
WPMST1-CPR(17) 16994

E Lazzaro et al.

Physics conditions for robust control of
tearing modes in a rotating tokamak

plasma

Preprint of Paper to be submitted for publication in Proceeding of
44th European Physical Society Conference on Plasma Physics

(EPS)

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



Physics conditions for robust control of tearing modes in a

rotating tokamak plasma

E. Lazzaro1, D. Borgogno3, D. Brunetti1, L. Comisso4, O. Fevrier5, D. Grasso2,3, H.

Lutjens7, P. Maget6, S. Nowak1, O. Sauter5, C. Sozzi1 and the EUROfusion MST1 Team a

1 Istituto di Fisica del Plasma - CNR Via R.Cozzi 53, 20125, Milano, Italy

2 Istituto dei Sistemi Complessi - CNR Via dei Taurini 19, 00185, Roma, Italy

3 Dipartimento Energia, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129, Torino, Italy

4 Department of Astrophysical Sciences and Princeton Plasma Physics Laboratory,

Princeton University, Princeton, New Jersey 08544, USA

5 Ecole Polytechnique Federale de Lausanne (EPFL),

Swiss Plasma Center (SPC), 1015 Lausanne, Switzerland 6CEA,

IRFM, F-13108 Saint Paul-lez-Durance, France.,

7 Centre de Physique Theorique, Ecole Polytechnique,CNRS, France.

a *See the author list of Overview of progress in European Medium Sized Tokamaks towards an integrated

plasma-edge/wall solution by H. Meyer et al., to be published in Nuclear Fusion Special issue: overview

and summary reports from the 26th Fusion Energy Conference (Kyoto, Japan, 17-22 October 2016)



2

I. ABSTRACT

The disruptive collapse of the current sustained equilibrium of a tokamak is perhaps

the single most serious obstacle on the path toward controlled thermonuclear fusion. The

current disruption is generally too fast to be identified early enough and tamed efficiently,

and may be associated to a variety of initial perturbing events. However a common feature

of all disruptive events is that they proceed through the onset of MHD instabilities, and field

reconnection processes developing magnetic islands which eventually destroy the magnetic

configuration. Therefore the avoidance and control of magnetic reconnection instabilities

is of foremost importance and great attention is focussed on the promising stabilization

techniques based on localized rf power absorption and current drive. Here a short review is

proposed of key aspects of high power rf control schemes (and specifically Electron Cyclotron

Heating and Current Drive ECH/ECCD) for tearing modes, considering also some effects

of plasma rotation. From first principles physics considerations, here new conditions are

presented and discussed to achieve control of the tearing perturbations by means of high

power (PEC ∼ Pohm), in regimes where strong nonlinear instabilities may be driven, such

as secondary island structures, which can blur the detection and limit the control of the

instabilities. Here we consider recent work which has shown ways of improvement of on some

traditional control strategies, namely the feedback schemes based on strict phase tracking

of the propagating magnetic islands.

II. INTRODUCTION

The tearing modes have been the subject of extensive studies for many years [1–5]. The

first basic linear and nonlinear theory has been subsequently extended to neoclassical regimes

[6–8], with bootstrap current effects. Recently the physics understanding has been enriched

by new findings on nonuniformity effects on finite magnetic islands, of pressure and tem-

perature associated with energy input [ECRH] and loss (e.g. by radiation) [9–12], rotation

and viscosity [16–20, 22], as well as by findings on small scale topological effects of the

reconnection [23, 24]. The mutual interaction of tearing modes with shielding effects and

coupling and the symmetry breaking effects on global and local plasma rotation have gained

great attention, for their important consequences. One of the most promising methods of
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controlling magnetic islands is based on driving directly into the magnetic island a current,

by absorption of rf waves mainly at the electron cyclotron frequency (ECCD) [26, 27], with

a (m,n) helical component counteracting the destabilizing current perturbations. Success-

ful ECCD experiments of NTM control, with different methods, have been carried out in

ASDEX Upgrade [28, 29], JT60U [30], FTU [31], DIII-D [32, 33], KStar [34],TCV[35] and

EAST [36], and comprehensively reviewed in [37, 38] In a tokamak the task of possible pre-

vention, or effective control of low (m,n) order magnetic reconnection instabilities can rely

on few knobs which can be associated just with a few state variables, in a coarse grained

picture of the processes. Progress in the physics understanding of the local and averaged

effects of rf power absorption is needed to identify the most important limits and bounds;

then within these limits one can conceive and design (with state of the art engineering) con-

trol systems as insensitive to disturbances as possible (robust), but still responding to the

physics to be controlled. The realization of a reliable control scheme based on the steered

launch and absorption of high rf power in very precise positions in the tokamak plasma,

requires numerous diagnostics and control concepts for robust real time (r-t) operation. The

technical implementation of such systems leads to very complex architecture, and this mo-

tivates a careful revisitation of the underlying principles to achieve efficiency and reliability.

The actual design is the task of professional control engineers, but the formulation of the

problem requires the work of expert physicists, capable of isolating the dominant and sub-

sidiary processes, specifying the relevant parameter space, the state and control variables

and the eventual acceptable structure of a simplified plant description. The basic tasks

for the prevention or control of collapsing events, requires successful means of detection of

the unstable modes, in spectrum, amplitude, phase and frequency as well as in choice of

strategies of constraint. For instance the generic (albeit formidable) goal of stability must

be substantiated in defining the actual desired range of variation of the (main) state variable

(e.g. magnetic island width), and the restriction due to subsidiary (unwanted) processes.

