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Abstract. Velocity-space tomography has been used to infer 2D fast-ion velocity

distribution functions. Here we compare the performance of five different inversion

methods: Truncated singular value decomposition, maximum entropy, minimum

Fisher information and zeroth- and first-order Tikhonov regularization. The inversion

methods are applied on fast-ion Dα [1,2] measurements taken just before and just after

a sawtooth crash in the ASDEX Upgrade tokamak as well as on synthetic measurements

from different test distributions. We find that the methods regularizing by penalizing

steep gradients perform best. Furthermore, most of the methods agree that passing

as well as trapped ions are ejected from the plasma center and that this ejection

depletes the passing ion population more strongly than the trapped ion population.

We assess the uncertainty of the calculated inversions taking into account photon

noise, uncertainties in the forward model as well as uncertainties introduced by the

regularization.

1. Introduction

Traditional fast-ion diagnostics and analysis procedures provide only incomplete

information about the 2D fast-ion velocity distribution function. Using velocity-space

tomography it is possible to combine data from several measurements to infer the

2D fast-ion velocity distribution function [3–10]. With this approach it should even

be possible to combine measurements from different diagnostics which is beneficial

as they are always sensitive to different regions of velocity-space [6]. This velocity-

space sensitivity is quantified by velocity-space sensitivity functions, also called weight
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functions, which have been developed for fast-ion Dα spectroscopy (FIDA) [11, 12],

collective Thomson scattering (CTS) [4], fast-ion loss detectors (FILD) [13], neutron

emission spectrometry (NES) [14, 15] and gamma-ray spectroscopy (GRS) [16]. The

weight functions, w, relate a measurement, s, to the fast-ion velocity distribution

function, f :

s =

∫ ∫

wf dE dp , (1)

where E is the fast-ion energy and p is the pitch defined as p =
v‖

v
. Here v‖ is

the ion velocity parallel to the magnetic field and v is the ion speed. p is defined

positive in the co-current direction. By discretizing equation (1) and normalizing by the

uncertainties [6], a linear system of equations is obtained:

S = WF , (2)

where S and F are vectors of length m and n, respectively, and W is an m× n matrix

dubbed the transfer matrix. Calculating F from equation (2) is a mathematically ill-

posed inverse problem. Nevertheless, it is possible to obtain sensible solutions to such

an ill-posed inverse problem by regularizing it. Many different inversion methods have

been developed and applied in many scientific fields. Here we compare five inversion

methods to measure fast-ion velocity distribution functions by tomographic inversion:

truncated singular value decomposition, maximum entropy, zeroth- and first-order

Tikhonov regularization and minimum Fisher information. These methods have been

compared for position-space tomography in fusion plasmas [17, 18]. Here we test these

methods for velocity-space tomography. In our comparison we use a transfer matrix

describing FIDA measurements taken simultaneously in five views at ASDEX Upgrade

in discharge #31557. This diagnostic set-up (i.e. this transfer matrix) is used, firstly,

with synthetic measurements to calculate inversions for known velocity distribution

functions and, secondly, with real five-view FIDA measurements taken just before and

just after a sawtooth crash. The synthetic measurements enable us to quantify the

performance of the different methods for assumed measurement uncertainties since the

true solution is known. The real measurements allow us to investigate the redistribution

of fast ions due to a sawtooth crash resolved in 2D velocity space for ion energies above

about 20 keV.

The paper is organised as follows. The FIDA diagnostic set-up is described in

section 2. Section 3 explains the different inversion methods. Section 4 presents how to

estimate the uncertainties of the inversions. In section 5 we quantify the performance

of the inversion methods by inverting synthetic data based on known test functions.

In section 6 the methods are used to investigate the effect of a sawtooth crash on the

central fast-ion population. The results are discussed in section 7 and conclusions are

summarized in section 8.
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2. ASDEX Upgrade FIDA system

A FIDA diagnostic set-up measures Doppler-shifted deuterium Balmer-alpha light from

the plasma. It is extensively used to diagnose fast ions at ASDEX Upgrade [19, 20],

DIII-D [21, 22], NSTX [23], MAST [24, 25] and LHD [26]. The newly upgraded set-up

at ASDEX Upgrade now consists of five different views, each with several lines of sight

measuring at different radial locations. We use one line of sight from each view, each

intersecting the beam path of neutral beam injector (NBI) Q3 in the plasma centre. Each

view has a different angle between its line of sight and the magnetic field. Thereby, they

probe different regions in velocity space as described by their weight functions [12]. In

the plasma centre, the respective angles are 14◦, 73◦, 103◦, 133◦ and 153◦. A description

of the updated FIDA system is found in [10].

