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Abstract 
 
In this paper, we resolve the role of grain boundaries on toughness and the brittle-to-ductile 
transition. On the one hand, grain boundaries are obstacles for dislocation glide. On the 
other hand, the intersection points of grain boundaries with the crack front are assumed to be 
preferred dislocation nucleation sites. Here, we will show that the single contributions of grain 
boundaries (obstacles vs. source) on toughness and the brittle-to-ductile transition are 
contradicting, and we will weight the single contributions by performing carefully designed 
numerical experiments by means of two-dimensional discrete dislocation dynamics 
modelling. In our parameter studies, we vary the following parameters: (i) the mean free path 
for dislocation glide, , combined with (ii) the (obstacle) force of the grain boundary, , and 
(iii) the dislocation source spacing along the crack front, . Our results show that for materials 
or microstructures for which the mean distance of the intersection points of grain boundaries 
with the crack front is the relevant measure for , a decrease of grain size results in an 
increase of toughness. The positive impact of grain boundaries outweighs the negative 
consequences of dislocation blocking. Furthermore, our results explain the evolving 
anisotropy of toughness in cold-worked metals and give further insight into the question of 
why the grain-size-dependent fracture toughness passes through a minimum (and the brittle-
to-ductile transition temperature passes through a maximum) at an intermediate grain size. 
Finally, a relation of the grain-size-dependence of fracture toughness in the form of 

, 	 .  is deduced.  
 
 
 
 
Keywords: Fracture, Brittle-to-ductile transition, Grain boundary embrittlement, Dislocation 
source spacing, Discrete dislocation dynamics 
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1. Introduction 
 
The impact of grain size, , on yield stress, , can be described by the Hall-Petch 
relationship, as 
 

	 	       (1) 
 
where  can be interpreted as the lattice friction stress,  is the Hall-Petch coefficient and 
the exponent  is approximately 0.5 [1, 2]. Equation (1) can be explained using pile-up 
models in which the Hall-Petch coefficient is a measure for the dislocation-grain-boundary 
interaction, i.e. the obstacle force, and where the grain size, , can be regarded as the mean 
free path for dislocation glide, . While the experimental database for the Hall-Petch 
relationship displays a clear and unambiguous picture, the relationships between grain size 
and toughness, , or grain size and the brittle-to-ductile transition (BDT) temperature, , 
are inconsistent. 
 
Some experimental results suggest that a decrease in grain size results in an increase of 
toughness according to 
 

	       (2) 
 
where  is toughness,  is a material constant and  is a positive exponent. Equation (2) is 
confirmed by the data reported by Curry and Knott [3], Greenfield and Margolin [4] and 
Srinivas et al. [5, 6]. However, results of Werner et al. [7] on the impact of grain size on 
toughness for -brass and -iron contradict Equation (2). For the former material, he found 
that toughness decreases with a decreasing grain size, while for the latter Werner reported 
that toughness is not affected by grain boundaries [7]. Finally, Pacyna and Mazur [8] found 
that toughness passes through a minimum at a specific grain size. 
 
As toughness is closely related with the BDT (macroscopically, the maximum in fracture 
toughness usually correlates with the transition from brittle to ductile material behaviour; thus 
the temperature at the maximum is taken as the BDT temperature), it comes as no surprise 
that the statements on the influence of grain size on the BDT temperature are controversial 
as well. Several investigators reported a decrease in the transition temperature with 
decreasing grain size [9-11]. For example, Bonnekoh et al. reported the results of a study in 
which several tungsten sheets have been rolled out from one sintered ingot [12]. The sheets 
differ in their degree of deformation, thus grain size, while the dislocation density was found 
to be constant. Bonnekoh et al. derived a relationship between the BDT temperature, , 
and the grain size, , as 
 

	       (3) 
 
where  is a temperature,  is a material constant and  is a positive exponent. Bonnekoh 
et al. found the values 454	K, 72.3	K	μm . 	 and 0.5, where the grain size is 
given in microns [13]. In the Hall-Petch relationship, Equation (1), the grain size, , is 
interpreted as the mean free path for dislocation glide, . However, in Equation (3) the grain 
size, , represents the mean distance of the intersection points of grain boundaries with the 
crack front, or more precisely, the distance of the dislocation source spacing, , along the 
crack front. Other investigators, for example Klopp and Witzke [14], Gilbert [15] and Thornley 
and Wronski [16], have noted that the BDT temperature increases with a decreasing grain 
size. Both Farrell, Schaffhauser and Stiegler [17] and Giannattasio and Roberts [18-20] 
reported little or no dependence of the BDT temperature on grain size. The latter suggest 
that this is an indication that dislocation motion near the crack tip is not significantly affected 



 

by the p
depend
14-17], 
tested s
tempera
m, the
than 10
[21]. A s
1) [22]. 
 