In this respect it should be borne in mind that the application of intense external coercive

means (e.g. boundary magnetic perturbations or ECCD) may lead to violation of the con-

stant ψ regime, on which the governing equation for island evolution is based [1–4]; entering

a non constant ψ regime implies the possibility of driving instabilities growing faster than

the current diffusion process out of the reconnecting region, splitting the fragile X-points

into two Y-points and forming secondary islands which blur the identification of the phase.
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This leads to expect a limit on the amplitude and localization of the externally applied per-

turbation. The occurrence of multiscale effects (in space and time), as discussed in [48, 49],

on one hand, increases the difficulties of selecting control strategies, while, on the other, it

offers several possibilities of diagnosing the unstable state. Furthermore in realistic toka-

mak regimes, account should be taken of plasma toroidal rotation, intrinsic or driven, which

alters the stability picture.

III. EQUATIONS FOR RESISTIVE MAGNETIC PERTURBATIONS

For the purpose of this work it is suitable to employ the following incompressible MHD

equations

% [∂tv + v ·∇v] = −∇p+ J ×B (1)

∂tB = ∇× (v ×B)−∇× (η[J − Jboot − JCD]) (2)

∂tp+ v ·∇p = 0 (3)

where v is the plasma MHD velocity, p the plasma pressure B the magnetic field and % the

mass density which is assumed constant both in space and time. In equation (2) the plasma

resitivity η is kept constant, while the current density J is defined by µ0J = ∇×B (hereafter

we normalize µ0 = 1). Note that in (2) we allow for bootstrap and ECCD corrections to the

current density representd by Jboot and JCD respectively. In addition we consider here also a

sheared equilibrium toroidal flow v0 = RΩ(r)ẑ (R is the major radius and ẑ is the unit vector

along the longitudinal direction), satisfying % [v0 ·∇v0] = −∇p0 + J0 ×B0 . For small non

axisymmetric magnetic perturbations, it is convenient to use the non orthogonal curvilinear

coordinate system ui = (V (ψ), θ, ζ), whose arbitrary Jacobian
√
g = 1/∇V ×∇θ · ∇ζ here

is chosen to be unitary, with B · ∇ϑ = ψ
′
/
√
g. The total magnetic field can be represented

in the general form:

B = ψt
′∇V ×∇ϑ− ψ′∇V ×∇ζ = ψ

′∇× (V∇α)(4)

where α = qϑ − ζ is a Clebsch magnetic field line label, ψt and ψ are the toroidal and

poloidal magnetic fluxes, such that the ratio ψt
′
/ψ

′
is constant at a given flux surface. We

introduce the safety factor defined as q = ψt
′
/ψ

′
. It is known that magnetic perturbations

described by linearizing the above system, in absence of an equilibrium flow and of an
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external current source JCD, may grow unstable at rational surfaces q(rs) = m
n

, developing

magnetic islands. The first question addressed here is on the role that a background sheared

flow may have on these linear resistive instabilities. From previous studies [16, 19, 20] a

variety of results is available for discussion. Here we want to propose a first principles

discussion based on particular, albeit artificial, flow and q profiles, that have the merit

of leading to exact solutions. The basic tool is a form of Newcomb’s equation obtained

in cylindrical approximation from the linearization of eqs.(1)-(3) written in terms of the

reduced MHD variable ψ = − rB0k‖
m

X, modified by the presence of a rotation with a simple

family of profiles for k‖ and rotation. The profiles employed in our analysis are the following

k‖(r) =
ns

λ

[
1−

(
r

rs

)λ]
(5)

Ω(r) = Ω0

[
1−

(
r

rs

)λ]
(6)

where n is the toroidal mode number, rs is the resonant point, s denotes the magnetic shear

at rs and the parameter λ labels the profiles determining their steepness [18]. Note that we

chose a reference frame which is moving along the longitudinal direction in a such way that

the rotation frequency vanishes at rs (this is allowed within the cylindrical approximation).

Exact solutions in terms of hypergeometric functions can be found and an analytic expression

of the classical instability index ∆′, with sheared flow, is obtained:

rs∆
′ = −(

m2 − µ2

rsλ
)πcot [π(m− µ)/λ] (7)

µ = (m2 + 2λ+ λ2[1 + Θ(y)])1/2 (8)

where Θ(y) = 2y2

λ2(1−y2)
. It is found (see Fig.1) that the key parameter is the ratio y = Ω′/ωA

q′/q

of toroidal rotation shear and magnetic shear [18, 19]. For y � 1 a weak destabilizing

effect due to rotation shear is present, and generally the small m tearing modes are unstable

(∆′ > 0), while large m’s are stable (∆′ < 0). For y ∼ 1 a window of stability exists

for all m. The response of the nonlinear growth rate d ln(w)/dt of the neoclassical tearing

modes (NTM) to rotation shear, reflects the classical behaviour in reducing the unstable

w range, but rotation alone does not seem to provide a reliable control knob. These exact

results are in agreement with the form of ∆′0 derived in toroidal geometry using the WKB

approximation (m� 1), see Ref. [20].
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IV. ECH AND ECCD EFFECTS IN THE GENERALIZED RUTHERFORD

EQUATION (G.R.E.)

