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Abstract. Velocity-space tomography is notoriously a photon-starved method due to

limited optical access and signal-to-noise ratio of fast-ion Dα (FIDA) spectroscopy and

the strive for high-resolution images. Here we make up for this lack of data by using

prior information: The target velocity space is restricted using null measurements,

phase-space densities are imposed to be non-negative, and numeric simulation are

optionally used as prior information. The latter approach allows the inference of the

velocity-space distribution of any discrepancies between measurements and simulation

even for only two simultaneous FIDA views. Using the new methods, we study velocity-

space dynamics of fast ions in sawtoothing plasmas using high-resolution tomographic

movies and show the formation of neutral beam injection peaks at full, half and one-

third energy.

1. Introduction

Ion distribution functions in magnetized fusion plasmas are often described by a

population of fast ions from fusion reactions or auxiliary heating and a population

of thermal ions. The latter is by definition described by a Maxwellian distribution

and thus fully determined by a temperature Ti, a density ni and a drift velocity

vi. As these parameters are approximately constant on a flux surface, bulk-ion

measurements often refer to flux surface measurements of the fundamental parameters

Ti, ni and vi [1–4]. Fast-ion velocity distribution functions are much more complex.

They are not flux functions due to the large drift excursions of fast ions, and they

are in general 6D functions in phase space. Nevertheless, the strong magnetization

in fusion plasmas allows us to reduce the velocity space to 2D due to rotational
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symmetry about magnetic field vector. Usually fast-ion measurements do not refer to

measurements of the fundamental high-dimensional fast-ion distribution functions but

rather to measurements of derived quantities such as the measured 1D spectra in fast-

ion Dα spectroscopy (FIDA) [5–7], collective Thomson scattering (CTS) [8–11], neutron

emission spectrometry (NES) [12–14] or γ-ray spectrometry (GRS) [15–18]. This is in

contrast to bulk-ion measurements where the fundamental parameters Ti, ni and vi are

inferred from the spectra and presented as measurements whereas the spectra themselves

are of secondary interest.

Velocity-space tomography seeks to make up for this shortcoming and allows us to

infer 2D fast-ion velocity distribution functions, which are of fundamental interest, from

measured spectra, which are of secondary interest [19–30]. The 2D velocity distribution

function is localized in a small measurement volume which we take to be one point in

position space. The fast-ion measurements depend on phase space in a complicated way

illustrated by so-called weight functions which have been formulated for FIDA [6, 31],

neutral particle analyzers (NPA) [6], CTS [20], fast-ion loss detectors [32], NES [33,34]

and GRS [35, 36]. To exploit the rich information about fast ions contained in the

measurements, we need to consider hundreds of data points, e.g. spectral bins, together

with the corresponding weight functions. Further, the measurements also depend on

nuisance parameters such as bulk-ion densities or temperatures.

Velocity-space tomography provides a way to process this wealth of information at

once. It provides a 2D image that is straightforward to interpret, that is the best useful

fit to hundreds of simultaneous measurements by any available diagnostic, that shows

the fundamental quantity of interest rather than derived quantities and that accounts for

nuisance parameters. We have previously shown that this approach reveals, for example,

velocity-space redistribution patterns of sawtooth crashes [25–30]. The tomography

approach also helps comparisons of fast-ion measurements and numeric simulations.

Traditionally this is done by comparing the measurements with simulated measurements

in units particular to the diagnostic, e.g. the spectral density of the measured neutron

or photon fluxes (Dα, γ, or mm-wave). Velocity-space tomography allows us to use

2D velocity space as an alternative and tangible meeting ground between theory and

observation which is the same for all diagnostics. This is highlighted by the recent

demonstrations of combined inversion of FIDA and CTS measurements [22, 28, 30].

Until now velocity-space tomography has relied on the standard inversion methods

singular value decomposition (SVD), the maximum entropy method and variants of

the Tikhonov regularization [23, 26, 27]. Given enough measurements at high signal-

to-noise ratio, these inversion methods work well. However, velocity-space tomography

in fusion plasmas is notoriously photon-starved since the optical access to tokamak

plasmas is limited and the signal-to-noise ratio is often low compared with many other

tomography applications. In conflict with the limited amount of data, we strive for

high-resolution images requiring the inference of many unknowns. Inversions based on

standard methods have therefore been plagued by artifacts, for example phase-space

densities at energies larger than the injection energy in neutral beam heated plasmas
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or negative phase-space densities [23]. Artifacts can be attenuated by installing further

fast-ion diagnostics [21, 26] but often this is difficult due to economical or physical

constraints. Here we make up for the lack of data in velocity-space tomography by using

various types of prior information as additional constraints on the velocity distribution

function. This not only improves results for the well-equipped five-view FIDA diagnostic

at the tokamak ASDEX Upgrade (soon six-view), but it also allows the use of inversion

techniques for systems with as few as two views as is common for other tokamaks.

