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Abstract

The  object  kinetic  Monte  Carlo  method  has  proven  to  be  an  excellent  tool  to  better
understand microstructure evolution in irradiated materials, from metals to semiconductors.
Its most valuable capability is that it provides a way to connect those parameters obtained
from fundamental models, such as first principles calculations, to experimental observations
by expanding the time and length scales. However, this method has many limitations that
pose questions on its predictive capabilities, therefore an important effort is taking place to
improve the model. In this review, firstly the methodology of object kinetic Monte Carlo is
described, a few examples are then presented in the field of radiation damage of metals and
finally the limitations of the method and its applicability is discussed. To conclude, an outlook
on the future of this computational model is given. 
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1. Introduction

Irradiation of materials can result in defects that alter their mechanical, electrical, thermal
and/or magnetic properties. In some cases, irradiation is the means to tailor the properties,
as in  the case of  ion implantation of  semiconductors [1].  In  other cases,  defects are an
unavoidable effect that act in detriment of the material properties, as in the case of systems
exposed  to  high  radiation  levels  in  nuclear  reactors  [2,  3].  With  the  advance  of
nanotechnology,  focused  ion  beams  are  used  to  fabricate  nanoscale  features  [4]  and
questions still remain as to the effect of the radiation damage produced by this technique [5].
Understanding the phenomena behind defect production and defect evolution is key in all
these different applications, either to select the most appropriate material,  such as in the
case  of  nuclear  applications,  or  to  improve  the  technique,  as  in  ion  implantation  of
semiconductors or focused ion beams. 

In  fact,  all  these  different  applications  and  experimental  conditions  have  something  in
common: defects are produced in a time scale of picoseconds and are atomic scale in size,
giving  rise  to  out-of-equilibrium phenomena that  can  evolve  over  much longer  time and
length scales until reaching a steady-state. This is, therefore, a complex phenomena that can
not be tackled by a single simulation model, and a multiscale approach must be used [6].
The initial damage produced by the energetic particles within the picosecond time scale can
be modeled using binary collision approximation methods together with molecular dynamics
simulations with empirical potentials, as explained in sections 4 and 5 of this special issue.
The number of defects produced as well as their spatial distribution and configuration can be
obtained  from  these  calculations  and  this  information  is  crucial  for  the  subsequent
microstructure evolution, as we will show in a few examples in this review. 

Object kinetic Monte Carlo (OKMC) is able to extend the time and length scale of molecular
dynamics simulations to times and sizes that are comparable to experimental observations.
For example, the average time between two ions during ion implantation is on the order of
miliseconds. The migration energy of a self-interstitial in Fe according to density functional
theory  calculations  is  ~  0.3  eV  [7].  Therefore,  many  processes  can  occur  in  between
cascades, that can not be captured using molecular dynamics alone, since time scales on
the order of miliseconds are not accessible. This is where OKMC can be a very useful tool.
Unlike molecular  dynamics simulations,  in  OKMC the vibrations of  each atom around its
equilibrium position is not modeled, and only the rare events are followed. However, this also
implies that the relevant events to be included in the model have to be selected. And there is
no unambiguous method to select these processes; it is to the discretion of the modeler to
decide which processes are those that must be included. This is one of the limitations of this
technique.  Once all  the probabilities  of  all  the possible events are known,  the algorithm
evolves the system according to these probabilities until the final conditions are met, either
total  simulated time or  total  irradiation  dose.  These results  can be directly  compared to
experimental  observations  such  as  transmission  electron  microscopy  (TEM),  positron
annihilation  experiments  (PAS),  small  angle  neutron  scattering  (SANS)  or  atom  probe
tomography (APT), methods that  can provide information about defect  concentration with
dose, defect sizes and character. Contrasting the results of the calculations with different
experimental observations is necessary to verify the reliability of the model considered.

In the following we will describe the OKMC algorithm, and briefly two related Monte Carlo
methods, the so-called event kinetic Monte Carlo and the first-passage kinetic Monte Carlo.
Several examples are presented, focused on the influence of the initial damage distribution
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obtained from molecular dynamics with empirical potentials on the microstructure evolution in
the case of irradiated metals.