The main task of a theoretical study of rf control of tearing instabilities, in the observable

Rutherford phase, is the estimate of the necessary driven current, e.g. the rf power necessary

to reduce the state variable w(t) and to design real-time strategies for the rf launching for

an effective power deposition and possible tracking of the moving island. A basic question

for the design of a control concept is the order of the fastest and slowest time scales of

the processes to be controlled (fast reconnection, slow nonlinear growth and saturation,

island rotation period), and the associated space scales suggesting how sharp the focusing,

radial and/or angular, should be. Moreover, in addition to all the physical scale lengths

mentioned above, one has to consider also that the rf-driven current forces another typical

scale length, the absorption depth δCD. This length depends on the wave beam launching and

propagation conditions and plasma equilibrium quantities, such as density and temperature.

The equation for the evolution of magnetic islands with width w = 4
√
ψsLs/B, larger than

the tearing layer is known as Rutherford equation [2]. It is obtained from the rate of flux

reconnection with suitable averaging of the Faraday-Ohm equation (2) and it has been

generalized to include neoclassical effects, plus the effect of the ECH/ECCD and is coupled

to equation for the island rotation frequency ω in the lab frame, similarly obtained from the

equation 1 (see, e.g., [39–43]). Here it is convenient to present it in a form currently used in

modelling [44]:

g1
τR
rs

dw

dt
= rs

[
∆′0 +

abs∆bs0w

w2 + w2
d

− aGGJ∆GGJ0√
w2 + 0.2w2

d

+
apol∆pol0ρ

2
θiw

w4 + w4
d

ω̄(ω̄ − ω∗i)
ω2
∗e

−∆′rf −∆′w

]
(9)

Iφ
dω

dt
= −T0em(

w

rs
)4 (ωτw)

1 + (ωτw)2
− [ω − ωT ]

dIφ
dt
− 4π2%ν

R3rs
3w

w2 + w2
d

[ω − ωT ] (10)

dϕ

dt
= ω (11)

Here τR, τw are the resistive dffusion time scale and the wall constant [44], ν is a viscosity

associated with momentum diffusion and ω̄ = ω − ωE,where ωE, ω∗e,i are the electric EXB

drift and diamamagnetic frequencies and ωT = ωE +ω∗i + κ(ckθT
′
i/eB0), with κ a neoclassi-

cal coefficient O(1) [39]. In the torque balance equation, Iφ = 4π2%R3rsw is the moment of
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inertia of the rotating island and the constant T0em is the amplitude of the electromagnetic

(em) torque . The term ∆′0 represents the amplitude of the jump of logaritmic derivative of

ψ across the q = m/n surface [1–4] and in presence of a background toroidal rotation must

embody the physics described in Eq.7. The dimensionless terms ∆bs0 = βp
√
ε | Lq/Lp |,

∆GGJ0 = βpε
2Lq

2/(rs | Lp |), ∆pol0 = βp(Lq/Lp)
2g(ε, νii), represent, respectively, the boot-

strap current Jbs effect, [6], a toroidicity effect [3], and the third term represents the polariza-

tion current due to an effect of ion inertia [8, 9], which is important at the onset of the NTMs.

A conventional, accepted evaluation [41] of the other coefficients is abs = 2.6, aGGJ = 6. The

last term ∆′w = 2kθ(rs/dw)2 (ωτw)2

1+(ωτw)2 , with label w for wall, gives a small stabilization due

to the induced currents in the first wall [44]. The quantity wd in the second (bootstrap

current) and third [3] terms of the first equation represents a lower limit of the island width

related to the finite ratio of heat conductivities field along and across the B field (χ‖/χ⊥),

and governs the incomplete flattening of the temperature profile within the island separatrix

[45, 46]. It is often replaced by the value wmarg below which NTMs self extinguish. The

portrait of the stability conditions in the neoclassical collisional regimes shown in the phase

plane (dw/dt,w) of Fig.1(top), where the nomenclature is indicated and with the region with

dw/dt > 0 is apparent. A neoclassical tearing mode, at low βp is linearly and nonlinearly

stable, with ∆′0 6 0. At higher βp the neoclassical NTMs are metastable, without an island,

until a seed perturbation (presumably of the same helicity) triggers the growth, proportional

to βp [6, 18, 47]. In Fig.1(bottom), the effect is shown of toroidal sheared rotation on the

stability domain, discussed in Section III [18].Recent results show that in condition of low

magnetic shear in the plasma core, finite pressure gradient effects can excite infernal modes

which can trigger tearing sidebands [18] through toroidal coupling. The rf power term is

given by the sum of contributions describing the helical and axisymmetric current drive,

and of localized heating is[12–14] ∆′rf = ∆′CD(m,n) + ∆′CD(0,0) + ∆′ECH . The effect of the rf

driven (m,n) helical current in the magnetic island region is conveniently written in terms

of ICD, Ip, the total rf and plasma currents, as ∆′CD(m,n) = 32 ICD

Ip

Lq

δ2
CD
ηmn( w

δCD
)GCD(rdep,

w
δCD

)