The attenuation of artifacts due to use of prior information further allows an increased

resolution of the images.

We discuss prior information in velocity-space tomography in section 2 and the

choice of the regularization strength in section 3. Substantial improvements brought

about by prior information are shown in sections 4 and 5. In section 6 we study fast-

ion velocity distributions in neutral beam heated plasma and dynamics in sawtoothing

plasma using high-resolution movies. Sections 7 and 8 present a discussion of possible

applications and conclusions.

2. Prior information for photon-starved velocity-space tomography

Velocity-space tomography entails the solution of an ill-posed problem in which we seek

F ∗ solving the matrix equation

WF ∗ = S (1)

where W and S are known [21]. F ∗ is the fast-ion velocity distribution function

discretized in n pixels, S holds m fast-ion measurements, and W is an m × n matrix

composed of weight functions. S and W are normalized by the uncertainties of the

measurements [22]. Noise in the measurements makes the rows of the matrix equation 1

inconsistent, so that there is no solution irrespective of the choice of n (n = m, n < m,

or n > m). One might have hoped that one could instead solve the related minimization

problem

F ∗ = argmin
F

‖WF − S‖2, (2)

but this is also useless as the matrix W is ill-conditioned and hence the solution F ∗ is

not stable. This means that small perturbations in S can lead to large perturbations

in F ∗ which is therefore dominated by random jitter. Nevertheless, we can construct a

related well-conditioned problem by imposing additional requirements that reflect prior

assumptions about the solution providing useful and stable solutions. This is called

regularization. A popular regularization method in plasma physics is the Tikhonov

regularization [27, 37, 38] in which we solve the minimization problem

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λL

)

F −

(

S

0

)
∥

∥

∥

∥

2

. (3)

In equation 3, F ∗ minimizes the sum of the residual of the original ill-posed problem

(upper row) and the norm of the additional requirement on the solution (lower row).
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Common choices are to require that the norm of F ∗ or the norm of the gradients

in F ∗ be small. The penalty matrix L is then respectively the identity matrix or a

matrix operator effecting a finite difference approximation of a gradient. These two

choices are respectively motivated by the prior assumptions that solutions have moderate

amplitudes and that they are smooth. The free regularization parameter λ balances

the relative importance of the residual of the original problem and the norm of the

regularization constraint. This reflects the balance of how well the solution should

fit the noisy data and how much much it should obey the regularization constraint.

Equation 3 shows that for small λ’s the residual of the original problem dominates

whereas for large λ’s the norm of the regularization constraint dominates. The problem

now is to select λ leading to a useful and stable solution. In the following we discuss

how various types of prior information can be used to further improve inversions for

moderately photon-starved systems with five FIDA views and even make the use of

inversion techniques possible for highly photon-starved systems with two FIDA views.

Our exposition will focus on Tikhonov regularization, but our methods are applicable to

other regularization methods. We use FIDA measurements at ASDEX Upgrade as an

example and will discuss applications to other diagnostics and tokamaks and stellarators

in section 7.

2.1. Null measurements

FIDA measures Doppler-shifted Dα-light emitted when a fast deuterium neutral is

formed in a charge-exchange reaction from a fast deuterium ion and then decays from the

third to the second excited state [5]. In many experiments, there is a measurable upper

limit to the observed Doppler shifts. Parts of a spectrum where no FIDA light is observed

are referred to as null measurements. The wavelength ranges of null measurements

are related to velocity-space regions through weight functions [31]. We refer to such

weight functions as null-measurement weight functions. A null measurement suggests

that the velocity space covered by the null-measurement weight function contains so

few ions that they cannot be detected against the noise floor. (If we had a noise-free

FIDA null measurement, we could conclude that the phase-space volume covered by

the corresponding null-measurement weight function w0 does not contain any ions at

all.) If treated on an equal footing with detections of FIDA light, null measurements

already contribute strongly to the reconstruction of the large-scale shape of the velocity

distribution function since they tend to decrease the reconstructed phase-space densities

in the velocity space covered by the null-measurement weight functions. For that reason

the FIDA system at ASDEX Upgrade has been upgraded to measure red- and blue-

shifted light in all spectra so that the absence of FIDA light could be measured [26]. Still,

inversions are plagued by artifacts in velocity-space regions covered by null-measurement

weight functions where the phase-space densities should be negligible [23].

