-

tronic Series 5T (LD35-5T) diodes of size 4.6�0.96mm2

with 30�m separation. The diodes are shielded by cir-
cularly curved 75�m Be foils attached behind the slits.
The measured variability in the �lters thickness was be-
low 5%. The available spectral interval with response
higher than 50% ranges from 2.3 keV to about 13 keV.
Roughly only half of the central diodes on a chip are
used to limit the range of the incidence angles on their
surfaces and the associated variation in their e�ective
thickness and consequently the spectral sensitivity18,19.
Despite this restriction in the incidence angles, the e�ec-
tive thickness of the diodes can vary by 12% (Cameras H,
J) up to 19% (camera I) between the central and the edge
diodes. The increased e�ective thickness in
uences sensi-
tivity only for photons with energies above 7 keV, which
usually do not occur at the cold edge plasma, observed
by the side channels, therefore this e�ect was neglected
in the calibration.
The positions of all cameras and their observation

cones are shown in Fig. 1. Camera F is situated in the
tokamak sector 5/16, and the rest is in the sector 11/15
separated by 137°. Because the camera G has almost
identical geometry as the camera F+, the toroidal mode
number of the emissivity perturbation can be estimated

Figure 1. A poloidal projection of the experimental setup
of AUG soft X-ray diagnostic system. The viewing cones of
each camera are indicated by black circular sectors. Outboard
cameras H, I, J and K are composed of multiple heads with
the slit in the same position. The viewing geometry of F
camera is similar to G, however F is toroidaly separated by
137° from others. In gray are shown the volumes of sights of
the core channels for G and I camera and on the background
are shown contours of the real SXR emissivity for illustration.
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Figure 2. AUG SXR diagnostic (Fig. 1) shown in the pro-
jection space, where the LOSs are indicated by the dots in
polar coordinates with the pole in the magnetic axis and p
and � are distance and angle of the LOS tangent. The LOSs
of the central heads are colored black, and side heads are red
and blue. Contours of the Radon transformation20 of the ra-
diation pro�le from the Fig. 1 are shown on the background.
Beige area indicates the tokamak vessel. A typical shape of
the last closed 
ux surface (LCFS) is plotted by the dashed
line.



Optimized tomography methods for high resolution plasma reconstruction at AUG 3

merely from the SXR measurements. The location of the
cameras also provides almost regular coverage of the pro-
jection space20 shown in Fig. 2 and additionally lines of
sight (LOS) from the central head of each camera are
always crossing the plasma core. The spatial resolution
can be estimated from the width of the volume of sights
(VOS) in the plasma core. The full width at half max-
imum of the vertical VOS of the camera F is 7 cm due
to the signi�cant distance from the plasma core but only
4 cm for the horizontal camera I which is the closest. The
available spatial resolution of the tomography is moder-
ately improved by synergies of multiple overlapping cam-
eras.

The etendue of the LOSs was calculated by a full 3D
model of the VOS including all obstacles in the path21,22.
Toroidal spreading of the VOS and toroidal curvature
of the plasma column cause an outward radial shift of
the VOS centroid in the plasma core of around 5mm
compared to the LOS. The largest radial shift is observed
for the vertical LOSs of the F,G and K cameras. This
e�ect is included into the tomography by an analytical
correction21.

The signal from the diodes is measured by two distinct
acquisition systems. The older one, measuring 80 chan-
nels (mainly the H camera and the lower half of the
I camera), is equipped with 12-bit analog-digital con-
verters (ADCs) with 500 kHz sampling frequency and an
80 kHz low pass �lter. The newer system acquires the rest
of the 128 channels with 14 bit ADCs, 2MHz sampling
frequency and a �xed low pass �lter at 500 kHz. Both
systems are used for the regular tomographic reconstruc-
tions and therefore the slower system is interpolated to
2MHz sampling. The uncertainty of these interpolated
channels is slightly increased to re
ect the fact that some
temporal information was lost. However, only the new
system is usable for studying the fast MHD phenomena
like toroidal Alfven eigenmodes.

The ampli�cation chain is composed of a preampli�er
installed close to the tokamak vessel and a two stage main
ampli�er in a shielded area. The gain of the preampli�er
can be varied in the range 3.75-250�A/V and the main
ampli�er's gain can be set between 1 and 210. The power
incidenting on the diods is estimated from the general
factor 3.62W/A describing the diods sensitivity in the
X-ray range, however an independent absolute calibra-
tion was not performed. The gain is adjusted before every
experiment for each signal based on the expected emis-
sion intensity. The dark current of the diodes is compen-
sated in the main ampli�ers before the discharge starts.
Additionally, a small o�set is add to use the full range
of the ADC without cutting o� the noise with negative
values. After the acquisition, the raw data is stored in
a database shot�les, consuming in total 5.5GB of disk
space per discharge. Finally, because managing of such
large data �les is very demanding for the memory and
computing power, a data edition decimated to 5 kHz is
saved as well. It is commonly used for impurity trans-
port and sawtooths studies and observation of slow MHD

modes.

III. PLASMA TOMOGRAPHY

A. The tomography problem

A pinhole camera does not directly measure the local
emissivity but only a signal integrated over the VOS. The
goal of the tomography is thus to reveal the best estimate
of the local spatial distribution of the emissivity. The
power Pi incident on the detector i equals

Pi =

ZZZ
VOS

dr

i(r)

4�
G(r) (1)

where the integration is done over the whole volume ob-
served by the detector, 
i(r) denotes the solid angle of
the cone from the exposed surface of the detector and
G(r) is a local plasma emissivity spectrum integrated
over the sensitivity range of the detector. The brightness
bi (in units W/m2) can be expressed when both sides of
the Eq. (1) are normalized by the etendue, de�ned as a
product of the solid angle 
i and area A perpendicular
to the axis of the cone 
i

bi = Pi
4�

hA
ii
=

ZZZ
VOS

dl(r)�(r)G(r) (2)

where l is the distance between the detector and the
point r, � is the ratio between the local value of etendue
(A
)(r) and average etendue hA
i used for the normal-
ization. The set of equations for bi are the Fredholm
integral equations of the �rst kind which will be solved by
discretization on a rectangular grid with the total num-
ber of n pixels. Thus, the problem can be rewritten as a
set of m linear equations for m detectors

bi =

nX
j=1

Tijgj i 2 1; : : : ;m (3)

T 2 R
m;n denotes a matrix of the geometry, de�ning

the contribution of a pixel j to the measurement i and
gj is the local emissivity at the j-th pixel. The mea-

sured brightness b̂i is subject of usual experimental er-

rors, therefore b̂i = bi + �i, where �i represents a random
error with zero mean and variance �2i .