[13, 14]. The ECCD efficiency ηmn appearing in this term ([14, 40, 43]) is best fitted

analytically by ηmn,CW

(
w/δCD

)
= 0.25

1+(2/3)(w/δCD)
[14] for the constant (CW) rf applica-

tion and by ηmn,50%

(
w/δCD

)
= 0.45 tanh[0.4(w/δCD)]( δCD

w
)2 for the phased modulation

[14]. The function GCD(rdep,
w
δCD

) accounts for the radial misalignment effects[13]. The
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axisymmetric current contribution is given by ∆′CD(0,0) = 4 Lq

δ2
CD

ICD

Ip
erfc[w/δCD] [15]. In ad-

dition, the local heating effect of the EC waves power absorbed (by the electrons), gives

∆′ECH ∝
16Lq

√
π

δ2
CDBp

PECηH( w
δCD

), due to modification of Jeq through the resistivity. From the

steady state of eq.9 it appears that for locally peaked temperature profiles, the heating helps

reducing the saturation width of the island even if it does not suppress it [40].

For ITER-like plasma parameters (R0 = 6.3m, a = 2m,B0 = 5.3T, rs ∼ 1.6m, Ip(rs) =

11MA,Te(rs) = 7keV, ne(rs) ∼ ni(rs) = 9.5 · 1019m−3, τR = 284s, βpol = 0.7, wsat =

0.21m,wd = wmarg = 0.03m, JCD = 0.015MA/m2, δCD = 0.04m), in Fig.2 it is shown

that the contribution of the axisymmetric driven current and of the heating part are of

the same order of that of the helical current, in balancing the destabilizing bootstrap ∆′bs0

[12]. Since these effects are independent of the island phase stringent requirements on phase

tracking appear less motivated.

Furthermore, finite magnetic islands are actually asymmetric with respect to the rational

q surface, and the asymmetry is equivalent to a current perturbation which can either have

stabilizing effects [10, 11] or destabilizing,when associated with thermal losses.A current per-

turbation due to variations of the local (Spitzer) resistivity, consequent to radiative cooling

of the island interior, has been shown to be destabilizing [11] in combination with asymme-

try. Replacing the radiative energy losses by EC heating within a band encompassing the

reconnection layer seems therefore a reasonable way to counteract these instabilitiies, also by

freezing the reconnection process and it combines favorably with the effect of axisymmetric

JCD [11, 12], both being phase independent. For a realistic ITER-like scenario, the plot

(dw/dt,w) in Fig.3 for different values of injected JCD, shows the comparable contribution

of the helical and the axisymmetric terms [12] as well as the modest difference between the

case of a CW application and that of a 50% modulation, perfectly phased Fig.4. In the

frame of the G.R.E, one key question is whether to apply a prompt intervention to suppress

the island of width w as soon as the instability is detected, or apply continuous pre-emptying

control of a finite island within chosen bounds [12, 27–29, 37, 43, 47, 57]. Conventionally

an estimate of the power PCD required to quench the island growth is obtained by setting

to zero the r.h.s of eq.9, assuming that the power is absorbed at the O-point of the rotating

island, with perfect phasing, possibly obtained by entraining the modes by external rotating

fields, as done in some exploratory experiments[33]. The required power is given by the
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expression[44]:

PECmin = (
wsatw

w2 + w2
marg

− 1)
abs
aCD

4(1− f)δCD√
πwsat

Jbs
ηCDJCD

(12)

where f = aGGJ∆GGJ0/abs∆bs0, neglecting the ∆poland ∆′w contributions. Many discussions

have been made on the advantages of modulating the rf power to deposit the JCD as close

as possible to the O-point in synchronism with the island rotation. Actually the parallel

transport is virtually instantaneous, such that the driven current density becomes a flux

function, on the island flux tubes intercepted anywhere by the rf beam having a deposition

spot of finite angular and radial width, and an automatic modulation occurs, encompassing

the O-point for a deposition in the range 0 < α < π, if the radial deposition is within

δCD ∼ w/2. So the ECCD efficiency varies moderately between a CW and a phase modulated

case [54] and what really matters is minimizing the radial mismatch within a range of the

order proposed for instance, in Ref.[37]. In the ITER-like case presented, the control of a 2/1

NTM is obtained with a reduction of the EC power ∼ 0.098%, about 400 KW. The ECCD

(helical) efficiency is illustrated in Fig.5, as function of the ratio w/wmarg; considering a radial

misalignment δR ∼ 0.016m from the island O-point, the efficiency is much reduced while

w ≤ δCD = 0.04m, recovering for w > δCD. To illustrate the destabilizing effect of a radial

misalignment, which favors the rf power absorbtion across the separatrix, Fevrier et al [50]

have proposed a heuristic correction to the efficiency ηCD ∝ (1− ( δR
α

)2) exp[−( δR
β

)2], where

α, β are profile scale lengths. In conclusion, when the measurements of amplitude (∝ w2),

and phase are available with sufficient accuracy, the G.R.E provides a very useful model

of the process to be controlled, adopting relatively well established systems [21]. However

for the reliability of the control system, with high power circulation, also consideration is

needed of possible internal parasitic processes .