3. Inversion methods

3.1. Singular value decomposition

Truncated singular value decomposition (SVD) is the method used previously to

calculate velocity-space tomographies in fusion plasmas [5–9]. Them×n transfer matrix,

W , can as any matrix be written as the product of three matrices:

W = UΣV T , (3)

where the columns of the m × m matrix U are the eigenvectors of the matrix WW T

and the columns of the n × n matrix V are the eigenvectors of the matrix W TW [27].

U as well as V are orthogonal matrices. Σ is a diagonal m× n rectangular matrix. The

values in the diagonal are called the singular values. They are the square roots of the

non-zero eigenvalues of both WW T and W TW [28]. The values in the diagonal of Σ are

ordered in a decreasing manner.

Given a linear system of equations

WF = S , (4)

the solution, FSV D, is found as

FSVD = W+S , (5)

where W+ is called the pseudoinverse of W . W+ can be calculated using the SVD

factorization:

W+ = V Σ+UT , (6)

where Σ+ is a rectangular diagonal matrix with the reciprocals of the diagonal elements

of Σ on the diagonal. Writing the SVD as a sum, one gets

WF =
r
∑

j=1

ujσj

(

vTj F
)

, (7)
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where r is the number of non-zero singular values, uj and vj are the j’th columns of U

and V , respectively, and σj is the j’th singular value. vTj indicates the transpose of the

j’th column of V . FSV D can likewise be expressed as a sum:

FSVD =

r
∑

j=1

vj
(

uT
j S
)

σj

. (8)

Experimental data always contains some form of noise. Here we define

S = Sexact + e , (9)

where Sexact is the idealized measurement without noise and e is the noise. Inserting

equation (9) in equation (8) we get

FSVD =
r
∑

j=1

vj
(

uT
j Sexact

)

σj

+
r
∑

j=1

vj
(

uT
j e
)

σj

= Fexact +
r
∑

j=1

vj
(

uT
j e
)

σj

, (10)

where Fexact is the exact solution we seek and the last sum describes the effect of the

noise. For very small singular values, the SVD solution can be completely dominated

by the noise. To reduce its influence, a possibility is to truncate the sum after k terms.

However, this makes it impossible to reconstruct Fexact completely. This method is

called truncated SVD. Truncated SVD introduces the problem of choosing the optimum

truncation level, k. Several criteria exist for choosing k. Here we use the L-curve

criterion to choose k [29].

3.2. Tikhonov regularization

The inverse problem posed in equation (2) can be formulated as a least squares problem,

i.e. find the solution F which minimizes the norm of the residual:

minimize
{

||WF − S||2
}

. (11)

Well-posed problems can be solved using the normal equations:

F =
(

W TW
)−1

W TS . (12)

However, for ill-posed problems a small change in S can have a significant impact on F .

In Tikhonov regularization, the ill-posed least squares problem is replaced by a nearby

well-posed least squares problem

minimize
{

||WF − S||2 + α||LF ||2
}

, (13)

where L is a regularization matrix of size n × n and α is a non-negative number

determining the weight of the regularization term. As for truncated SVD, we determine

the value of α using the L-curve method [30]. The Tikhonov solution, Fα, becomes

Fα =
(

W TW + αLTL
)−1

W TS . (14)

The choice of regularization matrix determines the nature of the regularization.

Common choices of L penalize the magnitude of f or its derivative to different orders.
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Therefore, Tikhonov regularization is also sometimes called linear regularization. The

simplest regularization matrix is

L = I , (15)

where I is the n× n identity matrix so that LTL = I and equation (14) becomes

Fα =
(

W TW + αI
)−1

W TS . (16)

This penalizes large absolute values of f and is called 0’th order regularization.