Figure 1.
behaviou
tungsten 
 
 
Clearly,
has not 
contrad
dislocat
are piled
dislocat
tempera
glide, ,
of grain 
nucleati
decreas
the crac
bounda
dislocat
crack fro
mechan

presence of
ence on the
and pointed

samples diff
ature reache
 BDT tempe
0 m, the B
similar beha

. Experimenta
r has been rep
is from Ref. [2

 the questio
yet been re
icting views
tions and th
d-up at grai
tions. Based
ature will inc
, i.e. with de
 boundaries
ion. This su
ses) with de
ck front, i.e.
ries: (i) they
tion nucleat
ont. The qu

nism; which

f grain boun
e BDT temp
d out that in
fer in their m
es a maxim
erature dec

BDT temper
aviour has b

l results of the
ported by Tah
23]. 

on of the am
esolved. In 
s. One grou
hat grain bou
in boundarie
d on these c
crease) with
ecreasing g
s with the c
uggests that
ecreasing di
 with decrea
y are obstac
tion sites, pa
uestion is jus
 will be ass

ndaries. In a
perature for 
nterpretation
metallic puri

mum at an in
creases with
rature increa
been report

e effect of grai
hmoush for iro

mbivalent ro
simple term
p suggests
undaries ma
es and thus
consideratio
h a decreas

grain size. T
rack front a
t toughness
istance of th
asing grain 
cles for glid
articularly th
st how to w
essed withi

3 

a review pap
tungsten [2

n of the data
ity. Neverth
ntermediate
h a decreas
ases with a
ted by Tahm

in size on the 
n (see Supple

ole of grain 
ms, scholars

 that grain b
ay confine t
s inhibit the 
ons, toughn
sing distanc
The second 
and conside
s increases 
he spacing 
size. Both 

ding dislocat
he intersect

weight the co
in this pape

per, Stephe
21], by colle
a must be d

heless, the d
e grain size.
sing grain si
a decreasing
moush for ir

BDT tempera
ementary Figu

boundaries
s are essent
boundaries 
the plastic z
instantaneo

ness will dec
ce of the me
group focus
rs them as
(and the tra
of dislocatio
mechanism
tions, but th
tion points o
ontradicting

er.  

ens summar
ecting data f
done with ca
data sugges
For grain s

ze, while fo
g grain size 
on (see Sup

ture of tungste
re 1) [22]. Dat

on toughne
tially split be
act as obst

zone size. G
ous nucleat
crease (and

ean free pat
ses on the i
preferred s

ansition tem
on nucleatio

ms could be 
hey are also
of grain bou
 contributio

rised the gr
from Refs. 
aution as th
st that the B
sizes less th
or grain size
 (see Figure
pplementar

en [21]. A sim
ta for single cr

ess and the
etween two
tacles for gl
Gliding dislo
tion of furth
d the transit
th for disloc
intersection

sites for dislo
mperature 
on sites, , 
true for gra

o (ii) preferre
undaries wit
ons of each 

rain size 
[9, 10, 

he 
BDT 
han 100 
es larger 
e 1) 
ry Figure 

 
ilar 
rystalline 

e BDT 
o 
liding 
ocations 
er 
tion 

cation 
n points 
ocation 

along 
ain 
ed 
th the 



4 
 

 
Against the background of these considerations, we identified the following three parameters 
as crucial for our assessment:  

 the mean free path for dislocation glide,  
 the dislocation-grain-boundary interaction i.e. the obstacle force of the grain 

boundary,  
 the dislocation source spacing along the crack front,  

 
In this paper we combine these parameters in well-defined case studies to answer the 
following main questions: 
 

1. What is the role of grain boundaries (obstacles vs. sources) on toughness and the 
brittle-to-ductile transition? To what extent does the positive impact of grain 
boundaries (the intersection point of grain boundaries with the crack front are 
preferred sites for dislocation nucleation) outweigh the negative impact (grain 
boundaries are obstacles for gliding dislocations)? 

2. Are we able to harmonise and to elucidate the contradicting experimental results by 
showing that toughness reaches a minimum at an intermediate grain size? 

3. Can we provide explanations for the anisotropy of toughness in cold-deformed 
metals? 

4. Will this study allow the refinement of our working hypothesis on the mechanisms 
controlling the BDT of pre-deformed, textured, polycrystalline body-centred cubic 
metals? 

 
The paper is organised as follows: Background information on how we model crack tip 
plasticity is given in the next section. This is followed by the presentation and discussion of 
our results, which is subdivided into two main parts. In part one, we analyse the impact of 
grain size on toughness while in the second part we focus on the role of grain boundaries on 
the BDT. Finally, a brief conclusion is provided.  
 