B. Tikhonov regularization

The system of equations obtained by discretization
of the Fredholm integral equations is ill-posed and for
the tomography of a plasma also usually signi�cantly
under-determined (m � n). A common method to �nd
a unique and sensible solution is the Tikhonov-Philips
regularization23 in the general form which searches for a
minimum of a functional �(g)

�(g) = (Tg � b̂)T��1(Tg � b̂) + �O(g) (4)



Optimized tomography methods for high resolution plasma reconstruction at AUG 4

the �rst term stands for the data �delity, i.e. residuum
weighted by the expected covariance matrix �, O(g)
denotes a regularization functional and � is a positive
regularization parameter balancing the strength of a pri-
ori constraints with respect to the goodness of �t. For
the sake of simplicity, we will assume further that T and
b are already weighted by a covariance matrix

T �� 1

2T b �� 1

2b:

The purpose of O(g) is to impose a priori knowledge
about the emissivity pro�les, often some kind of a
roughness penalty and a boundary constraint. The
regularization operator is typically a quadratic form
O(g) = gTH(g)g, with symmetric and positive semi-
de�nite operator H 2 R

n;n which can be a function
of g. The regularization operator therefore includes
soft constraints for the solutions. Hard constraints
can be imposed by introducing an orthonormal matrix
P 2 Rm;l and performing the transformation T̂ = TP,
Ĥ = PTHP and ĝ = PTg. The solution will be re-
stricted to a linear subspace generated by columns of P.
An example of P are the orthonormalized Fourier-Bessel
basis functions in the straight �eld line coordinates.
The solution of the quadratic optimization problem (4)

for a constant matrix H is given by

g = (TTT+ �H)�1TT ~b: (5)

Direct inversion of this equation is possible, neverthe-
less due to large matrices dimension n, high computa-
tion complexity O(n3) and required number of inversion
to �nd proper � this procedure is highly impractical.
The optimization problem (5) has the unique solution

if kerT \ kerH = 0. But, in order to employ computa-
tionally e�cient numerical algorithms, we will strengthen
our assumptions and a regularH matrix will be required.
Regularity can always be imposed by a proper de�nition
of boundary constraints or by adding an identity matrix
"I to H, where " has the size of the order of the smallest
nonzero eigenvalues of H.

C. Minimum Fisher Information

Among the most common regularization operators be-
longs an identity operator, suppressing the Euclidean
norm of the solution and the Laplace operator reducing
the curvature of the emissivity pro�le24,25. Nevertheless,
the special features of the SXR pro�les, like the peaked
distribution of the SXR radiation, the sharp gradients
and the large dynamic range, make the nonlinear Mini-
mum Fisher Information regularization (MFI)9 an ideal
candidate for the regularization functional. This func-
tional can be expressed in the following form

OMFI(G) =

ZZ
dS

1

G
(ruG)

TJ2(rvG); (6)

where u(x; y) and v(x; y) are two locally orthogonal vec-
tor �elds and J2 2 R

2;2 stands for a matrix of ones. In

the case of u parallel with the Cartesian coordinates, it is
called isotropic MFI and if u is locally tangential to the
magnetic 
ux surfaces, anisotropic MFI regularization is
obtained. More details about the implementation of the
anisotropic MFI can be found in Ref. 26. The regulariza-
tion operatorH, representing a linearized and discretized
functional (6), takes the form

H(k) =
X

`2fu;vg

BT
` W

(k)B`; (7)

where B` denotes a discretized gradient operator r̀ and

W
(k)
ij is a weight matrix de�ned as inverse of g(k)

W
(k+1)
ij = �ij=max fg

(k)
j ; "g:

The Tikhonov regularization must be solved iteratively,
because the weight matrix W depends on the emissivity
g. The small positive constant " prevents zero division
and moreover it serves as a positivity constraint. For this
work 10�8 of the emissivity maxima was used, which is
usually an adequate compromise between the positivity
and a numerical instability caused by too low value of �.

IV. SPARSE DIAGONALIZATION METHODS

A large variety of methods were developed to solve
the Tikhonov problem, for instance the generalized
eigenvalues (GEV)27,28, the singular value decomposi-
tion (SVD) method29, the generalized SVD (GSVD)25,30,
bidiagonalization31 and the most common is the direct
inversion9,26,32,33. However, none of these methods in
the current implementation is able to take e�ciently ad-
vantage of all the aspects speci�c to the Tikhonov reg-
ularized SXR tomography. First of all, the projection
matrix T has a small numerical rank r � m � n, while
the regularization operator H is a full rank positive de�-
nite matrix. Additionally, both matrices are sparse. The
T matrix for the AUG SXR system has roughly 5% non-
zero elements and the matrix H has a regular sparsity
pattern and approximately 0.01% �ll-in.
In this section, we present modi�cations of the SVD

and QR algorithms for the solution of the Tikhonov reg-
ularization that allows taking full advantage of these con-
ditions.

A. Sparse SVD decomposition (sSVD)

Singular value decomposition is a common tool for the
solution of the Tikhonov regularization in the standard
form, i.e. when the regularization operator is an iden-
tity matrix In

34. Therefore, it is necessary to transform
Eq. (5) into the standard form, before the SVD method
can be applied. In the case when H = LTL and L is
invertible, the transformation is straightforward:

�T = TL�1 �g = Lg
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and then by the application of the substitution we get

kTg � bk22 + �kLgk22 = k�T�g � bk22 + �k�gk22;

where k � k22 denotes the Euclidean norm. This trans-
formation method was proposed by Tarasaki29 for the
Laplace operator. Let's consider a more general case
of a sparse and positive de�nite but otherwise arbitrary
matrix H. The transformation to the standard form
can be performed very e�ectively by the sparse Cholesky
decomposition35 of H. A regularized solution is found in
the following steps:

1. The sparse Cholesky decomposition of the matrix
H is evaluated through

PHPT = LLT (8)

where L is a sparse lower triangular matrix and P
is a �ll-reducing permutation.

2. In the next step, Eq. (5) is transformed into the
standard form�

TTT+ �PTLLTP
��1

TT = PTL�T
�
ATA+ �In

�
AT

(9)

de�ning the integrated projection matrix L�1PTT

as A. Exploiting the sparsity of H and T matri-
ces, such inversion can be evaluated with O(nm)
complexity. The matrix A is not sparse anymore,
except of the empty rows corresponding to the pix-
els outside of the plasma boundary. For this reason,
the SVD in the following step will be evaluated for
nonzero rows only.