2. Methodology

Monte  Carlo  models  are  those  where  the  main  algorithm  is  based  on  a  stochastic
component. Consequently, there is a wide variety of algorithms under the name Monte Carlo
and  used  for  very  different  applications  from  materials  modelling  to  risk  assessment  in
finance [8]. The first Monte Carlo method is attributed to Ulam and Metropolis, developed
while working at the Los Alamos National Laboratory during the Manhattan project [9]. See
references  [10,  11]  for  the  history  of  this  development.  In  the  field  of  defects,  the  first
simulations were done a few years later by Beeler [12], followed by those of Besco [13] and
Doran [14] applied to study short-term annealing of defects in f.c.c. and b.c.c. materials. 

The kinetic Monte Carlo (KMC) method that will be discussed here follows the kinetics of
a series of events with known probabilities of occurrence. It  was first  used in the field of
radiation damage by H. Heinisch in the early 90's [15] and since then it has been applied to
different metals, particularly iron and iron alloys [7, 16-19] and tungsten [20, 21], to name a
few.  In  the  case  of  radiation  effects  the  events  are  related  to  migration  of  defects,
dissociation  of  defect  clusters  or  interaction  between  different  types  of  defects  among
themselves or with the existing microstructure. These are slow processes or rare events that
can not be followed with methods like molecular dynamics, where time scales of only a few
nanoseconds can be achieved, as mentioned above. In KMC, once all the different types
events and event rates are known, the system evolves according to those rates, and different
algorithms can be used for this time evolution. One such algorithms is the so-call residence
time or Bortz-Kalos-Liebowitz (BKL) [22]. When this approach is used, the KMC algorithm is
often called Object kinetic Monte Carlo (OKMC). Here, the total rate for all possible events is
calculated as: 

R=∑
i=1

e

ΓiN i    (1)

where  e is the total number of possible events,  G is the probability of occurrence of a
particular event i and N is the total number of objects that can undergo that event i. Once the
total  rate  R  is  calculated,  a  random  number  is  selected  between  0  and  R,  which  will
determine which event will occur. In this manner, the event is selected randomly but with the
appropriate weight according to its probability of occurrence. Once the event is picked, the
simulation time is updated, increasing the time by a time increment,  Dt, that is equal to the
inverse of the total rate:

Δt=
−log ξ
R

  (2)

Often, the time increment is multiplied by the logarithm of a random number, ξ, between
0 and 1, to ensure that a Poisson distribution of time is achieved. 

After selecting the event, an object from all those that can realize that event is picked
randomly. The actions associated to that event are then computed and the system is updated
accordingly. For example, in the case we are interested in, radiation damage, an event could
be the migration of a self-interstitial atom. The event in this case is the migration and the



object the self-interstitial. One self-interstitial is then selected randomly from all those existing
in the system and displaced to a new location. In the case of an off-lattice kinetic Monte
Carlo, the displacement is a fixed distance, usually taken between first and second nearest
neighbours distance. Once the self-interstitial has been displaced, it is necessary to evaluate
the new environment of that object and perform the necessary actions. For example, if the
self-interstitial  is  located within  the capture  radius  of  another  defect,  the  interaction  and
reaction between those defects must take place, therefore changing the defect distribution
and  configuration.  One  possibility  in  this  example  is  that  the  self-interstitial  moves  to  a
location within the capture radius of a vacancy and consequently these two defects cancel
each  other,  or  that  the  self-interstitial  moves  within  the  capture  radius  of  another  self-
interstitial and a di-interstitial must be created. Much of the simulation time is, in fact, spent in
this part  of  the calculation. This also implies that every time step, the total rate must be
recalculated since the number of objects for each event could, in principle, have changed.
Figure 1 shows schematically the different  steps in  a general  object  kinetic Monte Carlo
calculation.

The aforementioned algorithm is, however, not the only possible method for selecting
events in a kinetic Monte Carlo. A different approach is used in the so-called Event kinetic
Monte Carlo [23, 24] and first-passage kinetic Monte Carlo (FPKMC) [25]. Here, the time
delay for all the possible events in the system is first calculated and the event selected is that
with the shortest time delay. The event is then performed, taking care of all the associated
changes, as explained above, and all the new time delays have to be calculated. The time in
this case advances by the delay time of the event picked. This algorithm is used in codes
such as JERK  [24,  26]  and has been used very successfully to  compute the electrical
resistivity of irradiated Fe [7] and Fe in the presence of impurities such as carbon [27]. In the
EKMC method some approximations are made in order to calculate the delay time for events
such as the interaction between two neighbouring objects. For more details on EKMC see
references [24, 26-28].