 
Table 1: Summary of selected results on the influence of grain size on toughness and the BDT temperature. The 
results are contradicting; the issue remains unclear. The main objective of this paper is to harmonise the 
statements presented below, based on a dislocation dynamics model of crack-tip plasticity. 

Topic Statement Material Method Authors 

T
ou

gh
ne

ss
, K

 

Toughness 
increases with 
decreasing 
grain size,  

Mild steel; hot forged + 
heat treated; grain size 
range: 12–85 m 

KIC-testing; single 
edge notched bend 
(SENB) samples 

Curry and Kott 
[3] 

- titanium alloy; heat 
treated to produce 
various grain sizes; 

Charpy test geometry Greenfield 
and Margolin 
[4] 

Armco iron; grain size 
range: 40–1050 m 

JIC-testing, single 
edge notched tensile 
(SENT) samples 

Srinivas et al. 
[5, 6] 

Toughness 
decreases with 
decreasing 
grain size,  

-brass, cold rolled + 
recrystallised; grain 
size range: 10–175 m 

J-integral, compact 
tension samples 

Werner [7] 

Toughness is 
not affected by 
grain 
boundaries 

-iron, 55 % rolling 
reduction + 
recrystallisation; grain 
size range: 28–200 m 

J-integral, compact 
tension samples 

Werner [7] 

Toughness 
passes through 
a minimum at a 

Tool steel; grain size 
range: 20–100 m 

KIC-testing, linear-
elastic fracture 
mechanics 

Pecyna and 
Mazur [8] 
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specific grain 
size 

B
rit

t-
to

-d
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e 

tr
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BDT 
temperature 
decreases with 
decreasing 
grain size,  

Recrystallised tungsten 
wires (wires made by 
powder metallurgy); 
grain size range: 
approx. 1–5 m 

Tensile testing; 
samples unnotched 

Seigle and 
Dickinson [9] 

Recrystallised tungsten 
wires (wires made from 
melted tungsten); grain 
size range: approx. 10–
50 m 

Tensile testing; BDT 
temperature was 
defined as the 
temperature which 
produces a 1 % area 
reduction; samples 
unnotched 

Campbell and 
Dickinson [10] 

Rolled tungsten plates; 
dislocation density = 
constant; grain size 
range: 0.37–1.1 m (in 
the normal direction) 

KIC-testing, linear-
elastic fracture 
mechanics; single 
edge cracked tension 
(SECT) samples 

Bonnekoh et 
al. [12, 13] 

BDT 
temperature 
increases with 
a decreasing 
grain size,  

Tungsten, electron 
beam melted, swaged 
+ recrystallised; grain 
size range: 200–
1280 m 

Bend test; unnotched 
samples 

Klopp and 
Witzke [14] 

Recrystallised tungsten; 
grain size range: 200–
1000 m 

Bend test 
experiments; 
samples unnotched 

Gilbert [15] 

BDT 
temperature is 
not affected by 
grain 
boundaries 

Recrystallised tungsten; 
grain size range: 10–
500 m 

Three-point bending 
tests; samples 
unnotched 

Farrell, 
Schaffhauser 
and Stiegler 
[17] 

Tungsten single crystal; 
tungsten rod material, 
hot deformed; 3 m 
mean grain size (cross 
section) 

Four-point bend 
testing, pre-cracked 
samples 

Giannattasio 
and Roberts 
[18-20] 

BDT 
temperature 
reaches a 
maximum at an 
intermediate 
grain size 

Tungsten; grain size 
was achieved by 
annealing above the 
recrystallisation 
temperature 

Summary of bending 
and tensile tests 
performed on 
unnotched samples  

Stephens [21] 

Pure iron, cold rolling + 
recrystallisation; grain 
size range: 1–8000 
grains per sq mm 

Three-point bending 
test 

Tahmoush et 
al. [22] 

 
 
2. Theory and model 
 
In this section, we describe essential features of crack tip plasticity and show how relevant 
properties are incorporated in a physical model describing crack tip plasticity by two-
dimensional discrete dislocation dynamics. Finally, details on the computer experiments are 
given. 
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the process of nucleation of dislocation half-loops and their expansion and coalescence are demonstrated for a 
large source spacing (b) and a small one (c). After merging of the half-loops, the whole crack front is shielded. 
Dislocation sources along the crack front, can be discriminated into intrinsic sources, which operate within the 
grains, and extrinsic sources, as the intersection points of grain boundaries with the crack front. The dislocation 
source spacing, , impacts on the distance at which the half loops are merged, .  