1’st order regularization penalizes large gradients. In 2D velocity space
(

v‖, v⊥
)

,

the penalty operator is

LTL = ∇T
v‖
∇v‖ +∇T

v⊥
∇v⊥ . (17)

Here ∇v‖ and ∇v⊥ are matrix representations of finite difference operators. In (E, p)-

coordinates, the velocity-space gradient is

∇F =
√
2mE (∇EF ) êE +

√

m

2E

√

1− p2 (∇pF ) êp . (18)

The derivation of equation 18 is included in Appendix A. Hence in (E, p)-coordinates

the penalty operator becomes

LTL = 2mE∇T
E∇E +

m

2E

(

1− p2
)

∇T
p∇p . (19)

3.3. Minimum Fisher information regularization

The principle of minimum Fisher information has been used to compute inversions

in soft X-ray tomography in tokamak plasmas [17]. In reference [17] the minimum

Fisher information principle is effectively built in as a Tikhonov penalty function. It

can therefore be seen as a variant or extension of the general Tikhonov regularisation

method. The minimum Fisher information method penalizes large gradients divided

by the function values. The normalization with the distribution itself means that the

smoothing effect is strongest where the distribution has low values.

The minimum Fisher information method is implemented as an iterative algorithm

[17]. First a solution F (1) is found using Tikhonov regularization with a first-order

linear penalty function. In the subsequent iterations, the penalty function in
(

v‖, v⊥
)

-

coordinates becomes

LTL = ∇T
v‖
M (n)∇v‖ +∇v⊥M

(n)∇v⊥ , (20)

where

M
(n)
i,j =

1

F
(n−1)
i

δi,j if F
(n−1)
i > 0 (21)

M
(n)
i,j = M (n)

max δi,j if F
(n−1)
i ≤ 0 . (22)

M
(n)
max is the largest M (n) for Fi > 0. In (E, p)-coordinates the penalty function becomes

LTL = 2mE∇T
EM

(n)∇E +
m

2E

(

1− p2
)

∇T
pM

(n)∇p . (23)

In each iteration, the corresponding Tikhonov solution with the appropriate minimum

Fisher information penalty function is found. We find that the solution converges after

only a few iterations.
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Maximum entropy regularization

The last inversion method we have implemented is maximum entropy regularization.

In the case of maximum entropy regularization it is assumed that the object that is

to be reconstructed from data is positive f(E, p) ≥ 0. The specific formulation of

maximum entropy regularization can be found in references [17,31]. Maximum entropy

regularization can be formulated as a minimization problem of the form

minimize

{

1

2
||WF − S||2 + αH

}

. (24)

where α is a free parameter controlling the strength of our assumptions similar to the

free parameter introduced in Tikhonov and minimum Fisher information regularization.

We determine the optimal value of α using the L-curve method [30]. H is the Shannon

information entropy given by

H = −
N
∑

i=1

(Fi −mi − Fi ln(Fi/mi)) . (25)

The entropy H is minimized when Fi = mi. Thus mi is called the default model as

it is the value Fi will take when there is no information or data influencing it. While

the default model is usually set to be constant in phase-space to prevent biasing of the

solution, we may choose to set the default model to be given by a theoretical model.

Thus, the process of inference becomes the process of updating the theoretical model

to be consistent under new observations [32]. For this work, the default model is set to

be constant. The solution of this minimization problem, called the maximum entropy

solution, is found using a general non-linear optimization library [33, 34], implemented

in a Bayesian framework.

4. Uncertainties in tomographic inversions

It is possible to estimate the uncertainties in a tomography. Here we consider

uncertainties due to noise in the measurements, uncertainties due to uncertainties in

the forward model as well as uncertainties imposed by the regularization methods

themselves.

The forward model is given by the FIDA weight functions. These are calculated

based on profiles of several nuisance parameters. The weight functions are most sensitive

to the ion temperature and drift velocity, the electron temperature and density and

the effective charge Zeff . Hence we consider the impact of these parameters on the

tomographic inversion results for the different regularization methods. The uncertainties

in the bulk plasma parameters lead to uncertainties in the weight functions, δW .

Assuming a Gaussian error distribution of the bulk plasma parameters, we calculate the

uncertainty in the forward model (i.e. in the weight functions) by sampling a population

of weight functions calculated while varying one nuisance plasma parameter at a time

and keeping the other parameters fixed. The total variance of the weight function is
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then obtained by summing up the variances obtained from each plasma parameter. The

corresponding error, em, from the forward model error is

em = δWFtrue . (26)

em depends on the (often unknown) true distribution function. However, if an estimate

of Ftrue can be obtained, em can be estimated. The combined uncertainty due to

uncertainty in the forward model and measurement uncertainty is then

edata =
√

e2ph + e2m . (27)

where eph is the photon noise. In this work we approximate Ftrue by the sum of a

Maxwellian for the bulk ions and a TRANSP/NUBEAM [35] simulation to estimate the

NBI ions. The Maxwellian is calculated using measured ion temperature and density

and we then use edata to normalize the measurements and transfer matrix.

