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Symmetry broken self interstitial atom defects in chromium, molybdenum and
tungsten

Pui-Wai Ma∗ and S. L. Dudarev
UK Atomic Energy Authority, Culham Science Centre, Oxfordshire OX14 3DB, United Kingdom

Diffuse x-ray scattering experiments near the Bragg peak (or Huang scattering) suggested a
self-interstitial atom (SIA) in Mo adopts a 〈110〉 dumbbell configuration. No matter it migrates
through a three dimensional or two dimensional pathway, it is contradicting to electron irradiated
resistivity experiment that a sub-stage of the stage I temperatures, corresponding to the long range
SIA migration, of group 6 elements of periodic table are relatively low. On the other hand, the
migration temperatures are too high if one adopts the prediction from density function calculations
that 〈111〉 dumbbell is the most stable configuration. We performed density functional calculations
showing that a SIA adopts a canted dumbbell configuration in all the metals of group 6: chromium,
molybdenum and tungsten. A canted structure of the defect can be classified as an 〈11ξ〉 dumbbell,
where ξ is an irrational number. The fact that the formation energy of a canted configuration is
lower than that of a straight 〈111〉 defect structure is confirmed by nudged elastic band analyses
of the [110] to [111] configuration transformations. We simulated the Huang scattering patterns of
different dumbbell configurations. The patterns of 〈11ξ〉 dumbbell resembling the patterns of 〈110〉,
which causes confusion in experiments. A 〈11ξ〉 dumbbell migrates through the lattice following a
sequence of three-dimensional [11ξ] to [ξ11] transitions. It explains the elastic after effect experiment
that no large non-elastic relaxation process was detected during SIA migration in Mo. Calculated
barriers for defect migration in non-magnetic Cr, anti-ferromagnetic Cr, Mo and W are 0.052, 0.075,
0.064 and 0.040 eV, respectively. They are well correlated with the migration temperatures observed
experimentally.

I. INTRODUCTION

The group 6 elements of the periodic table chromium,
molybdenum and tungsten are transition metals of pro-
found technological significance. Cr is an indispens-
able component of stainless steels, preventing corrosion
through passivation. It also improves the resistance to
swelling of ferritic-martensitic steels exposed to irradi-
ation [1]. Mo and W, and their alloys, are refractory
metals with high melting points, mechanically stable at
high temperature. This makes them suitable for a variety
of high temperature applications [2, 3], e.g. Mo-25%Re
alloys are used in rocket engine components [4]. W is a
candidate material for the divertor and first wall in the
current fusion power plant design [5, 6].

Mechanical properties of metallic materials strongly
depend on their microstructure [7]. To model how the mi-
crostructure of Cr, Mo, W and their alloys evolves under
irradiation, one needs to know the structure and ther-
mally activated mobility parameters of self-interstitial
atom (SIA) defects. Huang scattering experiments [8, 9]
suggested that the SIA in Mo adopts a 〈110〉 configura-
tion, which is compatible to a scattering pattern showing
an orthorhombic displacement field. However, literature
data based on density function theory (DFT) calculations
suggest that SIAs in all the body-centre cubic transition
metals, with the exception of ferromagnetic iron, adopt a
linear straight 〈111〉 dumbbell or crowdion configuration
[10–12].
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FIG. 1. Schematic picture on two dimensional diffusion of a
〈110〉 dumbbell proposed by Jacques and Robrock [13].

According to the resistivity recovery experiments per-
formed on electron irradiated materials [14, 15], the a
substage of stage I temperature, corresponding to the
long range migration temperature of SIA TSIA

m in Cr,
Mo and W are 40K, 35K, and 27K, whereas many other
BCC transition metals are characterized by TSIA

m values
below 6K, which is the low temperature limit accessible
to observations. If an SIA adopts a 〈110〉 dumbbell con-
figuration, no matter it migrates in a three dimensional
translational-rotational migration as in iron [16], or a
jump-step wise two dimensional diffusion as suggested
by Jacques and Robrock [13] (Fig. 1), if we consider Fe
as a benchmark with TSIA

m = 120K, the experimental
values for group 6 elements are comparatively low. If an
SIA adopts a 〈111〉 dumbbell configuration and diffuses
one-dimensionally along the 〈111〉 crystallographic direc-
tions [17], it implies extremely low TSIA

m characterizing
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the onset of SIA defect migration in all the bcc metals.
It turns out that the TSIA

m of group 6 elements are too
high.

