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The TCV tokamak contributes to physics understapdim fusion reactor research by harnessing a wide
experimental tool set: in particular flexible shagpand high power electron cyclotron heating. Pasagimes with
high plasma pressure, a wider range of temperaaires and significant fast-ion population are nattainable
with a TCV heating system upgrade. In a first stag®& MW neutral beam was installed (2015) anejmrted in
this paper.

The installation of the NB injector required modé#tions of the vacuum vessel and considerable worthe
machine infrastructure, resulting in a shutdownrfrtate 2013 to mid-2015. TCV is now operating pagt a
European Medium-Size Tokamak (MST) facility undee uspices of the EUROfusion consortium. The NB$ w
intensively operated in the February — July 2016sghof the MST campaign. Record ion temperature®. @&f
2.5 keV and toroidal rotation velocities up to 180/s were promptly attained in the first few L-madischarges
with NB injection. lon temperatures up to 3.5 keéres subsequently achieved in ELMy H-mode. The tojec
produces a focused deuterium neutral beam witheX5dnergy, 1 MW neutral power and 2 s duration.
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1. Introduction total of 3 MW X2 ECRH power. Two additional 1 MW
R ) . . dual-frequency (X2 and X3) gyrotrons and a second,

The Tokamak a Conflguratlo_n Varlable_ (Tev, 4 MW, 50-60 keV neutral beam are planned.
Ro[1.88 m, &0.25 m, B<1.54 T) [1] is characterised by
the most extreme plasma shaping capability worldwid ~ The ASTRA code was used to simulate the plasma
(plasmas elongatior up to 2.8, positive and negative response to combmeql neutral beam and EC heating in
triangularity —0.%8<1), the highest microwave Electron 1CV _geometry [4]. With the upgraded (8.5 MW)
Cyclotron (EC) power density in plasma, and a high X3 EC system, NBH (1-2 MW) TCV could bring the
degree of flexibility in its heating and controlhsmes. ~ Plasma close to th@-limit in H-mode (\~2.8, an
Main TCV missions [2] are to contribute to the plgs  important regime for ITER and DEMO), provide direct
basis for more efficient ITER exploitation, and Momentum input to the plasma, and generate a kgt f
optimisation of the tokamak concept, plasma scemari ion fraction for studying wave-particle interaction
heating and control techniques for DEMO and beyond. Phenomena of interest for burning plasmas. TH&¥1
This requires access to plasma regimes andcondition is already met with ~1 MW of NB power kit
configurations with high normalised plasma pressureé 1 MW of X3 ECH. The TT; is expected to vary
a wide range of electron/ion temperature ratiogedag ~ between 0.5 and 3.0 in TCV's high density (H-mode)
TJTi~1. Implementation of preferential ion heating at confinement regimes.
the MW power Ievgl allows the extension of Tt _to 2. Neutral beam injector
beyond unity and fills the gap between predominantl
electron heated experiments and fusion reactor TCV’'s NBI installation was based on considerations
conditions. of beam access, shine through and orbit lossesy5].
specific geometric arrangement of the NB injectiath
' the beam line at mid plane oriented tangentiallsitinee
to the plasma axis was chosen to maximise heating
efficiency whilst satisfying machine access limits.

A phased upgrade program [3] is underway on TCV
mainly consisting of adding ion heating (NB injesip
increasing the available electron heating power §4a
X3 gyrotrons) and installing a divertor structuréthw
variable closure, equipped with gas valves, pumping The basic characteristics of TCV's NB system [%] ar
units and magnetic field coils. A neutral beam dige listed in Table 1. The 15-30 keV beam energy i% saf
(NBI), delivering 1 MW power along a tangential with respect to orbit losses forp=R50 kA. The
(double-pass) line of sight, at energies in the3Q%keV 0.25...1.05 MW power, tuneable during TCV discharge
range, was installed and commissioned, and providedenables studies of the plasma reaction to NBH power
research results in 2016. Two 750 kW, gyrotronsewer variation.
also commissioned and integrated with three remgini

first-generation 500 kW gyrotrons, providing a gaipd The neutral beam injector design is based on a

development of the NBI for plasma heating at Budker
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INP [6]. The injector incorporates a standard pessiton

emission surface of the plasma grid is 224,cm

source and elements shown in Figure 1. An averagecorresponding to a transparency of 46%.

nominal current density of 0.3 A/érwas chosen for the
ion source [5].