The covariance matrix of the tomography due to uncertainty in the spectra, CF
e ,

is [6]

CF
e = W †CS

e

(

W †
)T

, (28)

where CS
e is the covariance matrix of the uncertainty in the spectra and W † denotes the

regularized inverse. For uncorrelated uncertainties the uncertainty in the tomography

is then given by the diagonal elements of the covariance matrix. For SVD, W † = W+,

the pseudoinverse of W . For Tikhonov and minimum Fisher information regularization,

W † =
(

W TW + αLTL
)−1

W T . The covariance matrix of the maximum entropy solution

is given by [36]

CF
e =

(

(

W TW
)

ij
+

α

Fi

δij

)−1

ij

. (29)

As W † depends on the regularization, CF
e depends both on the choice of regularization

method and the level of regularization. In fact, the purpose of the regularization is

to decrease the effect of noise in the spectra. The price one pays by regularizing

the problem is to introduce a regularization or smoothing error. This error makes

it impossible to recreate the true distribution, even if the measurements were noise free.

The regularization error, ereg, is defined as

ereg =
(

I −W †W
)

Ftrue , (30)

where I is the n × n identity matrix. ereg, as em, depends on Ftrue. However, if an

estimate for the true distribution function such as a simulated velocity distribution

function is known, ereg can be estimated. Here we use a TRANSP/NUBEAM simulation

as our best estimate of Ftrue.

We define a measure of the complete uncertainty of the tomographic inversion as:

etot =
√

(diag (CF
e ))

2 + e2reg . (31)

However, it should be noted that the regularization error has a different character

than the data uncertainty which represents an assumed Gaussian distribution of values

in many realizations of the experiment. On the contrary, the regularization error
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characterizes how well the inversion method reconstructs a known test function. We

nevertheless combine these uncertainties as a measure of the total uncertainty of the

tomographic inversion.

5. Tomographies using synthetic measurements

In this section we calculate tomographies using synthetic data obtained using equation

(1) and known distribution functions. Inversions of synthetic spectra calculated from

known distribution functions enable us to compare the performance of the inversion

methods by quantitative figures of merit as we know the true solution.

5.1. Figures of merit

We define two different figures of merit. The first is the total sum of the absolute

difference between the true solution and the tomography normalized by the sum of the

true solution,
∑

i |Ftomography,i − Ftrue,i|
∑

i Ftrue,i

, (32)

For this figure of merit the smallest values correspond to the best performance of

the inversion method. The second figure of merit is the ratio of the inferred fast-ion

density to the true fast-ion density which is calculated as the integral of the tomography

normalized by the integral of the true distribution,
∫ ∫

Ftomography dEdp
∫ ∫

Ftrue dEdp
. (33)

Optimally, this figure of merit should be one. However, in this study we reconstruct the

velocity-space above about 20 keV which is realistic for the ASDEX Upgrade case. As

the bi-Maxwellian and NBI distributions contain ions with energies below 20 keV, the

optimal value is below one for these two distributions.

5.2. Test velocity-distribution functions

Three different velocity functions will be investigated in this analysis. A Gaussian

distribution, a bi-Maxwellian distribution and a simulated NBI-distribution from

TRANSP/NUBEAM. The three distributions are shown in figure 1. We choose these

three distribution functions as they pose different challenges to the inversion methods.

The Gaussian distribution is highly localized and requires good resolution properties of

the method. A Gaussian blob may further represent a source of fast particles typical

for the peaks at the injection energies for neutral beam heating. The bi-Maxwellian is

a wide function covering the entire pitch range. Here the challenge is to recreate the

large-scale undulation. Lastly, we study a distribution function typical for neutral beam

injection as simulated by TRANSP. This is an important test case as it should be very

similar to the distribution functions in experiments with NBI heating. The challenge

here is the structure complexity on both small and large spatial scales.
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(a) Gaussian.
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(b) Bi-Maxwellian.
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(c) NBI.

Figure 1. Test velocity distributions functions as a function of energy and pitch of

the ions. The functions are given in units of [ions/keV/cm3]

5.3. Modelling of measurement noise

The photon noise of FIDA light scales approximately with the square-root of the signal.