Here we here remedy such artifacts by analyzing the measurements in two stages.

In the first stage we identify regions in velocity space where null measurements suggest



M Salewski et al. 5

E [keV]
0 20 40 60 80 100

p 
[-

]

-1

-0.5

0

0.5

1

th
er

m
al

 io
ns

to
m

og
ra

ph
y

nu
ll-

m
ea

su
re

m
en

ts

Figure 1. The coloured lines circumscribe the regions covered by null-measurement

FIDA weight functions for ASDEX Upgrade discharge #31557. These null-

measurements suggest that no fast ions exist with energies above the black line at

30-70 keV. The vertical black line at 10 keV is defined as the border between fast

and thermal ions. The phase-space densities between the black lines are found by

tomographic inversion.
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Figure 2. Comparison of a TRANSP simulation of the fast-ion velocity distribution

function [1010keV−1m−3] and the target velocity space identified in figure 1. The

simulation agrees with the FIDA measurements that the phase-space densities to the

right of the dashed black line at 30-70 keV are negligible.

phase-space densities below the detection limit of the diagnostic according to
∫

w0FtruedEdp = S < ǫ (4)

where w0 is the null-measurement weight function, Ftrue is the unknown true distribution

function, S is the measured signal, and ǫ is the noise floor. As customary, w0 and Ftrue

are given in energy-pitch coordinates (E, p), where E is the energy of the fast ions and

p is the pitch defined as p =
v‖

v
. v‖ is the fast-ion velocity antiparallel with respect

to the magnetic field and v is the fast-ion speed. The non-negativity of w0 and Ftrue

allows us to conclude from a certain null-measurement that Ftrue must be zero in the
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regions covered by the null-measurement weight function. If noise is present, the strict

argument does not hold but we can still assert that any phase-space densities in these

regions are below the detection limit of the diagnostic and therefore negligible. This

stage does not require the solution of an inverse problem and is thus very reliable if

null-measurements can be told apart from measurements of small FIDA intensities. In

the second stage we solve the tomography problem neglecting the phase-space densities

in the regions covered by null-measurement weight functions:

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λL

)

F −

(

S

0

)
∥

∥

∥

∥

2

subject to F ∗(E0, p0) = 0. (5)

E0 and p0 are the energies and pitches covered by the null-measurement weight functions.

This condition determines an upper boundary of the velocity space that we seek to

reconstruct as illustrated in figure 1. As weight functions are not bounded in energy, the

target velocity space has also been judiciously restricted at some energy in previous work.

A common choice is 10-50 keV above the injection energy of 60 keV or 90 keV as phase-

space densities at larger energies are supposed to be small. Null-measurement weight

functions allow us to determine this upper boundary in energies from the measurements

in an optimal way that does not allow artifacts in the null-measurement region and

that minimizes the number of pixels in the inversion. This upper boundary is a strong

function of pitch (figure 1). Neoclassical simulations by TRANSP [39] agree very well

with the shape of the null-measurement velocity space as illustrated in figure 2.

For FIDA measurements the null-measurement approach is most applicable to

experiments with neutral beam injection. In experiments with ion cyclotron resonance

heating (ICRH) such FIDA null-measurements may not be observable. The null-

measurement idea requires that presence and absence of FIDA signal can be defined

based on the measurements. This is often the case if only neutral beam heating is used.

Nevertheless, we note that null measurements are often observable in NES and GRS

measurements in plasmas with third harmonic ICRH at JET as these diagnostics can

easily detect MeV-range ions. Impurity radiation masking part of the null measurements

is usually not a nuisance since the velocity space covered by the lost null measurements

is often covered by other null measurements.

2.2. Non-negativity

One of the advantages of maximum entropy regularization is that it does not allow

negative phase-space densities. The SVD and variants of the Tikhonov regularization

(one of which inspired by Fisher information) do allow negative phase-space densities

and in fact inversions often contained regions with small negative phase-space densities.