Fitzgerald and Nguyen-Manh [17] argued that the rel-
atively high values of TSIA

m in group 6 elements are due
to the double peak structure of the 〈111〉 inter-atomic-
string potential, which affected the Peierls barrier for
SIA migration. The argument was based on the analy-
sis of solutions of a constrained, purely one-dimensional,
Frenkel-Kontorova model, parameterized from DFT cal-
culations. No direct calculation of SIA migration barriers
or investigation of possible deviations from a purely one-
dimensional mode of migration was undertaken.

A recent direct DFT nudged elastic band (NEB)
calculation showed that the migration energy for one-
dimensional motion of a 〈111〉 dumbbell in tungsten was
only 2 meV, with the profile of the energy barrier having
a simple single peak structure [18]. The transition of a
〈111〉 dumbbell from one equilibrium position to another
occurs via a 〈111〉 crowdion configuration as the saddle
point. In a classical transition state theory approxima-
tion [19] the barrier of 2 meV corresponds to the temper-
ature of the onset of SIA defect migration of 0.7 K, see
Section IV below for further detail. A quantum transi-
tion theory treatment [18], taking zero-order atomic vi-
brations into account, predicts that defects would diffuse
at even lower temperature. Neither classical nor quan-
tum predictions match experimental observations, and
this poses a question about the origin of such a strik-
ing disagreement between experimental observations and
theoretical predictions based on fairly accurate DFT cal-
culations.

A possible alternative explanation of the observed
TSIA
m is that neither a straight 〈111〉 nor a 〈110〉 SIA

defect structure is the lowest energy configuration of the
defect. For example, Olsson [20] noted that the energy
of a 〈221〉 dumbbell configuration in Cr has lower energy
than the energy of either 〈111〉 or 〈110〉 configurations,
however the matter received no further attention. Han et
al.[21] also found that the energy of a canted 〈111〉 dumb-
bell in Mo was slightly lower than that of a straight 〈111〉
dumbbell, although their study gave no detail about how
atomic relaxations were performed. Recently, Gharaee
and Erhart [22] reported that a lower symmetry intersti-
tial configuration containing Ti, V, or Re in W has lower
energy than 〈111〉 and 〈110〉 dumbbell. They called it
bridge interstitial. All these studies [20–22] showing a
similar effect suggest that there is a more stable SIA con-
figuration in group 6 elements than a simple linear 〈111〉
structure. Provided that a canted dumbbell is the most
stable SIA configuration, the migration pathway will not
follow the one dimensional diffusion along the 〈111〉 di-
rection.

In this paper, we would like to resolve such a discrep-
ancy between DFT calculations, resistivity recovery ex-
periments, elastic affect effect experiments, and Huang
scattering experiments on the structure and migration of
SIA in Cr, Mo, and W. We found a canted SIA is the

most stable SIA configuration. It adopts a 〈11ξ〉 direc-
tion, where ξ is a irrational number. We also calculated
the migration energy of a 〈11ξ〉 dumbbell through a three
dimensional translational-rotational migration pathway.
Those calculated migration energies of group 6 elements
are well compatible with the experimental migration tem-
peratures. We also performed simulation on Huang scat-
tering pattern showing that a 〈11ξ〉 dumbbell configura-
tion will generate a pattern resembling a 〈110〉 dumbbell
configuration. This explains the origin of all the contro-
versy.

II. METHODOLOGY

All ab initio DFT calculations are performed us-
ing Vienna Ab initio Simulation Package (VASP)[23–
26]. We used the generalized gradient approxima-
tion (GGA) exchange-correlation functionals of Perdew-
Burke-Ernzerhof (PBE) [27, 28]. Plane wave energy cut-
off is 450 eV. A cell size of 4×4×4 BCC unit cells is
adopted, where 5×5×5 k-points mesh is used. In order
to check the size effect, we performed some simulations on
a larger box with 5×5×5 BCC unit cells, where 4×4×4
k-points mesh is used. The volume of perfect lattice sim-
ulation cell is relaxed to stress-free condition. Keeping
the cell size and shape the same as in the perfect lattice
case, we created cells with different SIA configurations,
where ionic positions are relaxed. The maximum residue
force of an atom is smaller than 1 × 10−3 eV/Å. The
semi-core shell is treated as valence electrons. There are
12 valence electron in Cr, Mo and W. It guarantees the
the correctness of highly compressed region.