3. Now, when the standard form is obtained, the
solution can be found by the SVD decomposition
of the matrix A, i.e. A = UDVT . Columns of the
matrices U 2 Rm;r and V 2 Rn;r are left-singular
resp. right-singular vectors of A and D 2 Rk;k is
a matrix with singular values on the diagonal in
descending order. Substituting the SVD of A to
Eq. (9) results in a decomposition of a form that is
already appropriate for the numerical solution

PTL�T
�
ATA+ �In

�
AT = ~V(D2 + �Ir)

�1DUT

where matrix ~V 2 R
n;r of the reconstructions

basis is de�ned as ~V � PTL�TV. Nevertheless,
the matrix A is \tall-and-slim" and therefore it is
more economical to calculate a eigen-decomposition
of the smaller Hermitian matrix AAT instead of
proper SVD of A.

4. The regularized solution g� is obtained in the form
of a series expansion

g� =

rX
i=1

fi;�
(UT

i b)

Di

~Vi: (10)

Here Ui and ~Vi denotes columns of matrices U and
~V, respectively. The �ltering factors are de�ned as
fi;� = (1+�=D2

i )
�1; monotonously decreasing with

� and i.

The �rst step, when the Cholesky decomposition of the
H matrix is performed, shows linear complexity because
of the regular sparsity pattern and the small number of
nonzero elements proportional to n. The time spent in
this step is negligible. The second step is done by back-
substitution of the sparse lower triangular matrix L with
O(nm) complexity. When SVD is replaced by the eigen-
vector decomposition (EV), then the required number of
operations is scaling as O(m3+nm2) while if the SVD is
applied, the number of 
ops will increase to 2nm2+11m3

as it was shown in Ref. 36, and the measured computing
time was increased �ve times. The other steps are also
not a�ecting the �nal linear complexity. Moreover, our
analysis indicates a cubic dependence of the decomposi-
tion time on the number of detectors m in the EV.

B. Sparse QR decomposition (sQR)

An alternative method based on a triple application
of the QR decomposition was proposed in Ref. 37 by
Hosoda. This method does not provide an accurate solu-
tion of Eq. (5), however, the solution is a very close ap-
proximation, the di�erence is usually lower than 0.1%.
Previous comparisons of the original algorithms29 have
shown ten times lower computation cost than the former
SVD method.
The description of the optimized algorithm for the

decomposition of the sparse matrices is summarized
below:

1. The �rst step is identical to the sSVD method; the
matrix A is obtained via the integration of the pro-
jection matrix.

2. In the next step, the pivoted rank-revealing QR
decomposition is applied on A

Q1D̂S
RRQR
= A�; (11)

where Q1 2 R
n;k is a unitary matrix, D̂ 2 R

k;k

is a diagonal matrix with positive diagonal values
sorted in non-increasing order, S is an upper tri-
angular matrix with a unitary diagonal and � is
a permutation matrix. The Q-less QR decomposi-
tion can be employed, because Q1 is not required
explicitly in the following steps.

3. The ordinary QR decomposition is applied to the
matrix �ST

Q2R2
QR
= �ST

where R2 2 R
r;r is an upper triangular matrix and

Q2 2 R
m;r is a unitary matrix.
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4. Now the diagonal matrix D is swapped with the
R2 matrix

M = D̂RT
2 D̂

�1

and the third QR decomposition of the matrix M
is computed

R3DRQ3
QR
= M

as well as in the second step, the Q-less QR decom-
position can be used. R3 2 R

r;r is an upper trian-
gular matrix with a unitary diagonal and DR2R

r;r

is a diagonal matrix.

5. In the last step, the �nal integration by the L oper-
ator is performed and the decomposition is trans-
formed to the form analogous to the preceding
methods

R = D̂RT
3 (DDR)

�1

D = D̂DR

U =
�
R�13 Q

T
2

�T
(Forward-substitution)

V = AUD�1

V̂ = (PL�TV)T (Back-substitution):

Since the de�nition of the matrices U; D and V̂ is now
consistent with the notation in sSVD algorithms, the reg-
ularized solution can be estimated by the formula (10).
The arguments used for the analysis of the computaional
complexity of the sSVD method are valid here as well.
In the sQR algorithm the most expensive step is the �rst
RRQR decomposition requiring O(nm2+m3) operations.
The other steps have a O(nm) complexity or even lower.
Since the asymptotic complexity are both algorithms,
sSVD and sQR, identical, it is necessary to assess these
algorithms by a direct comparison of the computation
time.

C. Computational e�ort

Additionally to the algorithms introduced in the pre-
vious section, also the GEV method27 based on the GEV
routine for sparse Hermitian matrices from the ARPACK
library38 and GSVD30 were included in the investigation
in this section, because both are regularly used for the so-
lution of the generalized Tikhonov problem. The mutual
comparison was performed for a variable number of pixels
n and with a �xed number ofm = k = 200 detectors. The
number of the nonzero elements in the projection matrix
was about 5% and the used anisotropic regularization
operator had all nonzero elements regularly aligned in
nine diagonals. All computation tests were run in a sin-
gle thread on an Intel Core i5-2540M processor to allow
a fair comparison of these methods. An algorithm based
on the direct inversion of the Tikhonov problem by the

sparse Cholesky solver26 was used a reference method.
The measured computation time is shown in Fig. 3 with
dashed lines indicating the asymptotic complexity.

The fastest method is based on the sQR decomposi-
tion, and it takes about 34ms for a moderate resolution
40�60 pixels. sQR is followed by the sSVD algorithm
that is 30% slower. Both algorithms are showing a lin-
ear time complexity in a number of pixels n, which tails
o� for n . 5m. Other algorithms based on the GEV and
the GSVD are for a reasonable range of n signi�cantly
slower than the direct inversion. The time measured for
the algorithm based on the sparse GEV are indicating a
quadratic complexity in n but with rather a large mul-
tiplication factor. Moreover, GSVD based on sine-cosine
decomposition39 is not able to e�ciently take advantage
of the matrix sparsity and, thus the computing time is
scaling as O(n3).

The decomposition methods even further outperform
the direct solvers because at least 3 � 10 inversions are
necessary to solve the inner loop of the MFI algorithm
and �nd the optimal regularization parameter. On the
contrary, once the decomposition is available, the inner
loop can be solved instantaneously in � 1ms with O(mk)
complexity.

C
om

p
u
ta

ti
on

 t
im

e 
[s
]

0.01

0.1

1

10

100

Number of pixels
103 104 105

Direct inversion
QR-sparse
SVD-sparse. 
GEV-sparse
GSVD

O(n)

O(n2.7)

O(n2)
O(n3)

O(n)

Figure 3. Computation time of di�erent decomposition meth-
ods was compared to the direct inversion algorithm based on
the sparse Cholesky decomposition26. The asymptotic com-
plexity is indicated by the dashed lines.