V. ECCD MAGNETIC ISLAND SUPRESSION AS CONVERSE OF A FORCED

RECONNECTION PROBLEM

In this section the attention is addressed to subtler physical effects which may occur on

smaller space scales, albeit in a restricted range of operative parameter. It is convenient to

isolate the problem in the frame of a simplified model. The effect of an external current

source, parallel to the magnetic field and driven by rf power absorption, namely ECCD, [26]
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can be usefuly mocked-up in a plasma slab. Then the effect of ECCD, can be investigated as

a converse of the Hahm Kulsrud Taylor (HKT) [52, 53] forced reconnection problem starting

from the equilibrium II of [52] which corresponds to a state with a magnetic island.The basic

elements a of the classical HKT problem, are used, adopting the notation of Refs.[24, 51] for

the reduced MHD description of the magnetic field through a flux function ψ and a velocity

stream function φ (electrostatic potential). Dimensionless variables are defined and used

dropping hats:

x̂ = x/a, t̂ = τ/τA, ψ̂ = ψ/aB0, φ̂ = φ/a2τA, ĴCD = JCDa/B0, S = τR/τA, ∂̂xxφ̂1 = φ̂”
1 (13)

In this dimensionless model η = S−1, the inverse Lundquist number, and ν = Pη, with P

the Prandtl number. In the case of the HKT problem the equilibrium configuration is given

by ψ0 = −x2, φ0 = 0. Here the equilibrium is ψII(x, y) = ΨΣ
cosh(kx)
cosh(k)

cos(ky), φ0 = 0, where

ΨΣ ∝ w0
2 and w0 is the initial island width. The first order Faraday-Ohm and vorticity

equations for the dynamics in the visco-resistive regime [17, 24] of the inner layer, where

reconnection occurs, include an external, localized current source :

∂tψ1 + kxφ1 = η[ψ”
1 − J0D(ψ)] (14)

∂tφ
”
1 = kxψ”

1 + νφ””
1 (15)

The current distribution D(ψ) on the intercepted flux surfaces can be modeled as a function

of ψ, which, without loss of generality can be chosen to be a Gaussian:

JCD =
2J0

δCD
√
π

exp[−4(x− xdep)2]

δ2
CD

] (16)

With a furher change of variable x̂ = kx the time-Laplace and space-Fourier transforms

of Eqs.(14, 15) are performed, and with tedious but straightforward algebra as in [24] an

equation is obtained for the Fourier transform φF of the electrostatic potential and a con-

sequent expression for the reconnected flux ψF . Taking into account that using JCD as a

compact distribution, or in the limit case of a Dirac’ s delta, the drive term gives a vanishing

contribution in the equation for φF ,we obtain:

∂θ(
θ2

s+ ηk2θ2
∂θφF )− (sθ2 + νk2θ4)φF = 0 (17)

and the expression of the Laplace transformed ψL on the x=0 layer is:

ψL(0, s) =
2iηk2

s

∫ ∞
0

dθ
θ2

s+ ηk2θ2
∂θφF −

ηJ0D(0, s)

s
(18)
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The boundary conditions to be applied to Eq.(15,17) are limθ→∞ φF (θ, s) = 0. In the visco-

resistive range s � ηk2θ2 the asymptotic matching of the small and large inner solutions

with the outer (ideal) solution, and application of boundary conditions, results in:

ΨL(0, s) = ψout(0, s) =
∆′sΨΣ

(∆′(s)−∆′0)s
(19)

where ∆′0 = − 2k
tanh k

and ∆′s = 2k
sinh k

and ∆′(s) = sτνη results from the matching of the

solutions in the overlapping interval and τνη ∝ ν1/6η−5/6k−1/3. The boundary value which

in Hahm Kulsrud is a driving term, here corresponds to the flux label of the separatrix, pro-

portional to the square of the initial magnetic island. At this point, following the procedure

of Ref.[24], we just replace ΨL(0, s) with ΨL(0, s)− ηJ0

s
D(0, s), obtaining

Ψext(s) = [ΨΣ −
(∆′(s)−∆′0)

S∆′s
J0D(0, s)] (20)

It appears from Eq.(20) that a good choice of J0(t) can control the reconnected flux ampli-

tude, i.e the island width. This condition can be expressed in terms of a partial suppression

parameter G, (0 < G < 1) and eq.20 gives

(∆′(s)−∆′0)

S∆′s
J0D(0, s) = GΨΣ (21)

The combination of eq.20 with the solution of eq.15 in the ideal limit (vanishing torque), gives

eventually the expression of the converse HKT problem in the −1 < x < 1,−π < ky < π

slab:

ψ(x, s) = Ψext(s)[cosh(kx)− sinh |kx|
tanh(k)

]cos(ky) + ΨΣ
sinh |kx|
sinh(k)

cos(ky) (22)

Before discussing the final controlled state it should be observed that when the island, in

the constant ψ regime, shrinks below a critical value, if the driven current has a scale length

(absorption depth) comparable with this critical value, it can drive the perturbation into a

non-constant ψ regime, where marginal, nonlinear instability conditions can be reached for

tearing unstable current sheets and secondary island structures. Indeed, in the viscoresis-

tive regime, according to[24, 25], a nonlinear instability condition should be reached when,

under the ECCD effect, the island approaches from above (in a controlled fashion), the

dimensionless critical width wcrit = 4
√

Ψcrit:

Ψext = Ψcrit = C
k

∆′s

√
(1 + P )

S
(23)
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where C is a parameter related to the marginally stable current sheet aspect ratio. Recalling

previous definitions, since here the value ΨΣ at the boundary is fixed and k is a parameter to

be determined by consistency conditions, the critical condition is transferred to the current

peaking ratio J0/δCD (here dimensionless):