Negative phase-space densities have usually been ignored [7, 21–24, 27–30]. In a recent

study negative phase-space have been strongly attenuated by additional constraints

implemented as fictitious measurements corresponding to pixel-sized weight functions

covering the negative patches in the inversions [26]. These fictitious measurements were

given enough weight to iteratively force the phase-space densities to negligible, yet still
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negative, values. Here we simply impose the constraint that the solution be non-negative

and solve the minimization problem

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λL

)

F −

(

S

0

)
∥

∥

∥

∥

2

subject to F ∗ ≥ 0. (6)

The implementation as constraint has the advantage that no assumptions about the

negative regions need to be made. In fact, regions with negative amplitudes in

unconstrained inversions can have positive amplitudes in inversions that are constrained

to be non-negative. We will in the following also impose non-negativity and null-

measurement constraints together:

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λL

)

F −

(

S

0

)
∥

∥

∥

∥

2

subject to
F ∗(E0, p0) = 0

F ∗ ≥ 0
. (7)

2.3. Prior information from a numeric simulation

In previous studies of velocity-space tomography based on three to five FIDA views or

a mix of FIDA and CTS views, it was possible to find useful and stable inversions and

hence provide measurements of the fast-ion velocity distribution function and derived

quantities such as the fast-ion density [25, 27]. However, if fewer views are available

or if the signal-to-noise ratio is unfavourable, this is sometimes out of reach. Here

we propose a new goal of the tomography approach for such highly photon-starved

situations. Rather than inferring the full 2D velocity distribution function, we only seek

to infer the source of any discrepancy between a numeric simulation and experiment in

velocity space. Firstly, this is a simpler task that is possible with fewer views as we will

show. Secondly, deviations from a simulation is often what we are actually interested in.

For example, the TRANSP code accounts for neoclassical transport and likely provides a

good picture of the distribution function in MHD quiescent discharges. In MHD active

discharges, we often observe discrepancies from such neoclasssical simulations. It is

thought that a so-called anomalous transport exists on top of the neoclassical transport

which still serves a baseline. In this case we can use the tomography approach to

locate the source of any disagreement to this neoclassical simulation in velocity space

rather than to measure the full 2D fast-ion velocity distribution function. To do this

we penalize differences to the simulated velocity distribution function Fsim in absolute

values or gradients and solve the minimization problem

F ∗ = argmin
F

∥

∥

∥

∥

(

W

λL

)

F −

(

S

λLFsim

)
∥

∥

∥

∥

2

subject to
F ∗ ≥ 0

F ∗(E0, p0) = 0
. (8)

For very small λ’s the inversion is underegularized and is dominated by random jitter as

in equations 3, 5 and 7. For very large λ’s the solution is overregularized, but here the

inversion then approaches the numeric simulation as equation 8 shows. The problem

is now again to select λ assigning an appropriate balance between the measurements

and the simulation which we will discuss in section 3. The solution F ∗ represents

our estimate of the 2D velocity distribution function considering the simulation and
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the measurements. As our goal is to locate discrepancies between simulation and

measurements in velocity space, we calculate

∆F ∗ = F ∗ − Fsim (9)

which shows the modifications to the simulation suggested by the measurements.

Examples will be shown in section 5.

3. Choice of the regularization parameter

The number of measurement data points and the number unknowns in velocity-space

tomography is fairly small compared with many other tomography problems. Quick

automatic inversion of FIDA spectra based on a library of approximate weight functions

after each plasma discharge is certainly possible and will be implemented in future work.

For that purpose the regularization parameter λ must be computed automatically from

the data. In traditional tomography, two popular methods to do this among many

other alternatives are the L-curve method [40, 41] and the generalized cross-validation

(GCV) method [Wahba 1990]. The L-curve method has been applied to velocity-space

tomography previously [27]. The GCV asserts that an arbitrary measurement Si should

be predicted well by the regularized solution based on the other measurements in S and

that orthogonal transformations of S should not affect the choice of λ [Wahba 1990].

Then λ minimizes the GCV function

GCV =
‖WF − S‖2

2

(trace(I −WW †))2
(10)

where I is the identity matrix and W † is the regularized inverse matrix producing the

regularized solution F = W †S.
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Figure 3. Choice of regularization parameter by two different methods applied to

unconstrained first-order Tikhonov regularization (a) L-curve. (b) GCV.

Figure 3 shows two unconstrained first-order Tikhonov inversions of FIDA

measurements in discharge #31557. The level of regularization was respectively selected
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by the L-curve method and the GCV method. The discharge has been discussed

previously [27]. The plasma was heated by neutral beam injection with the 2.5 MW

source S3 at 60 keV. Figure 2 shows a TRANSP simulation of the velocity-distribution

function in this discharge. Maxima appear at 60 keV and between 20 keV and 30 keV,

corresponding to the full injection energy and between half and one-third injection

energy. The velocity-space resolution of the inversion is not high enough to resolve the

individual peaks at 20 keV and 30 keV.