For Mo and W, only non-magnetic (NM) calculations
were performed. For Cr, we performed both NM and
collinear magnetic calculations. Though the ground state
of Cr is believed to be spin density wave (SDW) [29], an-
tiferromagnetic (AFM) state is chosen for spin polarized
calculation. AFM state has an energy indistinguishable
from SDW within the error of ab initio calculations [30].
AFM state is setup through initializing finite magnetic
moments similar to perfect lattice case, but with the mag-
nitude of magnetic moments initializing to zero near the
core of SIA configuration, followed by self-consistent field
calculation.

The formation energy of a defect is defined as:

EF = ED(ND)− ND

NB
EB(NB)− Ecorr

el , (1)

where NB and ND are the number of atoms in a simula-
tion box of bulk and defect cases, ED is the total energy
of a system with a defect, EB is the energy of bulk case,
and Ecorr

el is the elastic correction energy due to the pe-
riodic boundary condition. Details of Ecorr

el can be found
in Ref. [12, 31]. Elastic constant tensors are calculated
for the computation of Ecorr

el . They are calculated using
Le Page and Saxe method [32] using a 2 atoms simulation
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PBE C11 C12 C44 Ω0 a0

Cr/AFM 448.12 62.03 102.13 11.72 2.862

Cr/NM 509.67 144.27 105.73 11.49 2.843

Mo 469.07 157.72 99.71 15.77 3.160

W 518.26 199.77 142.09 16.14 3.184

Exp.

Cr 394.1 88.5 103.75 11.94 2.88

Mo 464.7 161.5 108.9 15.63 3.15

W 522.4 204.4 160.6 15.78 3.16

TABLE I. Elastic constants (GPa) are calculated following
Le Page and Saxe[32] method using a 2-atom cell, with
30×30×30 k-point mesh. Atomic volume (Å3) and lattice
constants (Å) are also presented. We performed calcula-
tions using GGA-PBE exchange-correlation functionals at
non-magnetic (NM) state for Cr, Mo, and W, and at anti-
ferromagnetic (AFM) states for Cr. Experimental values for
lattice constants is from Ref. [33], and elastic constants for
Cr is from Ref. [34] and for Mo and W are from Ref. [35].

4× 4× 4 Cr/AFM Cr/NM Mo W

〈11ξ〉d 6.361 6.074 7.399 10.249

〈111〉d 6.617 6.247 7.475 10.287

〈111〉c 6.555 6.243 7.479 10.289

〈110〉d 6.515 6.218 7.580 10.576

Tetra 6.918 6.889 8.358 11.717

〈100〉d 7.275 7.256 8.890 12.196

Octa 7.354 7.307 8.916 12.265

Vac 3.004 2.875 2.787 3.223

ξ 0.355 0.405 0.468 0.526

TABLE II. The calculated formation energy EF of point de-
fects in Cr/AFM, Cr/NM, Mo and W. We performed calcula-
tions using GGA-PBE exchange-correlation functionals. We
used a simulation cell with 4 × 4 × 4 BCC unit cells. The
〈11ξ〉 dumbbell is the lowest energy configuration amount all
SIA configurations. Vacancy data is also supplied for com-
pleteness. Unit is in eV. Value of ξ is material dependent.

box with 30×30×30 k-point mesh. Values are shown in
Table I.

The migration energy EM is calculated using the NEB
method [36, 37], where EM is the maximum formation
energy change along the transition pathway between two
equilibrium configurations. We employed eleven images
between two equilibrium configurations. Residual atomic
force in each image is less than 0.01 eV/Å. The formation
energy of defect in each image due to periodic boundary
condition is corrected.

5× 5× 5 Cr/AFM Cr/NM Mo W

〈11ξ〉d 6.453 5.919 7.448 10.256

〈111〉d 6.644 6.095 7.519 10.306

〈110〉d 6.548 6.060 7.628 10.579

ξ 0.356 0.397 0.447 0.482

TABLE III. The calculated formation energy EF of point de-
fects in Cr/AFM, Cr/NM, Mo and W. A simulation cell with
5×5×5 BCC unit cells is used. The 〈11ξ〉 dumbbell is still the
lowest energy configuration amount all SIA configurations.
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FIG. 2. (Color online) A nudge elastic band calculation of the
change of formation energy for a SIA dumbbell rotating from
[110] to [111] direction. Elastic correction due to the periodic
boundary conditions is imposed.