A more  general  method  has  been  developed  by  Opplestrup  et  al  [25]  named  first-
passage kinetic Monte Carlo (FPKMC). In this method, as in the EKMC algorithm, the event
selected is the one that would occur in the shortest time from all possible events.  However,
FPKMC lacks the approximations included in EKMC. In FPKMC, each one of the walkers is
surrounded by a “protective domain” and when a walker is selected it is moved to the edge of
that domain. That results in a tremendous computational gain with respect to OKMC since
many small jumps, that would have to be done in OKMC where the jump distance is fixed,
are  automatically  avoided  in  FPKMC.  However,  the  efficiency  of  FPKMC  decreases
significantly with respect to OKMC when the number of particles is high, since for each step,
all the times associated to the jump of each walker to the edge of their “protective domains”
have to be calculated. Some applications and comparisons between FPKMC and OKMC can
be found in [29]. 

It is clear from the description above that the key parameters in KMC (either OKMC,
EKMC or FPKMC) are the probabilities of the events in our system. Transition state theory
(TST) can be used to obtain the rates between two different states [30]. For an extended
description  of  TST and  KMC  see  the  review  by  A.  Voter  [31].  The  transition  rates  are
generally obtained from energy barriers between two different states of the system. Accurate
models such as density functional theory (DFT) or others less precise, like calculations using
empirical potentials, can be used to obtain these barriers. Details of these calculations can
be found in section 1 of this special issue.  
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Once  the  activation  energy  is  known,  the  rate  for  the  event,  Gi,  is  then  obtained
considering an Arrhenius dependence:

Γ i=Γ i0exp (−Ea /KT ) (3)

where  Gi0 is the jump or attempt frequency,  Ea is the activation energy for that particular
event, K is Boltzmann's constant and T is the temperature. As can be clearly seen from this
description, the accuracy of the method depends on one hand, on the accuracy of the values
of  the different  rates and,  on the other hand,  on the selected events and interactions to
describe the system. How well this model reproduces the system we are interested in can
only be assessed through extensive comparisons with experimental observations.

Table I gives a list of all the required parameters for a standard calculation of defect
evolution in a material under irradiation, and the possible sources for these parameters. The
objects in this case are the defects produced by the irradiation and the interactions between
these defects and with the existing microstructure such as dislocations or grain boundaries.
The  starting  point  of  the  simulation  is  the  distribution  of  the  defects  produced  by  the
irradiation, including their  location (x,  y,  z coordinates) and type (vacancy,  self-interstitial,
impurity). In the case of a continuous irradiation, new defects are introduced in the simulation
box with a rate according to the dose rate of the experiment that is being simulated. As
mentioned  in  the  introduction,  the  positions  and  types  of  defects  can  be  obtained  from
classical  molecular  dynamics  simulations  with  empirical  potentials  (CMD),  from  binary
collision approximation (BCA) calculations, such as those obtained from SRIM [32] or Marlow
[33], or as a random distribution of Frenkel-pairs, depending on the type of experiment to be
simulated. For example, when damage is produced by electrons the last approximation can
be used. In the case of damage produced by light ions such as He, calculations using the
binary collision approximation are appropriate. However, for self-irradiation and heavy-ions it
is necessary to use those results obtained from molecular dynamics simulations. Often times
a combination of BCA and MD calculations is used to obtain the distribution of defects during
irradiation for energies that can not be reached by CMD alone. In this case the BCA is used
to obtain the energies of those recoils produced by the energetic particle along its path, but
the  final  defect  distribution  produced  by  those  recoils  is  the  one  obtained  from  CMD
simulations.

In some of the implementations of the OKMC algorithm, clusters are described by the
location of its centre of mass, the number of defects and the type of defects in the cluster
[15-21]. Codes such as Bigmac [34] or Lakimoca [18] use this approach. Each defect, either
a single defect or a cluster, has associated a capture radius that depends on the number of
defects of that object. This capture radius, r, is often defined as spherical: 

rn=
3√3nΩ4π

(4)

where n is the number of defects in the cluster and W is the atomic volume. This capture
radius is used to define when two defects interact.  Also when a defect dissolves from a
cluster  it  is  positioned outside this capture radius. When using this approach information
regarding the lattice structure is lost.  Strain effects such as the bias interaction between
interstitials and dislocations can be included in this capture radius, increasing the capture



radius for interstitials. It is also possible to include strain effects in OKMC using elasticity
theory [35, 36].  