However, in the absence of FIDA light the photon noise is dominated by bremsstrahlung

setting a lower limit on the noise level. These two effects are modelled as

Snoisy = Sexact + k
〈

√

Sexact

〉

N
(

0,max
(

emin,
√

Sexact

))

, (34)

where Snoisy is the noisy spectrum, Sexact is the exact noise-free spectrum, emin is the

bremsstrahlung level and k is a scaling constant that allows us to vary the noise level.

N
(

0,max
(

emin,
√
Sexact

))

denotes a Gaussian distribution with a mean of zero and

a standard deviation of the maximum of
√
Sexact and the bremsstrahlung level emin.

Varying the noise level allows us to investigate how robust the methods are against

noise.

5.4. Inversion results

Figure 2 shows tomographies of the Gaussian blob shown in figure 1(a) calculated with

the different methods for various noise levels. All methods reconstruct the position of

the Gaussian blob well. The characteristic widths of the Gaussians are approximately

right but tend to be slightly larger than in the original test distribution. Measurement

noise enhances this trend. We further observe the appearance of jitter in the inversions

throughout velocity space. The minimum Fisher information regularization stands out

from the other methods in that it resembles the original function the most. This suggests

superior resolution performance of the method. The minimum Fisher information

regularization is furthermore most robust against measurement noise. Of the other

methods, the maximum entropy regularization performs best. It is not as smooth, but

it is able to localize the large values of the Gaussian distribution very well in velocity-

space.

Figure 3 shows the reconstructions of the bi-Maxwellian distribution function. The

large-scale shape of the distribution is reproduced well by all five inversion methods.

The pitch angle symmetry with respect to p = 0 is reproduced well and the larger

perpendicular temperature compared with the parallel temperature is reflected well in
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(a) SVD, k =0.1
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(b) T0, k =0.1
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(c) T1, k =0.1
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(d) MFI, k =0.1
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(e) ME, k =0.1
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(f) SVD 0.5.
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(g) T0, k =0.5
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(h) T1, k =0.5
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(i) MFI, k =0.5
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(j) ME, k =0.5
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(k) SVD, k =0.9
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(l) T0, k =0.9
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Figure 2. Tomographies of the Gaussian blob from figure 1(a) based on synthetic

measurements using various inversion methods and noise levels. The inversion methods

are SVD, 0’th and 1’st order Tikhonov (T0 and T1, respectively), minimum Fisher

information (MFI) and maximum entropy (ME). The noise level k is defined in equation

(34).

the large fast-ion densities for pitches close to zero. For large noise the SVD, the 0’th

order Tikhonov and the maximum entropy become erroneously biased towards negative

pitches, but this bias is small and the general trends remain apparent. The 1’st order

Tikhonov and the minimum Fisher information reproduce the symmetry and the large

fast-ion densities for pitches close to zero particularly well. Additionally, penalizing large

gradients produces smooth functions which resemble the smooth bi-Maxellian function

well. Further, the jitter appearing throughout velocity space for larger noise levels is

significantly smaller.

Figure 4 shows reconstructions of the NBI distribution function for various noise

levels and inversion methods. This fast-ion distribution function is typical for neutral

beam injection with two co-current beams with injection energies at 80 keV and 70

keV and one counter-current beam with an injection energy of 70 keV. Therefore,

this distribution function is a more difficult test case than previously presented

reconstructions of distribution functions which are more typical for a single NBI beam.

The overall shape of the NBI distribution function with bias towards positive pitches

is well reproduced by all five inversion methods. The protrusion at pitches of about

0.7 originates from the co-current beam injection, and the weaker protrusion at pitches

of -0.7 from the counter-current beam injection. All reconstructions show that the

full energy beam injection peak for co-current injection (positive pitch) is at larger

energies than that for counter-current injection (negative pitch). As observed for the

Gaussian blob and the bi-Maxwellian, the 1’st order Tikhonov and the minimum Fisher
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(a) SVD, k =0.1
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(b) T0, k =0.1
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(c) T1, k =0.1
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(d) MFI, k =0.1
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(e) ME, k =0.1
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(f) SVD, k =0.5
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(g) T0, k =0.5
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(h) T1, k =0.5
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(i) MFI, k =0.5
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(j) ME, k =0.5
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(k) SVD, k =0.9
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(l) T0, k =0.9
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(n) MFI, k =0.9
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Figure 3. Tomographies of the bi-Maxwellian from figure 1(b) based on synthetic

measurements using various inversion methods and noise levels. The inversion methods

are SVD, 0’th and 1’st order Tikhonov (T0 and T1, respectively), minimum Fisher

information (MFI) and maximum entropy (ME). The noise level k is defined in equation