III. FORMATION ENERGY OF SIA

We performed DFT calculations on various SIA config-
urations using a simulation cell having 4×4×4 BCC unit
cells. They are 〈111〉 dumbbell, 〈111〉 crowdion, 〈110〉
dumbbell, tetrahedral site interstitial, 〈100〉 dumbbell,
and octahedral site interstitial. For completeness, we
also calculated the mono-vacancy case. Their formation
energies are presented in Table II. We can see the forma-
tion energy of 〈110〉 dumbbell, 〈111〉 dumbbell and 〈111〉
crowdion are fairly close to each other. These values
are compatible with previous DFT studies[10, 11, 20, 38]
that 〈110〉 dumbbell has a lower energy in Cr, and 〈111〉
dumbbell has a lower energy in Mo and W.

As inspired by the works by Olsson [20], Han et al. [21],
and Gharaee and Erhart [22], we speculate that there is a
more stable SIA configuration in-between. We performed
NEB calculations for a dumbbell rotating from [110] to
[111] direction. In Fig. 2, it shows the change of for-
mation energy as a function of reaction coordinate. We
can see a clear minimum between [110] and [111] direc-
tions in all cases. It is obvious that there is a more stable
configuration. We may understand this effect is purely
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FIG. 3. (Color online) The energy contribution due to the
elastic correction Ecorr

el corresponding to Fig. 2.

chemical. The elastic interaction energy due to the peri-
odic boundary condition Ecorr

el , as shown in Fig. 3, has
a contribution that does not affect such conclusion.

In all NEB calculations, we take the lowest energy im-
age, and performed further ionic relaxation. In all cases,
they relax to a 〈11ξ〉 dumbbell configuration, where their
formation energies and the values of ξ are listed in Table
II. The 〈11ξ〉 dumbbell configuration has the lowest for-
mation energy in all cases. Surprisingly, ξ is an irrational
number. It is interesting to note that in the calculation
of Cr, both NM and AFM cases prefer a 〈11ξ〉 dumbbell
configuration. It is different from the case of iron that
the most stable 〈110〉 dumbbell configuration is due to
magnetism[16].

We checked the size effect by using a larger simula-
tion cell having 5 × 5 × 5 BCC unit cells. We only per-
formed calculations on 〈11ξ〉, 〈111〉 and 〈110〉 dumbbells.
Their formation energies are presented in Table III. Al-
though the absolute values slightly differ, the conclusion
of 〈11ξ〉 dumbbell being the most stable SIA configu-
ration remains unchanged. An illustration of the 〈11ξ〉
dumbbell in Mo is shown in Fig. 4. For non-cubic cells,
we checked the case of 〈11ξ〉 dumbbell in Mo using a cell
with 4×4×5 unit cells. Its formation energy is 7.400 eV.
It reliefs our concern on the effect of finite size simulation
box.

In Fig. 5, we plotted the atomic spacing between
two atoms along the 〈111〉 atomic string with an ex-
tra atom. They are corresponding to cases of the 〈111〉
dumbbell configuration and 〈11ξ〉 dumbbell configuration
of Cr/AFM, Cr/NM, Mo and W. We can observe the
atomic spacing is slightly larger in the 〈11ξ〉 dumbbell
configuration for atoms being away from the centre of the
SIA configuration. However, the two atoms at the cen-
tre of the 〈11ξ〉 dumbbell configuration have a distance
smaller than the case of 〈111〉 dumbbell configuration.

In Fig. 6, we can see the Voronoi volume of atoms

FIG. 4. (Color online) A 〈11ξ〉 dumbbell in Mo using a cell
with 5× 5× 5 unit cells.
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FIG. 5. (Color online) The distance between atom i and j =
i + 1 along the 〈111〉 string with an extra atom. They are
(Top) 〈111〉 dumbbell and (Bottom) 〈11ξ〉 configuration of
Cr/AFM, Cr/NM, Mo and W. They are all calculated using
GGA-PBE functional.
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FIG. 6. (Color online) The Voronoi volume of atom i along the
〈111〉 string with an extra atom. They are (Top) 〈111〉 dumb-
bell and (Bottom) 〈11ξ〉 configuration of Cr/AFM, Cr/NM,
Mo and W. They are all calculated using GGA-PBE func-
tional.

along the 〈111〉 string. The Voronoi volume is calcu-
lated using Voro++[39]. Atoms at the centre of the 〈11ξ〉
dumbbell configuration occupy less volume than in 〈111〉
dumbbell configuration. However, the Voronoi volume
of other atoms along the string is comparatively larger
in the case of 〈111〉 dumbbell configuration. Data on
Voronoi volume is compatible with atomic spacing. The
〈11ξ〉 dumbbell configuration appears to be a more local-
ized configuration, and is more profound in the Cr case.