The unconstrained first-order Tikhonov inversion with L-curve regularization

parameter selection in figure 3(a) shows usual characteristics for this method. The

inversion is smooth. The overall shape including the anisotropy and the location of

the merged 20 keV and 30 keV beam injection peaks is close to our expectation.

However, there are also limitations of the unconstrained inversion. First, the peak

at full injection energy (60 keV) does not appear. Inversions of synthetic measurements

have shown that sharp peaks tend to be attenuated, especially for first-order Tikhonov

regularization. Second, there are substantial phase-space densities at energies well in the

null-measurement region. Here we plot up to 20 keV above the full injection energy. As

already mentioned, neoclassical transport theory as computed by TRANSP/NUBEAM

also predicts almost zero phase-space densities in the null-measurement region (figure 2).

This further corroborates that the inferred phase-space densities are artifacts. These

unexpected features of the inversions are very likely artifacts since they also appear

erroneously in inversions of synthetic data based on the TRANSP simulation [21,23,27].

Third, small patches of negative fast-ion phase-space densities appear, in this case in

the null-measurement region. Negative phase-space densities are unphysical artifacts.

The L-curve and GCV methods select different balances between data fitting and

smoothing. The GCV method tends to regularize less than the L-curve method and

roughly produces a regularization level as was sometimes judiciously selected [7,23,26].

The full energy beam injection peak (60 keV) does not appear but there is a clear ridge of

large phase-space densities between the expected locations of the beam injection peaks.

The ridge does not extend to energies larger than 60 keV as expected. The form of

the ridge is consistent with presence of fast ions that are slowing down due to collisions

with electrons, i.e. they lose energy without significant pitch angle scattering. This

is reasonable as this ridge appears above the critical energy of about 40 keV. Below

the critical energy collisions with thermal ions become important leading to pitch-angle

scattering as apparent in figure 3b. However, the unphysical negative regions are larger

than for the L-curve method. Both methods are fairly robust but do not always work.

The L-curve method can be applied irrespective of the incorporated prior information.

Figures 3a and 3c show first-order Tikhonov inversions with and without non-negativity

constraint, respectively. However, the GCV method requires the existence of the inverse

matrix, and so it is not directly applicable to the non-negative least square problem

formulation or maximum entropy methods.

In velocity-space tomography, the regularization parameter has up to now been set

by judicious choice, by the L-curve method, and here by the GCV method. The choice
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of regularization parameter or the of a method to calculate it remains an open problem,

which we leave for future work, as one never knows a priori which method works best.

Neither the L-curve nor the GCV method is consistently superior, and hence we use

both methods in the following and judiciously chose the regularization parameter based

on both methods.

4. Inversions from measurements using prior information

In this section we show that prior information imposed as side constraints based on

non-negativity and null measurements improves inversions substantially. The effect of

prior information based on numeric simulation is presented in section 5. This separation

reflects the difference in the approaches. The inversions in this section are purely based

on measurements and represent an estimate of the 2D fast-ion velocity distribution

functions based on measurements alone. The inversions in section 5 represent and

estimate based on measurements and simulations or, more interestingly, how a given

simulation needs to be modified to match best with the measurements.

E [keV]
0 20 40 60 80

p 
[-

]

-1

-0.5

0

0.5

1

-15

-10

-5

0

5

10

15

Figure 4. First-order Tikhonov inversion with non-negativity constraint.

Figure 4 shows a first-order Tikhonov inversion with non-negativity constraint

according to equation 6. The regularization parameters selected by the GCV method.

The GCV method cannot directly be applied together with the non-negativity constraint

as the inverse matrix W † does not exist. Here we use the regularization parameter λ

from the unconstrained regularization (figure 3b), and then solve the non-negative least-

square problem with that λ. The non-negativity constraint improves the inversions

without any visible disadvantages compared with the unconstrained inversions in

figure 3. By virtue of the constraint, there are no negative regions. Erroneous

phase-space densities in the null-measurement region are decreased compared with the

unconstrained inversions. The full energy beam injection peak appears.

Figure 5 shows a first-order Tikhonov inversion with the null-measurement

constraint according to equation 5. The inversion shows a clear peak at full injection

energy and a clear ridge consistent with ions slowing down due to collisions with
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Figure 5. Tomographic inversions by first-order Tikhonov regularization using the

null-measurement weight function constraint F ∗(E0, p0) = 0. F ∗ can have either sign.

electrons. By virtue of the constraint, no fast ions are erroneously placed in the null-

measurement region. Regions of erroneously negative phase-space densities are present

at this regularization level. It is unclear if the two peaks appearing at negative pitches

are real or if they are artifacts.
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Figure 6. Tomographic inversions by first-order Tikhonov regularization using the

null-measurement weight function constraint (F ∗(E0, p0) = 0) and the non-negativity

constraint (F ∗ ≥ 0).