2J0

δCD
√
π
&

S∆′s
(∆′(s)−∆′0)s

[Ψcrit −ΨΣ] (24)

Using the feedback relation eq.21 and eq.23 condition 24 becomes:

J0

δCD
&

√
π

2

( G

1 +G

)Ck√1 + P

(−∆′0)
(25)

If this ratio is exceeded, the non-constant ψ regime is entered, where the collapse of the

X-points and cariokinesis into secondary structures is possible. This unstable regime will

eventually saturate into a controlled equilibrium condition dominated by the rf driven cur-

rent. In such condition the constant C can be taken as C = 2√
π

(
1+G
G

)
(−∆′

0)√
1+P

J0

mp
, where mp is a

small number, so that the wavenumber is k = mp/δCD. The topology of the q = m/n ratio-

nal surface is preserved, if we consider q = (m+m′)/(n+n′) leading to k = k0 + k′ ∼ mpk0.

The above value of C, is compatible with the formation of current sheets of aspect ratio

εc > C−1/2. In the case of small (dimensionless) J0, the wavenumber k should result from a

consistency condition imposed by matching the (transition) from the (constant- ψ) Ruther-

ford regime, characterized by Ψext ∼ P 1/6S−1/3k−1/3∆′s
−1 [24] to the (non-constant- ψ)

nonlinear regime characterized by the threshold condition Eq.23. The consistency relation

then is k = P 1/8S1/2(1+P )−1/2C−3/4. The analytic expression (22) plotted in Fig.6 shows in

the first frame the intitial ψII state, with islands, in the second frame the suppressed state

with the JCD annihilating Ψext and in the third frame the effect of narrowing the JCD profile

width by 20% at total constant current, with reappearance of islets and current sheets. This

is to be expected since it corresponds to an increase of the peaking current ratio eq.25.

An illuminating similar result has been obtained by carrying on a set of numerical ex-

periments of magnetic island control assuming the Reduced Resistive MHD model in slab

geometry, described in ref.[48]. The simulations, performed in the 2D slab geometry, are

aimed to control the magnetic island rising from a spontaneous reconnection event in pres-

ence of a static, linearly unstable Harry’s pinch equilibrium φeq = 0, ψeq(x) = − log(cosh(x)).

The current drive is applied continuously starting from a large nonlinear magnetic island.

Fig.7 shows the magnetic configuration at the time when the ECCD injection starts (left
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frame) and the time evolution of the magnetic island area in absence of control.

Different widths of the ECCD beam deposition have been adopted, while the initially in-

jected total ECCD current,
∫
JCD(x, y, t1)dxdy, where t1 is the initial deposition time, is the

same. The center of the ECCD beam is constant and located at the O-point of the magnetic

island at t = t1. Fig.8 shows, from top to bottom, the effect of the ECCD beam injection for

three different values of δCD = b · w(t1)2/2, with b = 0.5, 1, 2, where w(t1) is the magnetic

island half width at t = t1. In each row, corresponding to a specific value of b, the left

frame shows the plasma current at a fixed time with, superimposed, the magnetic surfaces

crossing at the X-points. The right frame shows the evolution of the reconnected area, i.e.

the area of the region enclosing magnetic surfaces with a different topology compared to the

equilibrium configuration. It reduces to the area of a magnetic island when a single mode

dominates over the others.

We observe that in all the cases considered here the system moves towards a stationary

configuration where the area of the reconnected region is comparable with the area of the

magnetic island at the initial deposition time. However the current control has a significant

effect on the change of the magnetic topology compared with the initial magnetic island.

Moreover this change appear to be strongly dependent on the value of the beam width. The

numerical analysis shows that the new topology is the results of a complex dynamics induced

by the continuous deposition of the JCD. After an initial phase when the JCD reduces ef-

fectively the magnetic island, in fact, the small scale current layers induced by the external

control current along the null axis x = 0 give rise to plasmoid like secondary structures.

These structures grow and recombine on fast time scales, leading to a continuous change of

the magnetic topology untill the saturation is reached. Note that the smaller the b param-

eter, the more lively the dynamics. Therefore the striking result is that the ECCD current

injection, meant to suppress the Rutherford magnetic islands, can lead to formation of a sec-

ondary island chain on the scale of δCD, as shown in Fig.8 In practice,with the broad beam

focussing of ITER-like cases similar to the example presented the (dimensionless) peaking

parameter J0

δCD
∼ 0.36 can exceed the critical value only for nearly vanishing local Prandtl

number P. Nonlinear formation of secondary islands, expected in systems with large amount

of free energy, has not been often documented in tokamak experiments. However interesting

observations have been recently reported in JET (without ECH) and COMPASS [55] and

in FTU [56] in presence of ECH. In designing control systems based on delivering large rf
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power with sharply focussed beams, the associated nonlinearities should be considered.The

possible occurrence of such nonlinear substructures, shown in Figs.8, clearly hampers the

use of the phase as a measurable and controllable variable.