 
 
2.2. Modelling crack tip plasticity in polycrystalline tungsten 
 
We model crack tip plasticity by means of a two-dimensional discrete dislocation dynamic 
model. The model has been described in-depth in Refs. [27-30] and is similar to that 
proposed by Roberts et al. [31-33]. In particular in Ref. [30], the blocking of dislocations at 
grain boundaries and the influence of grain size on fracture toughness by this effect has 
been studied, however, neglecting the influence of grain size on dislocation nucleation and 
also disregarding temperature effects. Ingredients of the physical model are the Peach-
Koehler force, the dislocation velocity, a dislocation nucleation criterion, periodic obstacles 
and crack tip blunting.  
 
The Peach-Koehler force on the dislocations can be derived from the local stress field, , 
which includes three contributions: the applied stress, , the image stresses due to the 
crack’s free surface, , and the stress fields of other dislocations, . The Peach-
Koehler force, , is related to the total resolved shear stress acting on the dislocations, , 
as , with the Burgers vector . It can be transformed into a dislocation velocity 
according to 
 

	      (5) 

 
where  is a constant,  is the unit stress,  is the stress exponent,  is the activation 
energy and  is the Boltzmann constant. 
 
In this work, we consider crack tip plasticity as a symmetrical problem and thus apply two 
crack tip sources. The nucleation of the first dislocation occurs at 0.2	 , i.e. 20 % of 
the critical stress intensity factor, 	2 MPa m0.5. The subsequent dislocation emission will 
occur at progressively higher  values, which is due to the repulsive stress field from 
dislocations already emitted [31]. The two dislocation sources are located with an x-direction 
offset of 100 nm and a y-direction offset of 283 nm from the crack tip. 
 
The freshly nucleated dislocations glide on slip planes including an angle Θ 72.5° to the 
crack plane. This angle corresponds to the highest resolved shear stress on the slip planes, 
as can be rationalised by considering closed-form expressions for the stress fields ahead of 
a crack tip for mode I in a linear elastic, isotropic material ([34, 35], see Appendix, A1).  
 
Shielding dislocations glide away from the crack tip and pile up against grain boundaries, 
which are modelled as periodic obstacles with a given pinning force, . Dislocations that 
glide towards the crack tip are anti-shielding dislocations, i.e. their stress field increases the 
local stress intensity at the crack tip. Furthermore, these dislocations increase crack tip 
blunting by their Burgers vector upon annihilation at the crack tip. The blunting of the crack 
tip is taken into account by increasing the critical local stress intensity factor as a function of 
the tip radius, . The radius-dependent value for the critical stress intensity, , takes the 
form 
 

	 	 1     (6) 

 
where C and  are constants. The constant  is the unit distance. 
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2.3. Numerical experiments 
 
The model presented above allows for the calculation of fracture toughness as a function of 
selected parameters, as temperature, loading rate and grain size. We varied the following 
parameters: (i) the mean free path for dislocation glide, , combined with (ii) the dislocation-
grain-boundary interaction, i.e. the obstacle force of the grain boundary, , and (iii) the 
distance of the dislocation source spacing along the crack front, . These parameters are 
varied in four carefully designed studies, which will give new insight into the mechanisms 
controlling fracture toughness and the BDT. In case study I, the mean free path for 
dislocation glide, , is varied, while the obstacle force, , and dislocation source spacing 
along the crack front, , are held constant (  = 1000 GPa;  = 0). In case study II we 
assessed the impact of dislocation source spacing along the crack front, , on toughness, 
while the other parameters remain constant ( 	 ↗ 	∞,  = 0). In case study III we combine 
case studies I and II and show how the simultaneous decrease of the dislocation source 
spacing along the crack front, , and the mean free path for dislocation glide, , impact 
toughness. The latter is done by additionally varying the obstacle force, . In addition, we 
perform a case study called “Minimum in toughness”. With this case study, we harmonise the 
contradictory statements presented in the introduction and explain why toughness passes 
through a minimum at an intermediate grain size and why the BDT temperature passes 
through a maximum at an intermediate grain size (see Figure 1). Finally, we perform a case 
study to assess the evolving anisotropy in cold worked metals. In all our studies, the 
dislocation source spacing along the crack front, , and the force of the grain boundary, , 
are assumed to be independent of the temperature. A summary of the selected parameters 
of the case studies is presented in Table 2. 
 
The simulations are conducted similarly to experimental tests, i.e. they start at zero applied 
load and without any pre-existing dislocations. The applied stress intensity is raised at a 
constant rate,  = 1 MPa m0.5/s. Pure tungsten is chosen as a model material and the used 
material properties are listed in Table 3. The numerical experiments are performed below the 
critical temperature, in the temperature range of 200–800 K with a temperature step of 200 
K. The calculation is stopped as soon as the effective stress intensity at the crack tip, , 
reaches the radius-dependent value for the critical stress intensity,  ( 	 ). The 
current global, externally applied load, , is used as toughness, , in the following figures. 
A plot  against  is shown in Figure 3.  
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2122, 2652, 2970 
 
 
Table 3: Material properties and model parameters for tungsten. More details, for example on the dislocation 
mobility law, can be found in Ref. [29]. 