Finally, figure 6 shows the inversion with non-negativity and null-measurement

constraints according to equation 7. By construction there are no artifacts in the null-

measurement region and there are no negative phase-space densities. A peak at full

injection energy appears and a ridge connects the beam injection peaks. There are

small peaks at negative pitches at the same positions as in figure 5 but these peaks are

strongly attenuated compared with figure 5. A comparison of figures 5 shows that the

negative regions in figure 5 are not necessarily zero. The non-negativity constraint not

only removes negative regions but also tends to attenuate peaks. The non-negativity

constraint regularizes the inversion by attenuating high-frequency components of the

inversion that enhance negative and positive extrema. Overall, figure 6 shows no clear
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artifacts and additionally has a better capability to reconstruct the full injection energy

peak and the ridge consisting of ions colliding with electrons.

5. Inversions using numerical simulations as prior information

A goal of inversion techniques is to locate differences between theory and observation

in velocity space to obtain clues on which physics is not adequately described in the

simulation or which systematic error confounds the measurements. For this goal it

is advantageous to use the numeric simulation as prior information and reconstruct

modifications of this simulation as implied by the measurements. Figure 7 illustrates

two different ways to locate differences between measurements and simulation in velocity

space. Figure 7(a) shows an assumed true distribution function Ftrue which we now seek

to reconstruct. In an experiment Ftrue is never known. Here we use a modified TRANSP

simulation. We have divided the phase-space density in the square shown in figure 7(b)

by two. This selective reduction in phase-space density is a model for an assumed

anomalous transport phenomenon localized in velocity space which is not modelled in

the TRANSP simulation Fsim. Figure 7(b) shows the difference

∆Ftrue = Ftrue − Fsim (11)

which is negative in the square and zero elsewhere. The goal is now to reconstruct

∆Ftrue, given synthetic measurements of Ftrue in five FIDA views and Fsim. We add

5% Gaussian noise to each synthetic measurement which is a realistic noise level for

FIDA measurements at ASDEX Upgrade. ∆F ∗ is calculated according to equation 9

without and with using the TRANSP simulation as prior information, i.e. respectively

using equations 7 and 8. Figure 7(c) shows ∆F ∗ for the case without the TRANSP

simulation as prior. ∆F ∗ is dominated by large negative values at the beam injection

peaks reflecting the difficulty to reconstruct the beam injection peaks. The reconstructed

difference ∆F ∗ does not resemble the true difference ∆Ftrue. Figure 7(d) presents

∆F ∗ for the case where the TRANSP simulation has been used as prior information

(equation 8). In this case the approximate location of the discrepancy between the true

distribution and the TRANSP simulation is found based on experimentally accessible

quantities. However, artifacts are present and the amplitudes in the reconstruction are

too low by a factor 2-3. The success of this approach does not depend strongly on

the position of the discrepancy in velocity space for the five-view FIDA system as we

illustrate in figure 8. Each case shows the true location of the discrepancy and the

reconstruction using the simulation as prior information. The approximate location of

the discrepancy is in each case identified as the region with the lowest amplitudes.

In figure 9 we reconstruct the six cases from figure 8 using just two FIDA views.

Even with only two views, the approximate location of the square is reconstructed in each

case, even though the region of negative phase-space densities is significantly extended

compared to the five-view case. The cases where the discrepancy is placed near p = 1

are very well reconstructed even for only two views. The reconstruction of ∆F ∗ does not
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Figure 7. FIX MISSING BOXES! (a) Ftrue which is a modified TRANSP simulation

with selective ejection of particles. (b) ∆F = Ftrue − Fsim. (c)+(d) Inversion

∆F ∗ = F ∗ − Fsim based on synthetic measurements of Ftrue with 5% Gaussian noise

for a five-view FIDA system not using (c) and using (d) the TRANSP simulation as

prior information.

require as many measurements as the reconstruction of F ∗ since the simulation provides

cogent prior information about the approximate basic shape. Hence this alternative

approach to tomographic reconstruction should be highly useful for FIDA systems with

fewer than five viewing directions as is common on many machines. DIII-D has three