In other implementations of the OKMC, the location of all the defects in a cluster are
kept in the simulation. This is in fact done in codes such as MMonCa [37] that has been used
to model dopant diffusion in silicon [38] as well as metals [39-41]. This approach has the
advantage  that  the  location  of  defects  in  the  cluster  defines  its  capture  volume  and
interactions  with  other  defects  can  be  defined  more  precisely.  However,  it  is  also
computationally more expensive. 

As mentioned above, in an OKMC for radiation damage, the objects are the defects
produced  during  the  irradiation,  that  is  vacancies  (V)  and  self-interstitials  (I),  but  also
impurities that could exist in the sample, such as carbon (C), or produced by transmutation in
neutron irradiation or implanted, such as He. And the clusters that these defects can form
among themselves must also be considered. One can see that in a system with 4 different
types of  objects (V,  I,  C and He, for  example) the possible permutations between these
different elements can give rise to a wide variety of complexes. From all these elements, the
migration energy,  dissociation of  a defect  from a cluster and the interaction between the
different types of defects must be known. These are the possible events. For example the
probability of a defect of type t undergoing a migration event is given by:

Γm
t =Γ0

t exp (−Emt /KT ) (5)

where, as mentioned above, Gt
0 is the jump frequency, Et

m is the migration energy for that
particular  type of  defect,  K is  Boltzmann's  constant  and T is  the temperature.  Moreover,
these objects can move in any direction (three-dimensional migration) or along a specific
direction (one-dimensional migration) which is the case of some self-interstitial clusters in
metals. When the object can migrate in any direction (three-dimensional migration) the jump
is  often  performed  by  randomly  placing  the  object  within  a  sphere  of  radius  the  jump
distance.  When the migration of  the object is restricted to one particular direction (one-
dimensional  migration),  such  as  the  case  of  some  self-interstitial  clusters  in  metals,  a
particular direction of motion (<111> for Fe and <110> for Cu, for example) with respect to
the simulation box is given to the object when it is created, and the jumps are performed only
along that direction.

Another basic type of event is the dissociation of a defect from a cluster. In this case, the
probability of that defect dissociating from the cluster is given by: 

Γ d
t =Γ0

t exp(−(Emt +Ebt )/KT )    (6)

where Et
b is the binding energy of the defect to the cluster. This energy depends on the

number of defects in the cluster and the type of cluster. 

Finally, all the possible interactions between defects must be taken into account. Here,
the system can be made as simple or as complex as required by the particular objective of
the simulation at hand. The simplest case could be considering only vacancies and self-
interstitials  and  only  one  type  of  self-interstitial  cluster.  Then  three  reactions  must  be
considered: In + Im → In+m  (self-interstitial cluster growth, where n and m are the number of
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defects on each cluster), Vn + Vm → Vn+m (vacancy cluster growth) and In+Vm which could
result in three different outcomes: annihilation of defects if n=m, a self-interstitial cluster of
size n-m, In-m, if n > m, or a vacancy cluster of size m-n, Vm-n, if m>n. Nowadays, however,
calculations of defect evolution in metals are much more complex, including the presence of
impurities, such as C [40] or He [19, 42], different types of self-interstitial clusters [41] or even
alloys [43]. Therefore, the list of possible reactions between defects can be very extensive. In
such complex calculations one of the difficulties is to identify the relevant parameters that are
the main drivers for microstructure evolution.    

In  the  following  sections  we  will  describe  some examples  of  OKMC calculations  of
microstructure  evolution  in  irradiated  metals  under  different  conditions.  These  examples
focus on the influence of the initial damage distribution, obtained from molecular dynamics
simulations, on the microstructure that can be observed by techniques such as transmission
electron microscopy.