The sSVD and sQR decomposition methods are very
e�cient especially in the case of the low-rank projection
matrix. The direct inversion is better only in the case
of large rank k or very low resolution n � 103 as it was
shown in Refs. 40 and 41. If the decomposition is not
evaluated for each time frame separately, but instead the
discharge is divided into short blocks reconstructed at
once, it is possible to compute roughly 200 frames/s at
moderate resolution 40�60 px in a single thread.
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V. THE OPTIMAL CHOICE OF THE
REGULARIZATION PARAMETER

One of the key issues related to the Tikhonov regu-
larization is the proper selection of the regularization
parameter. The optimal parameter �opt is minimizing
the di�erence between the reconstructed and the origi-
nal pro�le. Since the original radiation distribution is
not available in the experiment, this parameter must be
determined purely from the measurements and a priori
knowledge. Moreover, the optimal estimator should be
robust, reliable and last, but not least, the computation
complexity should be polynomial in m, independent of
the number of pixels n. Hence, the optimal solution must
be found without the explicit evaluation of the g�.
Many di�erent methods have been proposed for the

choice of the regularization level. Commonly used are
the Morozov's discrepancy principle (DP)6,42, the cur-
vature of the L-curve43, the generalized cross-validation
(GCV)24,29,the predicted sum of squares (PRESS)44,
the corrected Akaike information criterion (AICC)

45 and
the quasi-optimality criterion46,47. However, except DP,
these methods are not commonly used in SXR tomogra-
phy. Since the behavior of these methods signi�cantly de-
pends on the investigated problem, the only way to iden-
tify the most suitable one is to perform a comparison on
arti�cial and experimental measurements. Tests of these
methods on the arti�cial radiation pro�les have identi�ed
the most promising methods { PRESS, AICC, GCV, and
DP. Due to the highly ill-posed character of SXR tomog-
raphy, the corner of the L-curve is insigni�cant or missing
on real measurements. The quasi-optimality criterion is
not able to provide a single, reliable and unique opti-
mum even for simple arti�cial pro�les. Additionally, the
compatibility to nonlinear MFI needs to be investigated.
The regularization level in the following section will

be quanti�ed by a quantile q� in set fD2
i g equal to �.

Compared to the regularization coe�cient � itself, whose
value does not have a direct meaning and depends on the
normalization of the H and T matrices, q� roughly cor-
responds to the fraction of degrees of freedom removed
by the regularization. A value close to one results in very
high regularization, almost completely ignoring the mea-
surements while the value about zero causes negligible
regularization.

A. Discrepancy principle

Morozov's discrepancy principle (DP) is the most com-
mon method among the plasma physicists10,26,33,40,42 for
the choice of the optimal regularization parameter. The
regularization parameter is chosen such that the residual
norm for the solution g� satis�es

kTg� � bk
2
2 � k���k22 = 0 (12)

where ��� is the estimated level of the noise level. This
condition together with the minimizing of the regulariza-

tion functional leads to a constrained quadratic optimiza-
tion problem, easily solvable by an iterative root-solver.
A unique solution satisfying the condition (12) exists if

kb�UUTbk2 < k���k22 and kbk
2
2 > k���k22, which is ful�lled

always if the projection matrix T has a full rank and the
measurement exceeds the noise level. For the decompo-
sition methods introduced earlier, the residuum can be
expressed in the following form

kTg� � bk
2
2 =

mX
i=1

�
(1� fi;�)U

T
i b
�2
; (13)

where fi;� are �ltering factors introduced in Eq. (10),
fi;� = 0 for i � r and U must be multiplied by the
matrix R from the right for the QR method. The root
in � can be found with mere O(mk) complexity. The
choice of Eq. (12) was motivated by the fact, that if the
Tikhonov regularization is correctly weighted by the sta-
tistical uncertainties and approximately normal noise dis-
tribution can be assumed, the residuum will have the �2

distribution with p degrees of freedom. The expected
value of �2 is also p and it can be easily checked that

p = m� k +
Pk

i=1(1� fi)
2. Since the existence of the

root would not be generally guaranteed, we will assume
p � m, which leads to Eq. (12) and tends to slightly
overestimate the regularization parameter.
The discrepancy principle strongly depends on a re-

liable estimate of the uncertainty level for each channel
and time frame and such knowledge is usually not directly
available. We have estimated the statistical variance
from the temporal/spatial characteristics of the measured
signals. However, the systematic errors are unknown,
and they can also depend on the pro�le or energy spec-
trum of the radiation. For this reason, di�erent methods
depending solely on the measured data must be consid-
ered as well.

B. PRESS - Predicted residual error sum of squares

Predicted residual error sum of squares (PRESS)48 is
based on the leave-one-out cross-validation method. The
model that minimizes the PRESS score should have the
best predictive capability. Over-�tted models tend to
�t noisy features in the data, reducing their predictive
capability. On the other hand an over-regularized model
is not be able to follow real features in the measurements,
leading to an increase of the PRESS as well. The value
of PRESS can be expressed by the following formula

P(�) = m�1
mX
l=1

h�
Tg

(l)
�

�
l
� bl

i2

where g
(l)
� is the solution in which the l-th detector was

removed. A simpli�ed solution was found for the decom-
position based methods49

P(�) =
1

m

mX
k=1

 Pr

j=1

Pm

l=1(1� fj)UkjUljblPr

j=1(1� fj)U2
kj

!2
(14)
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and the optimum can be found with O(mr) complexity.
The �rst comparison of the PRESS method and the GCV
method, presented by Iwama44, show superiority of the
GCV, because if the hat matrix

Â� � T(T
TT+ �H)�1TT (15)

is close to diagonal, the PRESS method is not able to
provide a reliable estimate due to lack of redundancy in
the model. But this is not the case of SXR tomography,
where assumption of smoothness and large number of
overlapping LOSs guarantee su�cient redundancy.

C. GCV - Generalized cross-validation

The underlying principle in the generalized cross-
validation (GCV) is very similar to the PRESS method.
GCV was �rst introduced by Wahba50 and further elab-
orated by Golub51 for the ridge regression and used for
plasma tomography by Iwama24,52 later. GCV score is
de�ned as

G(�) �
k(Im � Â�)bk

2
2

Tr(Im � Â�)2
:

Using a decomposition (10) we will obtain

G(�) =
kTg� � bk

2
2

(r �
Pr

i=1 fi)
2 (16)

and the residuum in the numerator is evaluated from
Eq. (13). The existence of a global and unique opti-
mum of the GCV curve is not guaranteed. Consequently,
we have observed on real measurements that the proper
optimum is not the global one but, if it was present at all,
it was the local optimum with the highest regularization.