FIDA views [42, 43] and MAST [44, 45], NSTX [46], EAST [47], and LHD have two

views [48, 49]. LHD has additionally a CTS view [50, 51].
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Figure 8. FIX MISSING BOXES! Reconstruction of ∆F ∗ = F ∗ − Fsim based on

synthetic measurements of Ftrue with 5% Gaussian noise for a five-view FIDA system

using the TRANSP simulation as prior information. In each subfigure the black line

shows the true location of the discrepancy.
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Figure 9. FIX MISSING BOXES! As for figure 8, but only two FIDA views are used.
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6. Studies of beam injection and sawtooth dynamics

Prior information allows us to increase the resolution of the inversions (30×30 pixels)

to study the presence of neutral beam injection peaks and the dynamics of sawteeth.

Beam injection peaks are studied by SVD which is usually best to reconstruct fine-scale

features at the expense of the appearance of some jitter. Figure 10 shows inversions

using the SVD with and without null-measurement constraint for the reference discharge

31557. The SVD reconstructs the full energy beam injection peak and merges the half

and one-third energy peaks as previously observed [23]. Negative phase-space densities

appear as we could not enforce non-negativity in the SVD. As observed previously,

the negative regions are mostly close to or in the null-measurement region, and the

amplitudes are fairly small. In the inversion with the null-measurement constraint, the

full energy injection peak is strongly enhanced and several patches with negative fast-

ion densities disappear. The ridge of enhanced fast ion densities connecting the beam

injection peaks as observed in the inversions with first-order Tikhonov and minimum

Fisher regularization does not appear.
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Figure 10. Tomographic inversions by SVD. (a) No constraint. (b) Null-measurement

weight function constraint: F ∗(E0, p0) = 0.

Figure 11 shows an inversion by SVD with null-measurement constraint in the

similar discharge 32323. Here we increased the resolution to 60 × 60 pixels. In this

case all three beam injection peaks appear at the correct energies at 20 keV, 30 keV

and 60 keV and pitch. The extent in pitch direction is fairly small in the 30 keV and

60 keV peak and much larger in the 20 keV peak. This is reasonable as the 20 keV

peak is below the critical energy so that ion-ion collisions lead to increased pitch angle

scattering. In discharge 31557 discussed above only two peaks appear at this resolution.

The first-order Tikhonov and minimum Fisher information inversions show only two

peaks as well. Even though three peaks do not often appear in inversions, the correct

and well-understood location and large-scale coherence suggests that the peaks are not

artifacts but supported by the FIDA measurements.
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Figure 11. Tomographic inversion by SVD using the null-measurement weight

function constraint: F ∗(E0, p0) = 0.
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Figure 12. Increase in the fast-ion density in ASDEX Upgrade discharge #33138

right after the NBI is switched on. The fast ion density is obtained integration of the

tomographic inversion in velocity space above energies of 10 keV.

In discharge 33138 FIDA measurements were made during the start-up phase of

the NBI to study the appearance of the beam injection peaks. Figure 12 shows the

increasing fast-ion density during the start-up phase which is obtained by integration

of the velocity distribution functions. The appearance of the beam injection peaks is

studied in a movie provided as supplemenary material. FIDAmeasurements in five views

have been made with a time resolution of 2.5 ms. Figure 13 shows selected frames. The

beam injection peaks at full, half, and one-third injection energiy reliably appear in the

movie, and the growth can be studied.

Discharge 32323 had sawtooth activity. The improved robustness of the inversions

due to the null-measurement and non-negativity constraints allows us to study the

dynamics of the 2D fast-ion velocity distribution function in a sawtoothing plasma by

a tomographic inversion movie. Previous inversions of FIDA and CTS measurements

focussed on the redistribution due to the crash [25–30]. In this discharge only four views
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Figure 13. Frames from the NBI start-phase movie attached as supplementary

material a selected times in ASDEX Upgrade discharge #33138.

had a time resolution of 2.5 ms whereas the fifth view had a time resolution of 25 ms

as the camera did not allow faster data acquisition in this discharge, and hence we do

not use this view for the movie. The same level of regularization is used throughout the

movie to avoid sudden jumps. The movie is provided as supplementary material. The

movie shows a continuous increase of the fast-ion density which then suddenly drops

at the sawtooth crash. The movie shows how the distribution function responds to

the continuous fuelling by the neutral beam injector which provides particle sources at

20 keV, 30 keV and 60 keV. Right after the crashes the 60 keV peak almost disappears.