Parameter Value 
Shear modulus, , [GPa] 152.67 
Young’s modulus, , [GPa] (plane strain) 393.88 
Lattice constant, , [pm] 315.9 
Burgers vector, , of /2 111  screw 
dislocation [pm] 

274 

Poisson’s ratio,  0.29 
Angle between slip and crack plane, Θ, [°] 70.5 
Critical temperature [K] 810 K 
 
 
3. Results and discussion 
 
In this section, we present the numerical results of the parameter studies defined above. The 
parameter studies are designed to elucidate the impact of grain boundaries on toughness 
and the BDT. The studies will show to what extent the positive impact of grain boundaries 
(the intersection point of grain boundaries with the crack front are preferred sites for 
dislocation nucleation) outweigh the negative ones (grain boundaries are obstacles for 
gliding dislocations). Furthermore, the studies will evaluate whether it is possible to 
demonstrate that toughness reaches a minimum at an intermediate grain size. Finally, we 
defined parameter sets, which should give insight into the evolving anisotropy of the fracture 
toughness in worked metals.  
 
In the following sections, we vary the parameters: (i) mean free path for dislocation glide, , 
combined with the obstacle force of the grain boundary, , and (ii) the distance of the 
dislocation source spacing along the crack front, . Among the latter, we distinguish between 
two types of sources: First, there are dislocation sources which operate at the crack front but 
inside the grains. These sources are well established from experiments on single crystals 
and are referred to as intrinsic sources. In this case, the relevant measure for  is the mean 
distance of the intrinsic sources. The dislocation source spacing of fractured single crystals 
can be made visible by etch pitting; images can be found in Riedle [36]. Second, we suggest 
that the intersection point of grain boundaries with the crack front are preferred dislocation 
nucleation sites. For materials or microstructures for which the mean distance of the 
intersection points of grain boundaries with the crack front is much smaller than the mean 
distance of the intrinsic sources, the relevant measure for  is the mean distance of the 
intersection points of grain boundaries with the crack front (Table 4).  
With these considerations, we will now define and discuss the following case studies. 
 
Table 4: In this paper, we distinguish between two types of dislocation sources which operate along the crack 
front: First, there are intrinsic sources operating at the crack front but inside the grains. Second, we suggest the 
intersection points of grain boundaries with the crack front are preferred dislocation nucleation sites.  

Comparison of the distances 
of the sources 

Relevant measure for  Example, 
material/microstructure 

mean distance of the intrinsic 
sources along the crack front 
<< mean distance of the 
intersection points of grain 
boundaries with the crack 
front 

 = the mean distance of the 
intrinsic sources 

 Materials with narrow 
intrinsic source 
distances 

 Coarse-grained 
materials and single 
crystals 

mean distance of the 
intersection points of grain 

 = the mean distance of the 
intersection points of grain 

 Materials with broad 
intrinsic source 
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boundaries with the crack 
front << mean distance of 
the intrinsic sources along 
the crack front 

boundaries with the crack 
front 

distances 
 Fine-grained 

materials 

 
 
3.1. Case study I: Variation of the mean free path (high obstacles forces) 
 
In this case study, we assess the influence of grain boundaries on materials or 
microstructures that possess intrinsic sources that are very close to each other (relevant 
measure for  = the mean distance of the intrinsic sources). The mean free path for 
dislocation glide, , is varied, while the force of the obstacle, , and dislocation source 
spacing along the crack front, , are held constant (  = 1000 GPa;  = 0). The force of the 
obstacle is set high, so that the grain boundary can be regarded as an impenetrable barrier.  
 
The results of the numerical experiments can be found in Figure 4 (a), where the fracture 
toughness,	 , is plotted against the test temperature. Figure 4 (a) distinguishes two regions 
highlighted in light and dark grey. The first one contains all data points for which the grain 
boundaries do not confine the plastic zone, meaning the dislocation that has been emitted 
first does not reach the grain boundary. The second one, highlighted in dark grey, contains 
all data points for which the grain boundaries confine the plastic zone. These data points 
result from numerical experiments in which the dislocation that was emitted first reaches the 
grain boundary and is pinned there.  
 
In the light grey region, since the dislocations do not glide up to the grain boundary, the 
mean free path for dislocation glide is irrelevant. This explains why the data points are 
congruent at low temperatures. Furthermore, the toughness values slightly increase with 
increasing temperature, which can be traced back to the increase of dislocation velocity with 
temperature.  
 