VI. DETECTION AND CONTROL ISSUES: FEEDBACK AND OPTIMAL

CONTROL POLICY

The physical objective is to reduce the island width to zero in minimal time injecting

ECRH/ECCD at the position of the q=m/n surface, identified, for instance, by prelimi-

nary equilibrium reconstruction and by ECE signals correlation methods, possibly in phase

with the Mirnov coils signals, analysed in r-t by a digital PLL (phase-locked loop and Sin-

gular Value Decomposition (SVD) methods[56]. The variety of the signals to be acquired

and processed for the control action, and their intrinsic uncertainties as well as those of the

model predictions could be too high for the feedback specification, while the sensitivity is

in principle infinite. The direct measurements are characterized instead by a lower uncer-

tainty but with finite sensitivity due mainly to noise. It can therefore be proposed to use

a combination of both using a probabilistic approach based on the Bayesian assimilation in

real time of all the information available [56]. An important advantage of using more than

one source of information is the possibility to increase the robustness of the estimate by

comparing the consistency among the available data. In the well known plot dw/dt vs w

of the (nonlinear) growth rate for NTMs (see Figs.(1,3)), the early unstable growth interval

before the maximum is where a most effective mode tracking and amplitude control should

be applied. In this interval the NTM control problem can be cast into a linearized form

belonging to a general class known in the theory of multistage decision processes [58]. The

governing equation (9) for the (dimensionless) state vector X(t) = [W/rs, (ω − ω?)/ω?e],

with the initial condition X(0) = X0, and a control vector function U(t) can be written

as:

dX

dt
= A ·X + B ·U + n (26)

where the matrix A is obtained from the linearized G.R.E. eqs.(9,10),and B = [b] is the

matrix of control coefficients,while n represents a noise input, heretofore neglected. In this
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example A has the structure:

A =
( a11 > 0 a12 < 0

a21 < 0 a22 < 0

)
=
( O(X−1

t ) O(X−3
t )

O(X2
t ) O(X−2

t )

)
(27)

where Xt = wt/rs � 1 is the NTM seed threshold island value, above which the mode grows

unstable [6]. The formal problem consists in reducing the state X(t) to zero in minimal

time by a suitable choice of the control function U(t). The latter, when the actuator is

the ECH/ECCD launching system, can be represented in terms of a function of the radial

misalignment δR between the wave beam deposition position (minor radius) rdep and the

rational q surface rm,n where magnetic islands appear, and of the phase mismatch δφ:

U(t) = [h exp(−[rdep − rm,n]2), δφ] (28)

Near the threshold value Xt � 1 the rank of the system matrix A, is full, but the Kalman

controllability matrix Q = [b,Ab] is of full rank only if the coefficients a21 proportional

to perpendicular viscosity and a22, to first wall resistivity are not vanishing. This actually

means that the mode rotation and phase is hardly controllable, and therefore a feedback

design should probably aim primarily at minimizing the control U which in the equation

27 appears linearly, although dependence on the radial mismatch δR2 = [rdep − rm,n]2 is

exponential, mimicking the EC power absorption line.It is then useful to explore an approach

of optimal control, complementary to the usual feedback schemes, and based,for instance,

on the constrained minimization of a ”soft landing” cost function

J =

∫ T

0

dt[U2 + 1] (29)

subject to the fulfilling of Eq.(26). The optimal control approach, by weighting the elements

of the model and of the controller,can combine requirements of robustness and response to

the physics. The constrained problem is solved introducing the Hamiltonian from which the

adjoint problem is formulated

H(X,p) = 1 + U2 + p1
dX1

dt
+ p2

dX2

dt
(30)

dp1

dt
= − ∂H

∂X1

,
dp2

dt
= − ∂H

∂X2

,
∂H

∂U
= 0 (31)

For this simple example the instructive solution is analytic:

X1 = X01e
a11t +

X02a12

a22 − a11

[ea22t − ea11t]− U(t)
ea11t

a11

sinh(a11t) (32)
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X2 = X02e
a22t(33)

U(t) =
a11e

−a11t

sinh(a11T )
[X01e

−a11T +
X02a12

a22 − a11

[ea22T − ea11T ]] (34)

The parameters of the exercise are deduced from a real TCV discharge [59].The perturbation

of the frequency decays on the timescale 1/a22. The result in Fig.9 (top) shows that a

suitable control of the beam can quench the mode amplitude in the case of fixed radial

misalignment δR2 = const. Eq.34 shows that the control amplitude is proportional to the

initial rate of growth of the magnetic island, with a correction due to the intial mode

perturbed rotation, which here is decaying; since the latter is not precisely measurable, the

control geared on the measurement of the mode r.m.s growth rate is sufficient to bring the

amplitute to target. A feedback system based on phase tracking may loose accuracy when

secondary structures appear, blurring the phase detection as shown in Fig.8 [56]. Then it

is advantageous to complement such systems with optimal control policies. Since it turns

out that what is important is the radial focussing, it is interesting to explore a piecewise

optimal policy where the control function U(t) is extended allowing for a time dependence

of |δR(t|) = δε|Σ(2 2t
τΣ
− 1))| ∼ w with Σ(t) a triangle waveform representing an intermittent

scanning of the neighborhood of the rational surface:

U(t) =
a11e

−a11tfΣ(t)

sinh(a11T )
[X01e

−a11T +
X02a12

a22 − a11

[ea22T − ea11T ]] (35)

The result in Fig.9 (bottom) shows that a suitable intermittent steering of the beam

across the rational surface, pre-determinined by equilibrium identification,with fΣ(t) =

exp(−(δR(t)/α)2) can substantially quench the mode amplitude also in the extreme case of

missing or ineffective control of the phase, reaching robust performance.