It gradually builds up as the fast-ion density increases during the sawtooth cycle. The

ridge between the beam injection peaks also becomes stronger during the sawtooth cycle.
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Figure 14. Sawteeth in the fast-ion density in ASDEX Upgrade discharge #32323.

The fast ion density is obtained integration of the tomographic inversion in velocity

space above energies of 10 keV.
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Figure 15. Frames from the sawtooth crash movie attached as supplementary material

a selected times covering one sawtooth cycle in ASDEX Upgrade discharge #32323.

7. Discussion

To date all velocity-space tomography studies have been made at ASDEX Upgrade

based on three to five simultaneously acquired FIDA spectra or four simultaneously

acquired FIDA spectra and one CTS spectrum. The installed hardware at ASDEX

Upgrade now allows simultaneous measurements with six FIDA views, two CTS views,

one NPA view and one NES view though this multidiagnostic tomography still needs

to be demonstrated. FIDA systems installed on other machines have three or fewer

FIDA views. Examples are three FIDA views at DIII-D, two FIDA views at NSTX, two

FIDA views at MAST, two FIDA views at EAST, and two FIDA views and a CTS view

at LHD. No matter how rich a suite of fast ion diagnostics is available, the velocity-

space tomography problem will remain photon-starved as increases in the number of

measurement data will be matched by a corresponding increase in the resolution of the

inversion. Efficient use of prior information is here shown to help extract substantially

more information from the measurements. As a consequence tomographic inversion

techniques could become useful at the other machines with just two or three FIDA or

CTS views.

An important future task of the velocity-space tomography is to measure MeV-

range fast-ion velocity distribution functions as we approach the era of burning reactor-

grade plasmas. Unfortunately, FIDA spectroscopy is not thought to work well for

measurements of MeV-range ions since the charge-exchange cross sections are low at

such energies, the neutral beam penetration is often poor due to high densities of

reactor-grade plasmas, and intensive bremsstrahlung is expected. Nevertheless, MeV-
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range ions can be diagnosed by NES, GRS or CTS. Velocity-space tomography using

different diagnostics [22] has already been demonstrated using FIDA and CTS as

example [28]. A near-term goal is now to demonstrate tomographic inversion of GRS and

NES measurements at JET, so as to allow velocity-space tomography in the upcoming

deuterium-tritium (DT) campaign. Several high resolution detectors based on different

measurement principles are installed at JET, and further upgrades are foreseen for the

DT campaign. Simultaneous high-resolution NES and GRS measurements along two

sightlines have recently been demonstrated [14]. As NES and GRS weight functions have

recently been formulated [33–36], measurements of MeV-range ion velocity distribution

functions based on NES and GRS can now be attempted. The effective use of prior

information presented here will pave the way to make velocity-space tomography

available to study MeV-range ions in burning plasmas.

8. Conclusions

Velocity-space tomography is notoriously a highly photon-starved enterprise as we would

like to infer the 2D velocity distribution function in high resolution and hence need to

infer as many unknown parameters as the measurement data supports. At the same time

the optical access to tokamaks and hence the number of simultaneous measurements are

limited. Furthermore, the signal-to-noise ratio of the measurements is lower than in

many other tomography applications. Even if we use four to five FIDA views installed

at ASDEX Upgrade, or any upgrade beyond, the velocity-space tomography problem

will remain photon-starved. Here we make up for the lack of measurements by using

additional prior information. The inversions are substantially improved by using two

constraints: 1. The non-negativity of phase-space densities. 2. The negligible phase-

space densities in velocity-space regions that do not emit detectable FIDA radiation

leading to null measurements. Due to the new methods the three neutral beam

injection peaks at full, half and one-third energy appeared at the expected locations

in the inversion, and their appearance during the start-up phase of a neutral beam

injector could be studied. We could further study the dynamics of the fast-ion velocity

distribution function in a sawtoothing plasma in unprecedented detail in a tomographic

inversion movie that efficiently summarizes about 50.000 data points.

Lastly, we propose an alternative approach to velocity-space tomography. We

infer the 2D fast-ion distribution function considering the measurements as well as a

simulation. In this case tomographic inversion uses the simulation as prior information.

If the measurements and the simulations are inconsistent, the most likely velocity-space

distribution of the discrepancies can then be found by subtracting the simulation from

the inversion with the simulation as prior information. This could not be achieved with

the pure velocity-space tomography approach, which does not use the simulation, even

with five FIDA views. This alternative approach is also promising in severely photon-

starved cases as we demonstrated using only two FIDA views and opens up for the use

of velocity-space tomography methods at many machines.
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