The data points in the dark grey box represent numerical experiments for which the grain 
boundary confines the plastic zone. After the emission of the first dislocation, it glides a 
certain distance until it is pinned at the grain boundary. Under such experimental conditions, 
Figure 4 (a) displays a clear and unambiguous picture of the role of grain boundaries on 
toughness: The smaller the grain size, the earlier the dislocations pile up, the more 
pronounced the suppression of fresh dislocations and the lower the toughness. Again, the 
slight increase of toughness with increasing test temperature can be explained by the 
temperature dependence of the dislocation velocity.  
 
For materials or microstructures for which the relevant measure for  is the mean distance of 
intrinsic sources and for situations for which grain boundaries confine the plastic zone, a 
decrease of grain size (here: a decrease of the mean free path for dislocation glide, ) results 
always in a decrease of toughness. The experimental results on the impact of grain size on 
the toughness of -brass by Werner can be explained by this mechanism [7]. 
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In this case study, we assess the influence of grain boundaries on materials or 
microstructures for which the intersection points of grain boundaries with the crack front are 
the dominant dislocation sources (relevant measure for  is the mean distance of the 
intersection points). We assume that only the intersection points of the grain boundaries with 
the crack front are the dominant sources and that intrinsic sources (i.e. sources inside the 
grains) can be neglected. In case study III we combine case studies I and II and show how 
the simultaneous decrease of the dislocation source spacing along the crack front, , and the 
mean free path for dislocation glide, , influence toughness. The latter is done by additionally 
varying the force of the obstacle.  
 
The result of this case study can be found in Figure 5, which shows a series of diagrams. 
The different diagrams result from studies that differ in the obstacle force. The force of the 
obstacle is varied from 0.1 via 0.3 and 0.5 up to 1000 GPa. The latter defines an 
impenetrable grain boundary. Assessing the positions of the dislocations at the end of the 
numerical test shows that for nearly all data points the first emitted dislocation reaches the 
obstacle. The data points at a test temperature of 200 K and a source spacing and mean free 
path for dislocation glide of 600, 800 and 1000 nm are the only exceptions. The results 
presented in Figure 5 display an unexpected, but very clear picture: grain boundaries always 
have a positive impact on toughness. By the simultaneous decrease of  and  from 1000 to 
200 nm in 200 nm steps toughness increases. The positive impact of grain boundaries 
outweighs the negative one. This effect is more pronounced for low-strength obstacles and 
diminishes with increasing obstacle strength. However, there is never a situation where the 
negative impact of grain boundaries dominates fracture toughness. This result is of the 
utmost importance and is the fundamental basis for our attempt to transfer the numerical 
results to real materials and microstructures.  
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Figure 5. Case study III (  and  are varied simultaneously,  = 0.1, 0.3, 0.5 and 1000 GPa): Grain boundaries 
always have a positive impact on toughness. The positive impact of grain boundaries diminished with increasing 
strength of the obstacle, . 
 
 
By comparing the results from case studies I and III we can conclude the following:  
For materials or microstructures for which the relevant measure for  is the mean distance of 
intrinsic sources, and for situations for which grain boundaries confine the plastic zone, a 
decrease of grain size (here a decrease of the mean free path for dislocation glide, ) results 
in a decrease of toughness (Figure 4 (a)). However, for materials or microstructures for 
which the relevant measure for  is the mean distance of the intersection points of grain 
boundaries with the crack front, a decrease of the grain size (a simultaneous decrease of  
and ) results in an increase of toughness. For such materials or microstructures, grain 
boundaries are always positive or neutral (Figure 5). These results explain the experimental 
results on the impact of grain size on toughness from Curry and Kott [3], Greenfield and 
Margolin [4] and Srinivas et al. [5, 6]. 
 
We identified the situations in which a decrease of grain size results in a decrease or an 
increase in toughness. Based on this knowledge we are now able to set up a case study that 
demonstrates that toughness passes through a minimum at a specific grain size. This case 
study will be presented next. 
 
 
3.4. Fracture toughness passing through a minimum at a specific grain size 
 
The work by Pacyna and Mazur demonstrates that toughness passes through a minimum at 
a specific grain size [8]. The aim of this section is to design a mechanism-based parameter 
setup that displays the grain-size-dependence of toughness and shows that toughness 
passes through a minimum at an intermediate grain size.  
 