Table 1: NBI characteristics.

NB injector reference scenario:

NB power injected in TCV 1 MW
Nominal beam energy 25 keV
Max. NB pulse duration 2 sec
Beam full energy fraction in power >70 %
NB operation domain:

Beam power range 0.25...1.05 MW
Beam energy range 15...25 keV
Beam main species % H°
Power sweep response (P/(dP/dt)) <5ms
Full power modulation on-time 5ms...2 sec
Minimal modulation off-time 5ms
Modulation rise/fall time <0.5ms
100% power modulation up to 200 Hz

Figure 1: Neutral beam injector: 1 — RF plasma ssu2c-
magnetic screen, 3 — ion-optical system, 4 — neb#am; 5 —
adjusting device; 6 — ions source gate-valve; Aeuum tank;
8 — cryopump cold head; 9 — liquid nitrogen volum®; —
cryo-panels, 11 — neutralizer, 12 — bending maga8t,—
diaphragm, 14 —ion dump for positive ions, 15 legmeter.

The plasma emitter is formed with up to 40 kW of
inductively coupled RF power at ~4 MHz in the plasm
box [6] (ceramic aluminium oxide chamber, 346 mm
inner diameter 120 mm long, Figure 2-A). A specigs
with full, half and 1/3 of acceleration energy o
76:17:7 % (power ratios) was measured during tlarbe
commissioning (see Figure 3).

f

A high power focused neutral beam with small
divergence was developed for the TCV device featuri
narrow access ports where only small size, highguow
density beams can pass. The ballistic beam focusing
provided by spherically shaped multi-aperture etetgs
in the ion optical system [7]. Slit apertures ire tlon
optical system reduce the focused beam width in t
direction along the slits which is determined bg tbn
temperature of plasma emitter. 47 mm long slitshveit
step of 6 mm perpendicular to the slits are plaositle
the 250 mm diameter area (Figure 2-B). The tota

he

The ion source is connected to the vacuum tank
through a DN 400 gate valve and a 700 mm length
neutraliser. Two cryo-pumps with total pumping spee
of 3x1C° I/s in molecular flow regime for deuterium gas,
are used during beam formation. Each cryopump

consists of 1.6 msurface copper cryopanel cooled by
two coldheads (cooling capacity25 W at 4.2 K) and a
chevron 0.83 fradiation shield with a transparency of
25%, cooled with liquid nitrogen.

Figure 2: NBI-TCV plasma box (A) and plasma grid (B).
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Figure 3: Neutral beam energy components in power
fractions

Detectors for the beam alignment (aiming device)
and the movable calorimeter are located at theofthie
vacuum tank. A retractable calorimeter can absheb t
full duration (2 s) beam pulse at full power (1 MW)

Neutral beam operation is overseen by an
instrumental computer (LCS) and electronic control
modules integrated into the TCV plant control syste
This system can handle a large variety of low-\g#ta
analog and digital input/output signals. Protectanrd
interlocks are implemented at the hardware level
together with several status monitors and contralk.
functions necessary for safe NBI operation areuniet
in the LCS that is designed to protect itself from
potentially dangerous external situations and contsa

A beam dump protection system is implemented on
TCV to protect against overheat of beam facing eleis
in the area of beam-wall interaction. The combifrd
processing beam inhibit signal generated by plasma
disruption detector, a plasma density interlock dindct
pyrometric measurements of beam dump surface
| temperatures are available to the NBI control syste



3. NBI optimisation and power control

NBI power control through the plasma discharge is a
powerful tool in fusion plasma studies as graduaigr
ramps up/down permit the investigation of power
thresholds for particular processes; e.g. tramsitio
between low and high confinement. The 100% ON-OFF
pulse—width modulation is successful on JET [8}ras
time taken to slowdown NB fast ions in the plasma i
relatively long 100 ms) compared to the beam
ON/OFF time (40 ms) and the plasma is therefore
relatively insensitive to the modulation proceskETJ
employs 16 independently controlled ion sourcesl($)
to provide time averaged power with a resolutiomiésn
than an individual PINI increment (a similar teajum is
also used on ASDEX Upgrade). In smaller machines,
with a small number of beam sources, a fasterifast
slowdown and lower plasma confinement time (TCV,
MAST), the plasma would respond strongly to beam
modulation, so an alternative power modulation
approach is required.