D. AICC - Corrected Akaike information criterion

An alternative way of selecting the optimal regulariza-
tion parameter is a negative entropy minimizing principle
called the corrected Akaike information criterion (AICC),
originally proposed by Hurvich in Ref. 45. AICC is a
modi�cation of the well known AIC53 method corrected
for �nite size samples. AICC is de�ned by the following
formula:

Ac(�) = kTg� � bk
2
2 +m(ln(2�) + 1) +

2(p+ 1)m

m� p� 2

where p denotes the number of parameters. The e�ective
number of parameters of the Tikhonov regularization is
determined as54 p = Tr(Â�) =

P
fi. Because Ac(�) is

not homogenous function of the residuum, the position of
the minima will depend on the estimated absolute level
of the noise. This means that under real experimental
conditions a systematic error can be introduced.

E. E�ect of the nonlinear MFI iterations

The convergence and the �nal solution of the MFI de-
pend among others on the choice of the regularization
parameter in the intermediate steps. The decomposition
fU(i);D(i);V(i)g, obtained in each iteration by sSVD or
sQR method, is better adapted to describe the solution
than the previous one. This is illustrated by reconstruc-
tion of a rather peaked phantom (arti�cial pro�le) in
Fig. 4, where the GCV optimal reconstruction is shown
in the upper row and the energy spectrum of the i-th it-
eration de�ned as (U(i)b)2j is in the lower row. In the
0-th MFI iteration, equivalent to the 1. order Tikhonov
regularization, the energy spectrum is broad, the signal
is mixed with the noise and separation of the dimensions
dominated by the random variability is possible only for
i > 150. But, in the �rst and the second iteration the
spectrum is signi�cantly compressed, and the dimensions
dominated by the noise can be now clearly separated for
i > 70.
The e�ects of the MFI iteration on di�erent regular-

ization selection methods is summarized in Tab. I. The
�rst column contains the regularization level for each it-
eration described by q� in and the second column is the
relative deviation of the tomogram g� from the known
phantom g:

� = kg� � gk2=kgk2: (17)

Evidently, the optimal regularization level is increasing
with each iteration while � is decreasing for all methods.
At the same time, the optimum for GCV, PRESS, and
AICC methods becomes more pronounced and easier to
distinguish due to the better signal/noise separation in
the energy spectrum (Fig. 4). GCV and PRESS methods
provide the best estimate of the regularization level with
the �nal relative deviation � just by 1% higher than the
optimum. The discrepancy principle and AICC have both
selected over-regularized solutions.
Moreover, we have observed that using the formerly

introduced methods in the intermediate iteration steps
lead to the signi�cant increase in failure rate of the
tomography on the real data and slowing of the con-
vergence. Therefore, we have set the regularization to
a �xed value q� = 75%, which is above the typical reg-
ularization level in AUG. The optimal regularization is
selected only in the last iteration.

F. Comparison of the regularization methods using
arti�cial data

The common way to assess the performance of a to-
mography method is to reconstruct phantom pro�les. We
have prepared a set of phantoms with increasing com-
plexity, changing from simple Gaussian, over peaked and
sharply hollow to a complex hollow-peaked pro�le as it is
shown in Fig. 5. The reconstruction was evaluated with
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Figure 4. A tomographic reconstruction of the peaked radiation pro�le is illustrating the e�ect of the anisotropic MFI iterations
on the reconstruction quality. In the upper row is shown phantom pro�le and the reconstruction for 0-th to 2-th MFI iteration
in a nonlinear colorscale. In the lower row is the corresponding energy spectrum (UT

b)2i .

Table I. The performance of di�erent regularization selecting
methods on the peaked radiation phantom shown in Fig. 4
during MFI iterations. Relative 5% noise was added in the
measurements. The value of optimum regularization was de-
termined as the position of the minimum between reconstruc-
tion and the phantom. Regularization level is described by q�
de�ned as quantil of set fD2

i g equal to �.

0. step 1. step 2. step

Method q�(%) �(%) q�(%) �(%) q�(%) �(%)

optimum 4 (12) 15 (8) 37 (7)

GCV 13 13 37 10 56 8

PRESS 28 21 38 10 52 8

DP 22 18 54 14 76 12

AICC 12 22 56 14 71 11

a resolution of 100�150. The noise level, based on the
real discharge noise, was in average equal to 2% of the
signal in each channel.
The performance of the method is summarized in

Tab. II. The di�erences between the methods are not
signi�cant, and the selected regularization is always close
to the optimal value. Nevertheless, DP and AICC often
provide slightly over-smoothed solutions with a higher
residuum. The diversity of the methods on the real data
is substantially larger as will be shown in Sec. VIC.

VI. RECONSTRUCTION UNCERTAINTY

A common question related to the tomography is how
to estimate the uncertainty of the reconstruction and the
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Figure 5. Four phantoms used to evaluate the properties of
the regularization selection methods.

derived quantities. The answer is aggravated by the sig-
ni�cant contribution of the regularization bias. The con-
tribution of the bias and variance to the relative mean
square error (MSE) of the phantom pro�le is shown in
Fig. 6. And obviously, the bias can represent the ma-
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Table II. Performance comparisom of di�erent regularization
methods on various arti�cial SXR pro�les. The score was
measured as a relative deviation [%] with respect to the phan-
tom (Eq. (17)). The �rst line corresponds to the ideal choice
of regularization parameters that minimize the di�erence from
phantom.

Gaussian Peaked Hollow Complex

Method � (%)

optimum (1.3) (3.6) (6.2) (6.7)

GCV 1.4 3.8 7.1 8.1

PRESS 1.9 3.7 8.2 9.0

DP 1.3 5.9 9.7 9.5

AICC 1.3 4.9 9.4 9.5

jority of the MSE. In this section, the components of
MSE will be examined, and an analytical formula for the
covariance matrix of the solution will be proposed. Ad-
ditionally, we will describe a way of how to treat the
systematical errors.