We may analyses such phenomenon a bit further by
looking at the difference electron density map. The dif-
ference electron density equals the electron density minus
the superposition of atomic charge density. The differ-
ence electron density for the 〈11ξ〉 dumbbell configura-
tion is plotted in Fig. 7. It appears that the two atoms
at the centre are buckling away from a 〈111〉 string. In
Fig, 8, we also plotted the difference electron density for
〈111〉 dumbbell configuration. A main difference is that
electrons concentrate along the 〈111〉 string in the case

Metal Em (eV) est. Tm (K) exp. Tm (K)

Cr/AFM 0.052 18.7 40

Cr/NM 0.075 27.0 40

Mo 0.064 23.5 35

W 0.040 14.7 27

TABLE IV. The calculated migration energy, the esti-
mated migration temperature, and the migration temper-
ature obtained from electron irradiated resistivity recovery
experiment[14]. The estimated Tm is calculated according to
the classical transition state theory.

of 〈111〉 dumbbell configuration. In the case of 〈11ξ〉
dumbbell configuration, it forms a network-like bonding.
It may be a viable way of achieving lower energy, and
help relaxing the stresses along the atomic string.

IV. MIGRATION ENERGY OF SIA

An important implication of the 〈11ξ〉 dumbbell con-
figuration is that the SIA in group 6 elements does not
migration through a one dimensional diffusion. It means
we need to find a new explanation other than the one
suggested by Fitzgerald and Nguyen-Manh[17] assuming
〈111〉 dumbbell configuration being the most stable SIA
configuration, and migrate through the 〈111〉 direction.

If we look at the case of magnetic iron, it adopts a 〈110〉
dumbbell configuration. The SIA migrates through a
three dimensional translational rotational pathway. DFT
calculation suggests a SIA migrates from a [110] dumb-
bell to the adjacent [011] dumbbell configuration having
a migration barrier of 0.34 eV [16]. It is compatible with
a relatively high experimental verified migration temper-
ature of 120K or a migration energy of 0.30eV [14].

Since experimental data for the migration temperature
of SIA in Cr, Mo and W are 40K, 35K and 27K[14],
respectively, we speculate the SIA migrates through a
translational rotational pathway similar to Fe. A 〈11ξ〉
dumbbell is in between the 〈111〉 and 〈110〉 directions. A
possible migration pathway would be from [11ξ] to adja-
cent [ξ11]. Due to symmetry, a [11ξ] dumbbell can also
jump to [1ξ1] position. For any 〈11ξ〉 dumbbell, there
are two equivalent forward and two backward migration
pathways along the 〈111〉 direction. A schematic picture
is shown in Fig. 9.

Such a migration pathway does not induce large non-
elastic relaxation, it is compatible with the elastic affect
effect experiment on Mo at 4.2K [13]. Although there is
reorientation of the SIA direction during migration, it is
relatively small if one compares it with the translational-
rotational migration of 〈110〉 SIA in Fe. Besides, though
its migration pathway is not unique, the migration of a
〈11ξ〉 dumbbell is essentially on the 110 plane and along
〈111〉 direction, which is the same as the two dimensional
diffusion as suggested by Jacques and Robrock [13] show-
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FIG. 7. (Color online) A two dimensional plot of the difference electron density of a 〈11ξ〉 dumbbell configuration on a (11̄0)
plane for the Cr/AFM, Cr/NM, Mo and W calculated using GGA-PBE functional. The difference electron density equals the
electron density minus the superposition of atomic charge density.