(34).

information regularization result in smooth tomographies with very little jitter compared

with the SVD, 0’th order Tikhonov and maximum entropy. The small amplitudes of the

jitter makes the overall shape of the function with protrusions at positive and negative

pitches stand out most clearly for the 1’st order Tikhonov and the minimum Fisher

information regularization. The local maxima due to the beam injection peaks at full,

half and third energies can be seen in the SVD, 0’th order Tikhonov and minimum

Fisher information regularization in the case of low noise (k = 0.1). For larger noise

levels, none of the methods are able to resolve more than one peak.

Figure 5 shows the behaviour of the performance parameters as a function of noise

level for the tomographies of the three test functions. Figures 5(a), 5(c) and 5(e) show

the normalized absolute difference. The difference increases for larger noise levels for

all inversion methods and test distributions. Furthermore the first order Tikhonov

and minimum Fisher information regularization methods perform best, except for the

Gaussian distribution where the maximum entropy method performs well. A similar

behaviour is seen in the density ratios in figures 5(b), 5(d) and 5(f). The methods

which minimize gradients reconstruct the densities most accurately. The dashed lines

represent the optimal ratio, which for the bi-Maxwellian and NBI distributions are

below one since the test distributions has values below an energy of 20 keV, but our

reconstructions are limited to energies above 20 keV due to the limited weight function

coverage. The ratios in 5(d) and 5(f) all have a distinct negative slope. Thus, for very
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(a) SVD, k =0.1
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(b) T0, k =0.1
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(c) T1, k =0.1
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(d) MFI, k =0.1
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(e) ME, k =0.1
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(f) SVD, k =0.5
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(g) T0, k =0.5
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(h) T1, k =0.5
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(i) MFI, k =0.5
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(j) ME, k =0.5
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(k) SVD, k =0.9
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(l) T0, k =0.9
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(n) MFI, k =0.9
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(o) ME, k =0.9

Figure 4. Tomographies of the beam distribution from figure 1(c) based on synthetic

measurements using various inversion methods and noise levels. The inversion methods

are SVD, 0’th and 1’st order Tikhonov (T0 and T1, respectively), minimum Fisher

information (MFI) and maximum entropy (ME). The noise level k is defined in equation

(34).

large noise levels in the measurements the absolute values of a density obtained from a

reconstruction might be unreliable.

The uncertainties of the tomographies of the beam distribution as defined in section

4 are shown in figure 6 for a noise level of k = 0.5 in equation (34). The simulated photon

noise is propagated to show the uncertainties in the tomography as described in equation

(28). Here we disregard the model uncertainty for simplicity. They uncertainties are

shown in figures 6(a) - 6(e). The uncertainty based on the noise in the data is almost

independent of energy and largest for pitch values close to ±1 for all but the maximum

entropy regularization. Compared with the values of the tomographies in figure 4, the

uncertainties are about one order of magnitude smaller, and smallest for first order

Tikhonov and minimum Fisher information regularization. Figures 6(f) - 6(j) show the

regularization error, ereg. Positive values denote regions where too few ions are placed.

Negative values denote regions where too many ions are placed. The beam peaks are

seen in the regularization errors, especially for first order Tikhonov and minimum Fisher

information regularization as these two are only able to resolve the spiky nature of the

peaks for low noise levels. Adding the uncertainty contributions in quadrature gives

etot which are shown in figures 6(k) - 6(o). It is seen that for all but ME, the main

contribution to the uncertainty is the regularization error.
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Figure 5. Performance parameters of the reconstructions of the test distributions.
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(d) MFI, diag
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(e) ME, diag
(
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(f) SVD, ereg
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(g) T0, ereg
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(h) T1, ereg
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(i) MFI, ereg
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(j) ME, ereg
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(k) SVD, etot
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(l) T0, etot
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(m) T1, etot
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(n) MFI, etot
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Figure 6. Uncertainties for the tomographies of the beam distribution. The inversion

methods are SVD, 0’th and 1’st order Tikhonov (T0 and T1, respectively), minimum

Fisher information (MFI) and maximum entropy (ME). All uncertainties are calculated

for a noise level of k = 0.5.