The parameter setup used in this section is separated into two parts. Part one refers to the 
grain size region highlighted in light grey in Figure 6 (a) and describes coarse-grained 
material behaviour. For this region, the mean distance of the intrinsic sources along the crack 
front is much smaller than the mean distance of intersection points of grain boundaries with 
the crack front. In this case, the relevant measure for  is the mean distance of the intrinsic 
sources. For the parameter set representing the coarse-grained region, we choose  = 
const.,  = const.,  is variable (see case study I). Putting  as constant is reasonable, as the 
mean distance of the intrinsic sources along the crack front does not change with grain size. 
Part two of our parameter setup refers to the grain size region highlighted in dark grey in 
Figure 6 (a) and describes fine-grained material behaviour. For this region, the mean 
distance of the intersection points of grain boundaries with the crack front is much smaller 
than the mean distance of the intrinsic sources along the crack front. In this case, the 
relevant measure for  is the mean distance of the intersection points of grain boundaries 
with the crack front. For the parameter set representing the fine-grained region, we 
simultaneously modify  and , with  = const. (see case study III). Putting  as a variable is 
reasonable, as the mean distance of the intersection points of grain boundaries with the 
crack front changes with grain size. It is obvious, that the relevant measure for  changes 
with decreasing grain size from “the mean distance of the intrinsic sources along the crack 
front” to “the mean distance of intersection points of grain boundaries with the crack front”. It 
can be anticipated, that this transition takes place at an intermediate, critical grain size. The 
-value at this transition is referred to as  in Figure 6 (a). 

 
Figure 6 (a) displays the results of these assumptions. The toughness is plotted against the 
mean free path, , on a logarithmic scale. The light grey region contains four graphs which 
are distinguished by their critical value for  (black:  = 400 nm; red:  = 600 nm; green:  
= 800 nm; blue:  = 1000 nm). In this region, toughness decreases with decreasing grain 
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When the relevant measure for  is the mean distance of the intrinsic sources along the 
crack front, we consider  =  = constant (the temperature dependence of the intrinsic 
dislocation source spacing is neglected) and Equation (7) can be written as 
 

	 . .     (9) 

 
In summary, we provided an explanation of the existence of a minimum of toughness at an 
intermediate grain size. The essential point is that relevant measure for  changes with 
decreasing grain size from “the mean distance of the intrinsic sources along the crack front” 
to “the mean distance of intersection points of grain boundaries with the crack front”. The 
point of this transition takes place at an intermediate, critical grain size, at which the fracture 
toughness assumes a minimum. In the domain above this critical grain size, we set  = 
const., and the toughness increases with grain size (see Figure 6 (a), region highlighted in 
light grey, or case study I, parameters:  = variable,  = const.). In the domain below this 
critical grain size, we set  =  = variable, and a decrease of grain size results in an increase 
of toughness (see Figure 6 (a), region highlighted in dark grey, or case study III, parameters: 

 = 	  variable). With this, we can explain why toughness passes through a minimum at an 
intermediate grain size. Furthermore, we can harmonise the contradicting statements on the 
impact of grain size on toughness as presented in the Introduction. 
 
Up to this point, we discussed the toughness properties of microstructures that possess 
equiaxed grains. In the next section, we will analyse the impact of elongated grains on 
toughness.  
 
 
3.5. On the anisotropy of the fracture toughness of worked products (rolled plates) 
 
The aim of this section is to provide insights into the evolving anisotropy of toughness during 
cold working by the examples of cold rolled plates.  
 
In this section, we make use of the two-letter code introduced by the ASTM E399 standard 
[37]. The letter L stands for rolling direction, the letter T indicates the width direction and the 
letter S the thickness direction of the rolled sheet. Here, we define parameter setups to 
analyse the anisotropy of toughness of specimens aligned in the L-T and T-L reference 
directions. The first letter designates the direction normal to the crack plane, while the 
second letter gives the expected direction of crack propagation. For example, for the L-T 
specimen, the fracture plane normal is the L-direction (the rolling direction) and the expected 
direction of crack propagation is T-direction (the width direction). Figure 7 displays the 
above-mentioned crack systems and provides a view in the S-direction, the thickness 
direction of the sheet.  
 
It is well established that toughness test samples representing an L-T crack system possess 
higher toughness values compared to samples representing a T-L crack system. 
Furthermore, experiments show that the BDT of L-T specimens occurs at a lower 
temperature compared to the transition temperature of samples representing a T-L crack 
system. Examples of experimental data on this issue can be found in the work by Reiser et 
al. [38].  
 
Rolling results in elongated grains. We consider such anisotropic grain shape by introducing 
the parameters  and . The former represents half of the chord length in the width direction 
and the latter stands for half of the chord length in the rolling direction. The parameters  and 

 define the grain size and the grain aspect ratio, respectively. It can be seen from Figure 7 
(b), that parameter  is directly linked with the mean free path for dislocation glide, , 
according to 
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an increased blunting activity. Note: In Supplementary Figure 3, we plotted the number and position of the 
dislocations at the end of the experiments performed in this study. 
 