FIG. 8. (Color online) A two dimensional plot of the difference electron density of a 〈111〉 dumbbell configuration on a (11̄0)
plane for the Cr/AFM, Cr/NM, Mo and W calculated using GGA-PBE functional.
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FIG. 9. Schematic picture on the migration of an SIA from
[11ξ] to [ξ11] dumbbell configuration. The values of ξ for
Group 6 elements are listed in Table II and III.
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FIG. 10. (Color online) A nudge elastic band calculation
for a [11ξ] dumbbell migrating to adjacent [ξ11] dumbbell
configuration. We performed calculations using GGA-PBE
exchange-correlation functionals.
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FIG. 11. (Color online) The energy contribution due to the
elastic correction Ecorr

el corresponding to Fig. 10.

ing in Fig. 1.
NEB calculation for the migration of an SIA from [11ξ]

to [ξ11] dumbbell configuration were performed. The
change of formation energy as a function of reaction coor-
dinate is shown in Fig. 10. The corresponding values of
Eint is shown in Fig. 11. The migration energy is taken
as the difference of energy between the equilibrium and
saddle point. As presented in Table IV, the migration
energy of Cr/AFM is 0.052eV, Cr/NM is 0.075eV, Mo is
0.064 eV and W is 0.040eV.

If we assume the jump frequency can be described by
the classical transition state theory[19], the jump fre-
quency can be written as

ν = ν0 exp(−Em/kBT ), (2)

where ν0 is the attempt frequency. We may approximate
the attempt frequency by the Debye frequency according
to the Debye temperature θ.

Using Fe as a benchmark, if we assume ν = 1s−1, where
θFe = 470K [33], one can obtain a Tm = 124.3K accord-
ing to the migration energy of a 〈110〉 dumbbell in Fe
with Em = 0.34eV [16]. It is well compatible with the
migration temperature of SIA being 120K according to
experiment [14].

Similarly, using the Debye temperature θCr = 630K,
θMo = 450K and θW = 400K (Ref. [33]), we can esti-

mate the corresponding TSIA
m being 18.7K, 27.0K, 23.5K,

and 14.7K for Cr/AFM, Cr/NM, Mo and W, respectively.
They are well compatible with electron irradiated resis-
tivity recovery experiments that the SIA TSIA

m are at
40K, 35, 27K for Cr, Mo and W [14]. Provided that the
migration barrier of SIA in W is only 2meV[18], the es-
timated migration temperature is 0.7K, which is too low
comparing to experiment.

For higher temperature cases, we cannot ignore the
possibility of a two-step migration mechanism. A 〈11ξ〉
dumbbell may rotate to a 〈111〉 dumbbell, followed by
one dimensional diffusion. If we observe the difference of
formation energies between a 〈11ξ〉 and a 〈111〉 SIA in
Mo and W, they are 0.071eV and 0.050, which are not
much higher than the migration energy of a SIA through
a [11ξ] to [ξ11] pathway.

V. HUANG SCATTERING PATTERN

In previous sections, we discussed the equilibrium
configuration of an SIA in Cr, Mo, and W, and its
translational-rotational but pseudo-one-dimensional mi-
gration pathway along the 〈111〉 direction. It resolved
the controversy between DFT, resistivity recovery exper-
iments and elastic affect effect experiments. Finally, we
are going to simulate the Huang scattering pattern using
the DFT data that we just calculated. It will complete
our investigation.

Assuming a small concentration of statically dis-
tributed point defects, the symmetry of its long range



8

Cr/AFM P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 18.389 18.389 21.882 4.040 2.058 2.058 1147.0 4.067 16.528 0.00355 0.01441

〈111〉d 18.728 18.728 18.728 4.617 4.617 4.617 1052.2 0.000 42.635 0.00000 0.04052

〈110〉d 20.530 20.530 18.955 4.790 0.000 0.000 1200.6 0.827 15.299 0.00069 0.01274

TABLE V. The dipole tensors Pij (in unit eV) and π1, π2, and π3 of 〈11ξ〉, 〈111〉, and 〈110〉 dumbbell in Cr/AFM. They are
calculated using a 4× 4× 4 unit cells.