6. Tomographies of a measured sawtooth crash

A sawtooth crash is a periodic plasma instability which occurs when the central safety

factor drops below one. It changes the magnetic field topology and has been observed

to redistribute particles and energy from the center of the plasma. It has furthermore

been observed on several machines that passing fast ions are redistributed more strongly

compared to trapped ions [9,37,38]. Figure 7 shows tomographies based on experimental

data. They are calculated using the different methods on FIDA spectra measured just

before and after a sawtooth crash in ASDEX Upgrade discharge 31557 at 2.25 s. The

corresponding total measures of uncertainty as described in equation (31) are shown in

figure 8. Common for all regularization methods, the fast ion density drops significantly

during the sawtooth crash. To further investigate the velocity-space dependence of the

change in the fast-ion distribution function, we calculate the relative change:

(∆F )rel =
Fafter − Fbefore

Fbefore

. (35)

The relative change is calculated for every regularization method and plotted in figures

9(a)-9(e). The velocity-space dependence of the relative change is especially clear in

the 1’st order Tikhonov and the minimum Fisher information figures as the amount

of jitter in these tomographies are significantly less pronounced compared to the other

methods. Both 1’st order Tikhonov and minimum Fisher information suggest that the

passing ions are redistributed more compared with the passing ions. Similar trends were
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(a) SVD before.
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(b) T0 before.
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(c) T1 before.
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(d) MFI before.
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(e) ME before.
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(f) SVD after.

20 40 60 80 100
Energy [keV]

−1.0

−0.5

0.0

0.5

1.0

P
it

ch

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
1e11

(g) T0 after.
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(h) T1 after.
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(i) MFI after.
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Figure 7. Tomographies before and after a sawtooth crash calculated using the

different regularization methods.

20 40 60 80 100
Energy [keV]

−1.0

−0.5

0.0

0.5

1.0

P
it

ch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
1e11

(a) SVD, etot be-

fore.
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(b) T0, etot before.
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(c) T1, etot before.
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(d) MFI, etot be-

fore.
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(e) ME, etot before.
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(f) SVD, etot after.
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(g) T0, etot after.
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(h) T1, etot after.
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(i) MFI, etot after.
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(j) ME, etot after.

Figure 8. Measures of uncertainties using the different regularization methods

calculated using equation (31).
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Figure 9. Relative change of the fast-ion velocity-space distribution function.
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observed previously using singular value decomposition [9] and a variant of a first-order

Tikhonov [10] where different regularization levels were chosen rather than set by the L-

curve method. For SVD the L-curve method does not show the stronger redistribution of

passing particles for this crash. Figures 9(f)-9(j) show the uncertainties of the relative

change as a function of energy and pitch calculated using the total errors shown in

figure 8. The minimum Fisher information regularization and the first-order Tikhonov

regularization show these trends with confidence even when the uncertainty includes the

regularization uncertainty.

7. Discussion

Both the regularization uncertainty and the forward model uncertainty require an

estimate of the true fast-ion velocity distribution function. For actual measurements

where Ftrue is unknown, the total uncertainty, etot, will be biased by the estimate of

Ftrue. However, the uncertainty will have approximately the correct magnitude if a

good estimate of Ftrue can be calculated. Furthermore it is useful to gain insight in to

whether the uncertainties obtained with a given regularization strength is dominated

by the uncertainties in the measurements or the regularization itself.

It is seen that when the noise level is not too large, the first order Tikhonov and

minimum Fisher information regularization methods can reconstruct the overall shape

of the true distribution function very well. However, they lack in capability to resolve

very fine and detailed features. It is seen that the absolute values of a derived quantity

such as the fast-ion density depends on the noise level in the data. However, we find

that the ratio of such quantities to less extend depends on the specific noise level and

regularization strength.