 
Next, we want to introduce another definition of the BDT, which appears to be more 
pragmatic and which can be deduced directly from calculated toughness to temperature 
curves. Bonnekoh et al. [13] showed experimentally that toughness values at and above the 
transition temperature scale with the temperature dependence of the yield stress,  (see 
Supplementary Figure 4). The scaling relation was found to be 
 

	       (12) 
 
where  is a constant and has a value of 0.057. In Figure 10, we used this value to scale the 
toughness (left y-axis) with the yield-stress (right y-axis). 
Furthermore, Bonnekoh et al.’s results show that curves representing the temperature 
dependence of toughness values in the brittle and semi-brittle regime intersect the  versus 

 curves exactly at the transition temperature. From an experimental point of view, this 
intersection point is the point of a maximum in fracture toughness which usually correlates 
with the transition from brittle to ductile material behaviour; thus, the temperature at the 
maximum is taken as the BDT temperature. Therefore, we propose a second definition for 
the BDT: The intersection point of the calculated  versus temperature curve with the  
versus temperature curve gives the BDT temperature. The result of this procedure is shown 
in Figure 10, where the toughness and the yield stress are plotted against the test 
temperature. Figure 10 (a) uses toughness values as calculated in case study I, while Figure 
10 (b) shows toughness data from case study III. The values for the yield stress are obtained 
by re-scaling experimental data for tungsten single crystals, taken from Ref. [39], and plotted 
as grey curves. The re-scaled  versus temperature curves for polycrystals, were obtained 
from a parallel shift by making use of the Hall-Petch relationship, Equation (1). Values for the 
Hall-Petch coefficient have recently been experimentally determined by Bonk et al. [40]. Here 
we used a value for  of 15 N/mm-1.5 [13]. For  we used 200, 400, 600, 800 and 1000 nm 
respectively. In Figure 10, we graphically determined the intersection points and marked the 
respective transition temperatures with arrows. It is noted here, that this procedure only 
yields semi-quantitative results for the BDT temperature, because the fracture toughness 
curves are obtained purely from or dislocation dynamics model, without fitting to fracture 
experiments, whereas the yield strength are obtained purely from experimental data, again 
without fitting to the model. Thus it is reassuring that the resulting BDT temperatures fall 
within a very reasonable range. 
 
For case study I (  is varied,  = 1000 GPa,  = 0), a decrease in the grain size results in an 
increase of the BDT temperature. For case study III (  =  simultaneously varied,  = 0.1 
GPa) a decrease in the grain size results in a decrease of the BDT temperature. An 
appropriate combination of both case studies should allow the construction of a  versus 
	  curve which possesses a maximum at an intermediate grain size, which will be discussed 
next.  
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In our parameter studies, we varied the following parameters: (i) the mean free path for 
dislocation glide, , combined with (ii) the obstacle force of the grain boundary, , and (iii) 
the dislocation source spacing along the crack front, . 
 
In case study I we varied the mean free path for dislocation glide, , while the other 
parameters were held constant. The results show that a decrease of the mean free path for 
dislocation glide, , (a decrease of grain size) results in a decrease of toughness. In case 
study II we varied the dislocation source spacing along the crack front, , while the other 
parameters were held constant. The results show that a decrease of the dislocation source 
spacing along the crack front, , ( a decrease of grain size) results in an increase of 
toughness. Case studies I and II show that the single contributions of grain boundaries 
(obstacles vs. source) on toughness are in fact contradicting. Therefore, we designed case 
study III to weight the single contributions. In this case study, we simultaneously varied the 
mean free path for dislocation glide, , and the dislocation source spacing along the crack 
front, . The results show, that the simultaneous decrease of  and  results in an increase of 
toughness. Under these test conditions, grain boundaries are always positive, or at least 
neutral.  
 
The results of the fundamental case studies presented above, allow a mechanism-based 
explanation of why toughness passes through a minimum (and the BDT temperature passes 
through a maximum) at an intermediate grain size. To accomplish this, it is essential to see 
that the relevant measure for  changes with decreasing grain size from “the mean distance 
of the intrinsic sources along the crack front” to “the mean distance of intersection points of 
grain boundaries with the crack front”. This transition takes place at an intermediate, critical 
grain size. For materials or microstructures for which the relevant measure for  is the “the 
mean distance of the intrinsic sources along the crack front”, a decrease of grain size does 
not result in a decrease of , which can hence be regarded as a constant in this grain size 
regime. Under these conditions, a decrease of grain size results in a decrease of toughness 
(and an increase of the BDT temperature). However, for materials or microstructures for 
which the relevant measure for  is “the mean distance of intersection points of grain 
boundaries with the crack front”, a decrease of grain size results in a decrease of . Under 
these conditions, a decrease of grain size results in an increase of toughness (and a 
decrease of the BDT temperature). 
 
The relationship between the grain size and toughness and the BDT temperature are in the 
form of 
 

, 	
.

     (7) 

 
and 
 

, 	 ,

.

.    (13) 

 
 
 
Appendix 
 
The shear stress component, , of a stress fields ahead of a crack tip for Mode I in a linear 
elastic, isotropic material expressed in polar coordinates can be written as 
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