Cr/NM P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 27.410 27.410 32.365 4.417 2.662 2.662 2533.8 8.181 22.455 0.00323 0.00886

〈111〉d 28.816 28.816 28.816 5.222 5.222 5.222 2491.0 0.000 54.543 0.00000 0.02190

〈110〉d 28.806 28.806 30.494 4.594 0.000 0.000 2587.6 0.950 14.071 0.00037 0.00544

TABLE VI. The dipole tensors Pij (in unit eV) and π1, π2, and π3 of 〈11ξ〉, 〈111〉, and 〈110〉 dumbbell in Cr/NM. They are
calculated using a 4× 4× 4 unit cells.

strain field can be determined by Huang scattering. The
average of Huang intensities over all possible orientations
of a defect for a momentum transfer K = h + q can be
written as [8],

SH(K) = Ndeff
2
h

h2

q2
1

V 2
uc

(γ1π1 + γ2π2 + γ3π3) (3)

where Ndef is the number of defect, fh is atomic form
factor, Vuc = a30 is the volume of unit cell, h is a recip-
rocal lattice vector, q measures the deviation from the
Bragg reflection, where q is small comparing to h. γ1,
γ2, and γ3 depends on h and q, and also the anisotropic
elastic constants, where

γ1 =
1

3

(∑
i

Tii

)2

, (4)

γ2 =
1

3

∑
i>j

(Tii − Tjj)2 , (5)

γ3 =
1

2

∑
i>j

(Tij + Tji)
2
, (6)

and

Tij =
∑
l

ĥlgli(q̂)q̂j . (7)

The unit vectors ĥ = h/h and q̂ = q/q. The matrix
function

gij(q̂) =

(∑
kl

Cikjlq̂kq̂l

)−1

. (8)

where Cijkl is elastic constant tensor. π1, π2, and π3
depends only on the elastic dipole tensor Pij of a defect
in one particular orientation, where

π1 =
1

3

(∑
i

Pii

)2

, (9)

π2 =
1

6

∑
i>j

(Pii − Pjj)
2
, (10)

π3 =
2

3

∑
i>j

P 2
ij . (11)

Due to the symmetry of π1, π2, and π3 , any degenerated
orientation of a defect will give the same values.

In our previous works [12, 31], we presented the
method of obtaining the dipole tensor of any localized
defect from ab initio calculation. The dipole tensor of
a localized defect can be calculated from macro-stresses
developing in a simulation box due to the presence of a
defect [31, 40–42],

Pij = Vcell(Cijklε
app
kl − σ̄ij), (12)

where

σ̄ij =
1

Vcell

∫
Vcell

σijdV (13)

is the average macroscopic stress in the simulation box,
and εappkl is external applied stresses. In current work,
since we are using simulation boxes of the same size and
shape as in perfect lattice case, it means εappkl = 0. The
value of Pij of Cr/AFM, Cr/NM, Mo and W are pre-
sented in Table V to VIII. Calculated values of π1, π2,
and π3 are also presented.

The atomic form factor may be approximated by a sum
of Gaussian functions of the form [43]:

fκ =

4∑
i=1

ai exp
(
−bi

( κ
4π

))
+ c, (14)

where ai, bi and c for Cr, Mo and W are listed in Table
IX. The atomic form factor can be treated as a constant
for particular reflection in the case of Huang scattering.

In Fig. 12 to 15, we present simulated Huang scatter-
ing pattern for 〈100〉, 〈111〉, 〈110〉, and 〈11ξ〉 dumbbells
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Mo P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 38.614 38.614 43.538 6.675 4.631 4.631 4861.4 8.082 58.301 0.00166 0.01441

〈111〉d 39.601 39.601 39.601 7.609 7.609 7.609 4704.6 0.000 115.789 0.00000 0.04052

〈110〉d 39.944 39.944 42.470 6.757 0.000 0.000 4990.4 2.128 30.438 0.00043 0.01274

Exp. 0.05±0.02 0.04± 0.02

TABLE VII. The dipole tensors Pij (in unit eV) and π1, π2, and π3 of 〈11ξ〉, 〈111〉, and 〈110〉 dumbbell in Mo. They are
calculated using a 4 × 4 × 4 unit cells. Experimental results is taken from Ehrhart [9] with sample being put under electron
irradiation.

W P11 P22 P33 P12 P23 P31 π1 π2 π3 π2/π1 π3/π1

〈11ξ〉d 50.921 50.921 57.883 11.925 9.136 9.136 8503.9 16.157 206.078 0.00190 0.01441

〈111〉d 52.754 52.754 52.754 13.128 13.128 13.128 8348.9 0.000 344.712 0.00000 0.04052

〈110〉d 52.557 52.557 56.960 11.277 0.000 0.000 8756.0 6.462 84.777 0.00074 0.01274

TABLE VIII. The dipole tensors Pij (in unit eV) and π1, π2, and π3 of 〈11ξ〉, 〈111〉, and 〈110〉 dumbbell in W. They are
calculated using a 4× 4× 4 unit cells.