A. Statistical and regularization error

The regularized solution of Eq.(5) yields to the follow-
ing expression for the mean square error (MSE) in g�:D

(g� � g�)
2
E
k
=

rX
i=1

f2i;�
V2
ki

D2
i

+ (18)

+

 
mX
i=1

(1� fi;�)
UT

i b
�

Di

Vki +
��
In �VVT

�
g�
�
k

!2

where h�i indicates averaging over the 
uctuating part,
g� is the accurate but unknown radiation pro�le and
b� = Kg� is the accurate measurement, unknown as
well. The �rst term on the right is describing the variance
caused by statistical uncertainty in the data. The error
distribution is assumed to have zero mean and standard
deviation of one. The term in the brackets represents the
bias of our solution. The left term is the regularization

error caused by suppressing small features in the mea-
surement b�. Finally, the last term is a consequence of
the rank de�ciency of the projection matrix T and we
will call it singularity error. Althought the regulariza-
tion error and the singularity error cannot be estimated
without knowledge of the real radiation pro�le g� and
the brighness b�, we can perform a test on a class of the
expected radiation pro�les to estimate the in
uence of
the bias on the reconstructed quantities. When only a
weak regularization is applied, all �ltering factors fi will
be close to one and the statistical error will dominate the
overall error. On the other hand, if strong regularization
is used, most of the fi values vanish, and the error is
dominated by the regularization error. The singularity
error can be reduced only by including a priori knowl-
edge more consistent with the solution (like anisotropic
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Figure 6. (top) Value of the GCV, PRESS, AICC and DP
are plotted as a function of the regularization level q�. The
minima of these functions and the root for DP are indicated by
colored markers. The relative MSE obtained by comparison
with the phantom and reconstruction is shown by the black
thick line. Two components of MSE - the variance and bias
are then indicated by a red dashed and green dash-dotted
line. The vertical black line indicates position of the MSE
minima. (bottom) The second �gure shows the mean energy
spectrum h(Uib)

2i of the measured data averaged over time
(black thick line) and spectrum of noiseless data (black thin
line). The GCV optimal �lter factors fi = (1 + �=D2

i )
�1

are plotted in red and blue dashed indicates the unfolding
ampli�cation factor 1=Di.

smoothing) and by a better angular and spatial coverage
of the projection space (cf. Fig. 2).

The resolution of our reconstruction was assumed to be
high enough to keep the pixel discretization error negli-
gible. Moreover, the systematic errors in the geometry
of LOSs, their calibration and other imperfection in the
model were not included, because they can be signi�-
cantly reduced as it will be shown in Sec. VIB. And
�nally, the regularization parameter � is subject to the
statistical uncertainty as well. Nevertheless, close to the
optimal regularization level, i.e the value of � minimizing
MSE (see Fig. 6), the total MSE is only weakly sensitive
to the perturbations in �.

The statistical uncertainty in the reconstructed pro�le
can be assumed as a lower boundary for the real un-
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certainty. Based on the standard uncertainty propaga-
tion approach, the covariance matrix of the solution g�
is given by

�g
ij = h(gi � hgii)(gj � hgji)i =

rX
k=1

f2k
VikVjk
D2

k

: (19)

where V and D are matrices introduced in the sSVD and
sQR methods. Our tests of the phantom reconstructions
indicate that the statistical variance is usually about half
of the total MSE. Fig. 7a shows a reconstruction of an
arti�cal pro�le zoomed in the plasma core region. The
variances �g

ii associated with each pixel i can be imaged
as it is demonstrated in Fig. 7b. Further, Fig. 7c shows
the correlation of a single pixel indicated by the black
cross with the neighbor pixels determined from the cor-
responding row of the covariance matrix. Width and
shape of the correlation peak can provide an estimate of
the local spatial resolution.
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Figure 7. a) A core region SXR emissivity reconstructed from
a phantom by the MFI method with anisotropic smooth-
ing and GCV. The white contours are indicating a nor-
malized poloidal 
ux. b) relative standard deviation �i =p
hg2i � hgii2i=hgii of the reconstruction estimated from the

diagonal of the covariance matrix
p
�ii=gi, c) correlation of

the pixel j indicated by the black cross with the surrounding
pixels determined from the i-th row of the covariance matrix
�ji=�jj . The same pixel j is also marked in (a) and (b) of
the �gure.

B. Systematic errors

The unavoidable limitation of the experimentally
achievable accuracy is given by the systematical uncer-
tainties in the geometry and calibration of the SXR cam-
eras. Small deviations of the diodes position with re-
spect to the camera slit in combination with a short fo-
cal length have a strong in
uence on the LOS positions
and their etendue. The deviation of a diode position of
mere 0.2mm leads to roughly 2 cm shift of LOS in the
plasma core and consequently up to 20% discrepancies of
the measured brightness in the regions of the steep SXR
radiation, as is observed in typical AUG discharges.
The position and calibration errors are often diagnosed

within the multi-camera SXR systems9,10,55,56 because a
large number of viewing angles provides su�cient redun-
dancy of the measurements and the discrepancies can be
identi�ed and corrected.

1. Relative cross-calibration of the sensitivity

The cross-calibration of the SXR cameras at AUG was
evaluated for every discharge in an iterative manner. At
�rst, the initial calibration factors were used to perform
a reconstruction of the whole discharge. Afterward, a
single correction factor for each camera was obtained in
the least squares sense from the reconstructed tomogram.
This procedure was repeated until convergence, usually
achieved in the �rst step. Tests on the arti�cial pro-
�les indicate that the cross-calibration can provide es-
timates with accuracy well below 0.1%. The evolution
of the estimated cross-calibration factors for �ve exper-
imental campaigns is shown in Fig. 8. Variation of the
core heads is rather low, about 1-2% within a single cam-
paign. Higher variations as observed in J3 and K1 dur-
ing the �rst examined campaign is probably caused by
a deviating Be thickness of the �lters, which was retro-
spectively measured to be up to 20�m from the designed
thickness of 75�m. The higher scatters found in the side
heads (shown green in Fig. 8) is caused by a low signal
level, residual errors in the positioning of these cameras
and uncertainties in the sensitivity and etendue of the o�-
axis channels. Neutron degradation57 can also be present
since the total 
uency over the AUG campaign is about
5 � 1016 neutrons=m2, but no signatures of the neutron
damage in the relative calibration were observed.
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Figure 8. Relative calibration factors for each of 12 regularly
used SXR camera heads evaluated for 758 discharges between
years 2011 and 2016. The blue points indicate core heads,
while the green correspond to the side heads. Vertical lines
indicate the opening of the chamber, replacing of the diodes
arrays or Be �lters and increasing of the viewing angles for
cameras G, L and M.
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2. Adjustments of the viewing geometry

The self-consistent calibration of the heads positions
was performed on a set of discharges with negligible
centrifugal asymmetries and signi�cant variation in the
peaking of the radiation pro�le. The shape of the mag-
netic 
ux surfaces was veri�ed by a comparison be-
tween the CLISTE code58 and the TRANSP equilib-
rium solver59 constrained by the kinetic pro�les. The
deviation in the position of the 
ux-surfaces in the se-
lected discharges was lower than 5mm. The optimal
position correction was searched by a gradient descent
algorithm iteratively modifying the poloidal tilt for each
of the 13 heads, to minimize the residuum between the
measured brightness and the back-projection. New cross-
calibration factors matching the actual geometry had to
be estimated in every step. The regularization level had
to be �xed to reduce the number of the nested optimiza-
tion loops and increase the stability. Additionally, since
no poloidal asymmetries were expected in the selected
discharges, the solution was kept constant on the 
ux
surfaces by the projection matrix P introduced in the
section III B. In the end, the optimal tilt was estimated
as a median over the set of tested discharges. The vari-
ation in the tilt corrections was about 0°30 for the core
heads and 0°120 for the side heads. The estimated tilts
corrections from campaign 2015 are speci�ed in the fol-
lowing table:

Camera F G H1 H2 H3 I2

Tilt [°] -0.26 -0.99 -0.68 -0.46 0.10 -0.82

Camera J1 J2 J3 K1 K2 L M

Tilt [°] -1.43 -1.28 1.12 -1.59 -0.32 1.67 1.23

No signi�cant changes in these correction factors were
observed during the campaign. However, manipulation
with the cameras during the tokamak chamber openings
has often resulted in small position deviations. Proper
cross-calibration and self-consistent positioning of the
camera heads has reduced the reconstruction residuums
by an order of magnitude. Further, the suppression of
the systematic errors has signi�cantly enhanced stabil-
ity and reliability of all regularization selection methods
when used on the experimental measurements. More-
over, the measurements accuracy of the small stationary
poloidal asymmetries in the SXR radiation was also sig-
ni�cantly improved.

C. Robustness of the regularization methods for real
datasets

The crucial criterion for the choice of the optimal reg-
ularization method is their reliability and robustness for
the real measurements. All regularization methods have
shown an excellent performance on the arti�cial pro�les;

the failure rate was zero, and the estimated regulariza-
tion had never been far from the optimal value minimiz-
ing MSE. However, the real data present additional chal-
lenges. We have performed a test on 100 randomly chosen
discharges representing together 130 000 timepoints. In
contrast to the phantom based tests the original emis-
sivity, called also ground truth, is unknown. Therefore,
our investigation aims to identify the number of over- or
under-regularized tomograms. The comparison between
regularization methods is presented in Tab. III. The
most robust is the PRESS method, working in 99.85%
of the analyzed time-points. Since the GCV is less con-
servative, the regularization level is usually lower, which
lead to a higher number of under-regularized time-points.
Most of the failures have occurred in time-points with a
low signal-noise ratio (SNR), while a performance sim-
ilar to the PRESS method was observed in the hotter
plasmas, which are usually considered for the SXR to-
mographic reconstruction. Finally, the DC and AICC

methods are providing a comparable level of regulariza-
tion that is even higher than the estimate from PRESS.
The advantage of AICC is higher stability and lower pre-
disposition for extreme values of the regularization pa-
rameter than DC. However, both these methods are still
limited by considerable uncertainty in the estimation of
the real level of the data noise.

Table III. The results of the stability test performed with
the regularization methods on the real discharges. The �rst
two columns contain fraction of over- and under-regularized
frames and the last column is an average di�erence of regu-
larization level q� with respect to the PRESS method.

Method over-�tted over-smoothed h�q�i
GCV 6% 0.1% -15%

PRESS 0.1% 0.05% |%

DC 3% 19% 13%

AICC 0.4% 10% 13%

VII. POLOIDAL ASYMMETRIES OF THE SXR
RADIATION

The purpose of this section is not to provide an ex-
tensive overview of all poloidal asymmetries observed at
AUG or introduce new physics; the aim is to demonstrate
the capabilities of the new tomograhic procedures intro-
duced at ASDEX Upgrade. Recent studies of the poloidal
asymmetries accomplished at the Alcator C-Mod toka-
mak (see Refs. 60 and 61) motivated an increased in-
terest in the measurements of the impurity distribution
on the 
ux surfaces. Well understood physics and ad-
equately accurate measurements provide valuable infor-
mation about the fast particle distribution, plasma com-
position and the plasma position because all these quan-
tities have a strong impact on the observed asymmetry.
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The stationary poloidal asymmetry can be characterized
by the �rst angular Fourier components of the stationary
emissivity on the magnetic 
ux surface

g(�; �) = a0(�) (1 + ac(�) cos(�) + as(�) sin(�) + : : :) ;

where � and � represent a radial coordinate and a geo-
metrical poloidal angle, ac will be referred as in-out and
as as up-down asymmetry. In-out asymmetries in the
poloidal distribution of high-Z impurities are commonly
produced by the centrifugal force62, and in special cases
also by fast particles with highly anisotropic distribution
function60. The neoclassical friction force61 is expected
to be responsible for the up-down asymmetry.
The capabilities of the developed tomographic proce-

dure will be demonstrated on plasma discharge #30812
at 4.40 and 4.65 s. These two cases were selected for the
analysis because of a signi�cant variation in the poloidal
asymmetry caused by the centrifugal force in the �rst
timepoint and by the trapped minority ions produced by
the ion cyclotron range of frequencies (ICRF) heating in
the second case. Additionally, both cases were selected
shortly before a sawtooth crash when the peaking of the
kinetic pro�les and of the W density are maximal.
In the �rst case, the deuteriom plasma was heated only

by 2.5MW of neutral beam injection (NBI) and the core
ion temperature reached Ti = 4:5 keV, the electron tem-
perature was Te = 2:5 keV at a low core electron density
of 3 � 1019m�3 and the deuterium Mach number (de�ned

asMD =
q
mDv2�=(2kBTi)) in the plasma core was equal

to 0.33. In the second case, additional 4.3MW of ICRF
power was introduced with an outboard side resonance
at �� = 0:4. The ion and electron temperature was in-
creased to Ti = 6:0 keV and Te = 4:1 keV, still at a rather
low electron density of 4 � 1019m�3. The Mach number
was equal to 0.21 in the core, causing a nonnegligible
centrifugal force. The expected hydrogen minority con-
centration was roughly 5% and the e�ective ionic charge,
Ze� , was approximated to 2.0. Since the measured W
concentration was of the order of 10�3, more than 90%
of the core SXR radiation was caused by the tungsten.
The measured SXR brightness of the discharge #30812

at 4.40 s is shown in Fig. 9. For the reconstruction,
all available cameras were used except H2 with a bro-
ken biasing connector and I1, I3 with di�erent Be �lter
thickness. The smooth black line with diagonal crosses
indicates the back projected brightness from the tomo-
graphic reconstruction. Already the shape of the raw
data is suggesting a complex peaked-hollow pro�le with
a signi�cant outboard asymmetry. The corresponding
tomographic reconstruction evaluated in the resolution
100�150 points is shown in Fig. 10a. The chosen pixel
size of 13�13mm2 is safely below the scale of any fea-
tures resolvable by the AUG SXR diagnostic. Figure
10b shows a cut through the horizontal midplane of this
pro�le, indicating an evident increase of the outboard
SXR emissivity (blue) compared to the inboard emis-
sivity (red). Finally, in Fig. 10c we have evaluated the

centrifugal force (CF) asymmetry (red) of the SXR radi-
ation due to W and Bremsstrahlung and compared with
the experimental observation (black).