The results of modelling with the extended MHD code XTOR [50], reproduced in Fig.10

are very similar to those of the above model. Some recent successful experiments,shown

in Fig.11 [35, 54, 56, 57] have used intermittent beam steering techniques for pre-emptive

stabilization of NTM’s and can be interpreted with help of the above conceptual model.

A practical steering of the rf beam across the target surface could probably be performed

more easily using the FADIS wave beams steering system[50, 60]. Another example of NTM

amplitude control using a similar method is shown in Fig.12 [56]. Here NTMs are reduced

in amplitude with an EC beam scanning the q = m/n surface from the low field side. Also

pre-emptying approaches to stability conditions, should be favoured by wave beam space
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scales not to close to the critcal value 25. A beam deposition depth δCD ≥ w is energetically

less efficient but safer, and with suitable pacing intermittency, it favors slower processes and

keeps conditions of (linear) observability and controllability.

VII. CONCLUSIONS

The growing complexity of the achitecture of detection and control systems for tearing

instabilities in tokamaks requires a careful selection of priorities in the objectives and tasks.

With actuators delivering large, localized power to the system, feedback techniques may be

limited by the possible onset of smaller scale phenomena in a non-constant ψ regime,which

may blur detection and hinder the stabilization process. The combination of feedback with

optimal control policies, can help obtaining the necessary robust performance.
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FIG. 1. (top) Sketch of dimensionless neoclassical growth rate dw/dt vs w (m=2) with indication of

nomenclature and of the condition of mode stabilization by EC driven current.;(bottom) Neoclassical

growth rate dw/dt v vs w for NTM modes (m=2) parameterised in terms of the ratio y( flow

shear/magnetic shear):(dots) y=0.6,(full) y=0,(dotdash) y=1.1, (dash)y=1.4. The shear ratio y

hardly affects the threshold and marginal values of the island width while the saturation width may

change considerably.
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line); helical rf current contribution ∆′CD(2,1) (dashed line);axisymmetric rf current contribution

∆′CD(0,0) (thick dashed line)[12].
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FIG. 6. Response of HKT ψII state to JCD(Eq.(22)):a) initial island wth no JCD; b) case of island

suppression with δCD ∼ w;c) same as b) but with δCD reduced by 20%: islands and current sheets

appear.

FIG. 7. Left frame. Contour plots of the current density at the time t1 = 800, when the ECCD starts

to be injected. The superimposed white lines identify the borders of the corresponding magnetic

island. The rigth frame shows the time evolution of the magnetic island area in absence of ECCD

control.
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FIG. 8. Left column, from top to bottom. Contour plots of the current density in presence of

ECCD beams of width δCD = b[ψX − ψO] with b = 0.5, 1, 2. The superimposed white lines identify

the borders of the corresponding reconnected region. The rigth column shows the time evolution

of the area of the reconnected region for the three cases. The dashed lines identify the starting

injection time t1 = 800, while the blue dots show the time when the current is plotted.
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FIG. 9. Result of Optimal Control. (top)-a) (full line) suppression in minimal time T of the

incipient island width (normalzed at start of the control);b) (dotted) evolution of the frequency

(normalized);c) (dashed) evolution of the control function U(t) (in a.u.) for fixed ,small, radial

misalignment ); (bottom)-Result of ”Piecewise Optimal Control”. a) (full line) Suppression in

minimal time T of the island width with intermittent sweeping of rational surface;b) (dotted) evo-

lution of the frequency;c) (thin full line) offset waveform of the radial displacement (t); d) (dashed)

evolution of the resulting control function U(t) (in a.u.).
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FIG. 10. Results of XTOR modelling by [50] of island stabilization by combined methods (modula-

tion + rf beam sweeping or FADIS + rf beam sweeping ); In both cases, the island can be suppressed

or drastically reduced, proving that these schemes are robust towards misalignment or deposition

width uncertainties [O.Fevrier, P.Maget, H.Lutjens, P.Beyev,Plasma Physics and Controlled Fu-

sion,59:044002, 2017]

.
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FIG. 11. Robust NTM control on TCV by intermittent sweeping of q-rational surface.From top to

bottom: time traces of plasma current Ip, FIR signal, PEC(kW ) of Gyroltrons L1,L4, L6,sweeping

waveform of (normalized) deposition radius ρ , spectrogram of modes (khz). In the left frame,

the marginal power for pre-emption is found at t ∼ 1.75s.In the right frame, full stabilization is

achieved with PEC larger than marginal value sweeping across the rational-q surface [O. Sauter et

al, MST1 (2016)].
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FIG. 12. Time evolution of the main r-t signals available during the MHD control experiment.

A poloidal scan of the ECRH deposition is performed around the 2,1 island region. From top

to bottom for each shot: RT reference angles of the poloidal injection of ECRH (0: horizontal,

negative: inboard) and of the q = 2 surface; ECRH power (in a.u.); pick-up coil signal (a.u.); SVDH

marker. In these pulsed scans the ECRH power is switched off moving outward and switched on

moving inward. The MHD oscillations appear depressed by ECRH pulses [C.Sozzi, G. Galperti,E.

Alessi, et al,Nucl. Fusion 55 083010 (2015)].