As beam divergence is dependent on both beam

current and acceleration voltage (through the aTee),
ramping the ion beam current will affect the beawss
section, and beamline transmission. The real tiomgrol

of an arc current of a high perveance MAST PINbwaH

variations of the neutral beam power by ~20% witlyo
minimal effect on the beam footprint [9].
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Figure 4: Example of the perveance scan at 24.8 keV

A neutral power variation in the range of
0.25...1.0 MW has been implemented on TCV by
simultaneous variation of RF power (plasma denisity
the RF box) and extraction voltage keeping a mihima
beam divergence (optimal perveance). The optinaisati
procedure for the TCV NBI was performed at sevétal
6) extraction energies; the optimal beam curreRE (
power levels) were experimentally adjusted to migém

digital and analog control waveforms are calculated
transmitted to the LabView LCS program, and uplahde
in the FPGA memory of PCle LCS cards. Following
trigger reception, the beam pulse control sequeace
executed, and analog and digital control wavefoangs
transmitted to NBI power supplies. Examples of the
TCV-NBI pulses with power variation and modulation
are shown in Figures 5&6.
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Figure 6: NBI power steps and modulation during NBI
commissioning on the TCV.

4. First shots with NB heating on the TCV

First experiments with NBH (Figures 7&8)
demonstrate a core plasma ion temperature in L-mode
increasing from about 600-800 eV (typical in TCV at
high density in Ohmic plasmas) to ~2 keV, in agreetn
with ASTRA predictions. The plasma rotation with
1 MW NB injection reaches 150-180 km/s (CO-NBI
direction), while the typical values for spontangou
intrinsic rotation without NBI are less than 30 km/

The heating neutral beam was intensively used in
TCV experiments during the period of February-July
2016, mostly in the MST1 (European Medium-Size
Tokamak) experimental program of the EUROfusion
consortium. More of 60% (20 of 33) MST1 experiments

the beam divergence; here, minimal divergence ,qoq NB heating. ~25% of TCV discharges (579 shots)
(perveance scans) corresponds a minimum of the beamseq NB injection into plasma during this periogaBh

width on the calorimeter (Figure 4). The voltagetba
suppression (%) grid and the bending magnet current
were also optimised at each power/energy level.

The desired neutral beam power vs time waveform
(Po(t)) is designed in Matlab. The binary beam ON/OFF,
beam energy, neutral and ion currents time traces a
calculated accounting for their dependencies git)
order to retain a minimal footprint beam width. The

availability was 85-90%, with most (7-10%) faultsNIB
injection in TCV related to problems with NBI cooitr
electronics and power supplies. The total energy
delivered by the NBI into TCV was limited to %
(0.5 MJ) of the design value (1 MW, 2 s) due to -non
optimal angular characteristics (divergence or/aowhl
length) of the beam compared to the beam duct tlzand
subsequent overheating that this provoked. Resolwtf



this problem is ongoing and will include a modifica
of the beam duct and improved ion optics (grids).
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Figure 8: Plasma radial profiles with and witho®INh L-
mode; TCV shot 51458.

The TCV record ion temperature of 3.5keV
(Figure 9) was achieved in the MST1 high confinemen
ELMy H-mode experiments. NB injection on TCV

facilitates H-mode access, changes sawtooth and ELM

frequencies, and provides a significant (up to 7) k
plasma current drive.

With the installation of the first 1 MW neutral bea
TCV has greatly extended the range of accessiblenm

parameters that are highly relevant to tokamak (8]

fundamental physics and machine operation studids a
will strongly contribute to the ITER and DEMO profs.
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