FIG. 12. Simulated Huang scattering pattern for 〈100〉 dumbbell configuration for a h reflection in the p plane. h is the
reciprocal lattice vector. q is in the reciprocal plane p.
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FIG. 13. Simulated Huang scattering pattern for 〈111〉 dumbbell configuration for a h reflection in the p plane. h is the
reciprocal lattice vector. q is in the reciprocal plane p.

Element a1 b1 a2 b2 a3 b3 a4 b4 c

Cr 10.6406 6.1038 7.3537 0.392 3.324 20.2626 1.4922 98.7399 1.1832

Mo 3.7025 0.2772 17.2356 1.0958 12.8876 11.004 3.7429 61.6584 4.3875

W 29.0818 1.72029 15.43 9.2259 14.4327 0.321703 5.11982 57.056 9.8875

TABLE IX. The parameters for calculating the atomic form factor according to Ref. [43].

in Mo. We put Ndef = 1 for all calculations. It es-
sentially means the calculated intensity is in unit of per
defect. Since SH(K) diverges at q = 0, we impose a max-
imum cutoff value of 1×107 on the plotted intensity. We
take the value of h and q according to the criteria for
distinguishing different SIAs as discussed by Dederichs
[8] and Ehrhart [9]. We take h=[200], [222] and [022],
and q being in the plane p = (011̄) of reciprocal lattice.
We also take h = [022] and p = (100).

In the case of 〈100〉 dumbbell, we can see zero intensity
line for h = [200] & p = (011̄) and h = [022] & p = (011̄).
In the case of 〈111〉 dumbbell, only h = [022] & p =
(100) shows zero intensity line. In the case of 〈110〉 and
〈11ξ〉 dumbbell, none of them show zero intensity line.
In Fig. 16, we show the Huang scattering pattern with

a smaller value range of q for better observation of the
zero intensity line. All patterns corresponding to 〈100〉,
〈111〉, 〈110〉 dumbbell are compatible with calculations
by Dederichs [8] and Ehrhart [9].

The major limitation in the analysis by Ehrhart [9] is
the assumption that only 〈100〉, 〈111〉, 〈110〉 dumbbell
are candidates of the configuration of SIA. According to
our simulated Huang scattering pattern, we found that
one cannot distinguish the patterns corresponding to the
〈110〉 and 〈11ξ〉 dumbbell. It means that the detection of
〈11ξ〉 dumbbell SIA may be misinterpreted as the 〈110〉
dumbbell. Indeed, if we look at the construction of π1,
π2 and π3, they are all non-zero for both 〈110〉 and 〈11ξ〉
dumbbell cases, which is the reason that Huang scatter-
ing experiment cannot distinguish these two SIA config-
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FIG. 14. Simulated Huang scattering pattern for 〈110〉 dumbbell configuration for a h reflection in the p plane. h is the
reciprocal lattice vector. q is in the reciprocal plane p.

urations.

VI. CONCLUSION

We found that a low symmetry canted dumbbell con-
figuration having the lowest formation energy amount
other SIA configurations in Cr, Mo and W. It adopts
a 〈11ξ〉 dumbbell configuration, where ξ is an irrational
number. The value of ξ is material dependent. We have
been checking the size effect using a larger simulation box
with 5×5×5 BCC unit cells and a rectangular simulation
box. It leads to the same conclusion. A three dimensional
translational rotational, but pseudo-one-dimensional mi-
gration pathway is suggested. Nudge elastic band calcu-
lations were performed. The energy required for a [11ξ]
dumbbell to migrate to adjacent [ξ11] dumbbell configu-
ration in Cr/AFM is 0.052eV, Cr/NM is 0.075eV, Mo is
0.064 eV and W is 0.040eV. The corresponding estimated
migration temperatures are well compatible with exper-
imental values. We also simulated the Huang scattering
pattern showing that 〈110〉 and 〈11ξ〉 dumbbell are indis-

tinguishable. It resolves the discrepancy between DFT
calculation, the resistive recovery experiment, elastic af-
fect effect experiment and Huang scattering experiment
on the structural of SIA and long range SIA migration
temperature of group 6 elements.
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FIG. 15. Simulated Huang scattering pattern for 〈11ξ〉 dumbbell configuration for a h reflection in the p plane. h is the
reciprocal lattice vector. q is in the reciprocal plane p.
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