Figure 9. Raw measurements from the discharge
#30812@4.4 s (horizontal crosses with errorbars indicating es-
timated uncertainty), back-calculated values from the tomo-
graphic reconstruction (diagonal crosses), cut through projec-
tion space in Fig.2 averaged over width of VOS (smooth line),
removed points (red dots) and �nally crosses close to the zero
line are residua between measurements and back-projections.
Positive values of the normalized poloidal 
ux �� correspond
to the outboard side of the plasma.
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Figure 10. a) Tomographic reconstruction of SXR radiation
pro�le from discharge #30812@4.40 s evaluated in resolution
100�150 pixels with residuum �2=m = 0:6 and regulariza-
tion level q� = 55% estimated by GCV b) Emissivity pro�le
through mid-plane, where the full blue line represents the out-
board pro�le and the red dashed line the inboard pro�le. The
scattered points indicate the presence of higher harmonics.
c) Experimental asymmetry pro�le shown by full black line
with gray con�dence region compared with the calculated CF
asymmetry in red.



Optimized tomography methods for high resolution plasma reconstruction at AUG 14

The con�dence interval of the experimental asymme-
try pro�le was estimated from the covariance matrix
(Eq. 19) of the reconstruction and assumption of 5mm
uncertainty in the plasma position. The magnetic equi-
librium was obtained by the kinetics constrained equi-
librium solver in the TRANSP code with the separatrix
shape from the CLISTE code. Both pro�les match rea-
sonably well, the only larger deviation occurs at �� = 0:25
corresponding to the valley between the central peak and
the outer ring, which is probably caused by the �nite ra-
dial resolution of the tomography.
The SXR pro�le before the next sawtooth crash at

4.65 s is very di�erent. Figure 11 shows the experimental
data and an elevated level of inboard radiation in cameras
F, G, H, L and M is already visible. The tomographic
reconstruction is presented in Fig. 12a. The contour im-
age of the emissivity distribution shows an inboard accu-
mulation of W highlighted by a hollow radiation pro�le.
Fig. 12b represents a mid-plane cut through the previ-
ous emissivity pro�le. In this �gure an additional out-
board asymmetry in the outer regions of the plasma is
distinguishable. Finally, in Fig. 12c the experimentally
obtained asymmetry is compared with the CF asymme-
try, which describes well the outboard region. However, a
clear deviation is present around the resonance position
of the ICRF, which is caused by the trapped minority
ions. However, a detailed analysis and comparison with
ICRF models goes beyond the scope of this work and will
be addressed in future publications.
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Figure 11. SXR brightness obtained in the discharge
#30812@4.65 s during ICRF heating phase. Labeling and
color scheme used in these plots is the same as in Fig. 9.

VIII. CONCLUSIONS

We have introduced a modern multi-head SXR system
of the ASDEX Upgrade tokamak. This diagnostic pro-
vides excellent coverage of the plasma by 208 lines of sight
from 7 di�erent viewing positions. In order to fully take
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Figure 12. a) Reconstruction of SXR radiation pro�le from
discharge #30812@4.65 s with the residuum �2=m = 2:4 and
the regularization level q� = 49% determined by GCV. The
vertical dashed line indicates position of the ICRF resonance.
b) Midplane cut through the SXR emissivity pro�le shows a
signi�cant inboard accumulation of W in the core and out-
board asymmetry in the outer regions. c) Asymmetry pro�le
obtained from the tomographic reconstruction (black) is com-
pared with the expected centrifugal asymmetry.

advantage of this diagnostic also for the measurement of
the stationary poloidal asymmetries in the SXR radia-
tion, improvements in the precision of the measurement
and the reconstruction algorithm were necessary.

We have shown that the small deviations, e.q. in ge-
ometry, radiation �lters thickness and ampli�cation fac-
tors of the SXR diagnostic represent a common limitation
of the tomography reconstruction accuracy. Due to the
high SXR radiation intensity from tungsten on AUG, the
statistical variance is often negligible compared to these
systematical errors. We have presented a self-consistent
calibration process involving a variation of the diagnos-
tic geometry and a cross-calibration reducing residua be-
tween the data and the model by an order of magni-
tude. Also, the apparent reconstruction artifacts were
suppressed, the spatial resolution was enhanced, and the
stability of the regularization selecting methods was im-
proved.

To access the full potential of this diagnostic, a
new reconstruction algorithm was developed that per-
forms a fast tomographic reconstruction with unprece-
dented reconstruction quality. The fastest reconstruc-
tions were obtained by the improved sparse QR method,
followed tightly by the sparse singular value decomposi-
tion (sSVD) method. Both algorithms have linear com-
plexity in a number of pixels, but the advantage of the
sSVD method is the less complicated algorithm, more
suitable for further development.

A critical issue of the Tikhonov regularization is the
selection of the regularization parameter. We have com-
pared four methods that are the most suitable for our
problem. At �rst, the performance of these methods
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was investigated using arti�cial pro�les where all meth-
ods provided an excellent estimate of the regularization
parameter. However, tests on real data revealed signi�-
cant di�erences. The most stable and reliable was the
method based on minimizing of predicted residual er-
ror sum of squares (PRESS). Stability of the generalized
cross-validation (GCV) is comparable to PRESS only for
discharges with high signal to noise ratio (SNR). Occa-
sionally the GCV minimum was not present which has
led to signi�cant over-�tting of the low SNR discharges.
The unsatisfying performance of discrepancy principle
and Akaike information criterion was probably caused
by deviations in the estimate of the absolute uncertainty
level in the real data. Additionally, we have proposed
an analytical formula for the mean square error and the
covariance matrix of the reconstruction. The covariance
was used to determine the local statistical variance of
the reconstruction and also to estimate the local spatial
resolution of the tomography.
Finally, the performance of the AUG tomography was

demonstrated on the reconstruction of two time slices of a
discharge showing large poloidal asymmetries. In the �rst
case, a low-density plasma heated by a neutral beam has
possessed a signi�cant centrifugal asymmetry well corre-
sponding to the value calculated from the particle force
balance. In the second case, ion cyclotron heating was
used on the outer part of the plasma. Close to the reso-
nance position a signi�cant increase of the inboard SXR
radiation has occurred. The asymmetry, overcoming the
still present centrifugal force, was caused by the trapped
fast minority particles with a highly anisotropic temper-
ature distribution. Since there are not many alternative
diagnostics measuring highly energetic minority particles
at the place of their origin, accurate measurements and
a well known physics of the poloidal asymmetries can
provide a stringent test of ICRF modeling codes.
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