8. Conclusion

We have compared the performance of five different regularization methods for velocity-

space tomography. In order to estimate the credibility of the presented analysis,

uncertainties of the tomographies are defined and calculated taking into account the

photon noise, uncertainties in the forward model as well as uncertainty introduced by

the regularization methods themselves. It is found that for the regularization level

used here, the uncertainty introduced by the regularization methods are the major

contribution. The performance is tested using synthetic data calculated using a realistic

transfer-matrix from the five-view FIDA-system at ASDEX Upgrade. It is found that

the regularization methods which penalize large gradients perform best for realistic test

functions. Furthermore, the various methods are applied to actual FIDA measurements

obtained in ASDEX Upgrade discharge #31557 just before and just after a sawtooth

crash. Using velocity-space tomography it is possible to investigate the velocity-space

dependence of the fast-ion redistribution. We find that sawtooth crashes at ASDEX

Upgrade affect passing ions more than trapped ions.
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Figure A1. The relations between the unit vectors êv‖ , êv⊥ , êE and êp.

Appendix A. Derivation of velocity-gradient in (E, p)-coordinates

To calculate the velocity-space gradient in (E, p)-coordinates, the gradient is

transformed from
(

v‖, v⊥
)

-coordinates to (E, p)-coordinates. 1’st order regularization

in
(

v‖, v⊥
)

-coordinates can be achieved by setting

LTL = ∇T
v‖
∇v‖ +∇T

v⊥
∇v⊥ , (A.1)

where ∇v‖ and ∇v⊥ are finite difference matrix representations of the first-order

differential operators. These have to be transformed to (E,p)-coordinates. It is apparent

that the velocity-space gradient in (E, p)-coordinates has similarities to the real-space

gradient in polar coordinates. The relations between the unit vectors êv‖ , êv⊥ , êE and êp
are illustrated graphically in figure A1. The velocity-space gradient of f is

∇f =
(

∇v‖f
)

êv‖ + (∇v⊥f) êv⊥ = a (∇Ef) êE + b (∇pf) êp , (A.2)

where a and b are unknowns that must be calculated from the Jacobian. ∇E and ∇p

are velocity-gradients along êE and êp respectively. Writing êE and êp as functions of
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êv‖ and êv⊥ gives

êE = cos(θ) êv‖ + sin(θ) êv⊥ = p êv‖ +
√

1− p2 êv⊥ , (A.3)

êp = sin(θ) êv‖ − cos(θ) êv⊥ =
√

1− p2 êv‖ − p êv⊥ , (A.4)

where the relation p = cos(θ) has been used. The gradient in energy is now found by

dotting equation (A.2) with êE :

(∇f) · êE ⇒
(

∇v‖f
)

p+ (∇v⊥f)
√

1− p2 = a (∇Ef)

= a

(

(

∇v‖f
) ∂v‖
∂E

+ (∇v⊥f)
∂v⊥
∂E

)

,

(A.5)

To calculate the partial derivatives, the relations between v‖, v⊥, E and p are needed:

v‖ = p

√

2E

m
(A.6)

v⊥ =
√

1− p2

√

2E

m
. (A.7)

The partial derivatives are:

∂v‖
∂E

=
p√
2mE

(A.8)

∂v⊥
∂E

=

√

1− p2√
2mE

. (A.9)

Inserting equations (A.8) and (A.9) in equation (A.5) gives

(

∇v‖f
)

p+ (∇v⊥f)
√

1− p2 = a

(

(

∇v‖f
) p√

2mE
+ (∇v⊥f)

√

1− p2√
2mE

)

.

(A.10)

Equation (A.10) is fulfilled for

a =
√
2mE . (A.11)

Similarly, b can be found by dotting equation (A.2) with êp:

(∇f) · êp ⇒
(

∇v‖f
)

√

1− p2 − (∇v⊥f) p = b (∇pf)

= b

(

(

∇v‖f
) ∂v‖

∂p
+ (∇v⊥f)

∂v⊥
∂p

)

.

(A.12)

The partial derivatives are:

∂v‖
∂p

=

√

2E

m
, (A.13)

∂v⊥
∂p

= − p
√

1− p2

√

2E

m
. (A.14)
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Inserting equations (A.13) and (A.14) in equation (A.12) gives

(

∇v‖f
)

√

1− p2 − (∇v⊥f) p = b

(

(

∇v‖f
)

√

2E

m
− (∇v⊥f)

p
√

1− p2

√

2E

m

)

.

(A.15)

Equation (A.15) is fulfilled for

b =

√

m

2E

√

1− p2 . (A.16)

Thus, the velocity-space gradient in energy-pitch coordinates becomes

∇f =
√
2mE (∇Ef) êE +

√

m

2E

√

1− p2 (∇pf) êp . (A.17)