3. Damage accumulation in pure metals: copper vs. iron

The first application of the OKMC method refers to damage evolution in two metals: copper,
with  an f.c.c.  structure,  and  Fe with  a  b.c.c.  lattice.  The influence of  the  initial  damage
distribution  in  the  microstructure  evolution  is  clearly  observed  when  comparing  damage
accumulation in these two metals. Molecular dynamics simulations of recoils with the same
energy in these two materials show that, although the total number of defects produced is
very similar,  the defect distribution is quite different.  For 30keV cascades, such as those
shown in figure 2 as a representative example, in copper almost every single cascade will
produce a vacancy cluster  at the initial  location of  the PKA surrounded by self-interstitial
clusters, normally of smaller size than the vacancy one as shown in figure 2(a) where green
spheres  represent  the  location  of  vacant  sites  and  red  ones  are  self-interstitials.  These
vacancy clusters evolve into stacking fault tetrahedra over longer periods of time, as shown
by other authors [44].  The size of these vacancy clusters is of the order of 1.5 nm in radius.
On the other hand, in iron, the damage produced for the same recoil energy consists mostly
of  isolated  vacancies,  also  located  mostly  near  the  center  of  the  collision  cascade,
surrounded by self-interstitial clusters, as shown in the example in figure 2(b). Self-interstitial
clusters are usually smaller in the case of Fe than in Cu. These cascades were calculated
using embedded atom type of potentials, [45] and [46] for copper and iron respectively. 

In  Ref.  16,  using  a  database  of  collision  cascades  as  initial  defect  distribution,  the
accumulation of damage and microstructure evolution with time was studied with OKMC for
these  two  materials.  In  this  case  20  keV  cascades  were  used.  The  calculations  were
performed for the same homologous temperature, 0.25 of the melting point (340K and 363K
for Cu and Fe respectively) using the OKMC code BIGMAC, developed at LLNL [34]. 

The  migration  and  binding  energies  for  Cu  vacancies  were  taken  from  calculations  by
Sabochick et al. [47, 48] while for self-interstitials the values of Schober and Zeller were used
[49]. For iron, on the other hand, values for vacancies and self-intersitials were calculated by
Diaz de la Rubia and Soneda and used in these calculations [50]. Note that at the time, the
state-of-the-art interatomic potentials for Fe predicted the <111> self-interstitial as the most
stable one, with almost athermal migration (Em ~ 0.1 eV) just like in the case of copper. Since
then, DFT calculations have reviled that the most stable configuration for the self-interstitial in
Fe is the <110> dumbbell with a higher migration barrier (Em ~ 0.3 eV [51]). It was in fact
through a combination of DFT calculations and a kinetic Monte Carlo model, in this case an



Event  Kinetic  Monte  Carlo,  briefly  described above,  that  it  was  possible  to  interpret  the
experimental  measurements of resistivity recovery of electron irradiated Fe, showing that
indeed, it is the <110> dumbbell the most stable, as well as the formation of other defects [7].
Nevertheless, as an example of OKMC calculations and for the sake of comparison between
these two materials, particularly regarding the effect of initial defect distribution, the results
first published in 2000 are still valid [16].

In  the  case  of  copper,  self-interstitial  clusters  of  sizes  smaller  than  60  defects  were
considered mobile and if they traveled a distance equivalent to 1 micron, they were removed
from the simulation box, effectively considering a grain boundary size of 1 micron. In Fe, self-
interstitial clusters are also mobile but when they were within the capture radius of each other
they form a junction and become immobile. 

Damage accumulation at a dose rate of 10-4 dpa/s for both metals was calculated. In iron, 5
atomic parts per million (appm) of interstitial impurity atoms were included in the simulation,
which act as perfect traps for self-interstitial atoms and small self-interstitial clusters.

Figure 3(a) shows the total cluster concentration as a function of irradiation dose for the two
metals, copper (in red) and iron (in blue). Note that the total concentration is very similar for
both  metals.  However,  experimentally  it  is  well  known  that  the  cluster  concentration
measured with TEM in these materials is at least one order of magnitude lower in iron than in
copper [52]. If we analyze these results in more detail we can see that in copper most self-
interstitials and self-interstitial clusters disappear through recombination with vacancies or at
grain boundaries, and most of the damage is formed by vacancy clusters. This is significantly
different  in  the case of  iron where both self-interstitial  and vacancy clusters are present.
However, the size of these clusters are very different between the two materials, in copper
vacancy clusters with up to 30 defects are observed, as a consequence of the clustering
occurring in the collision cascade, while in iron the largest vacancy clusters have less than
15 defects. Self-interstitial clusters in iron are larger with sizes with up to 60 defects in a
cluster. 

The comparison with  TEM measured defect  densities  can only  be done considering the
threshold for visibility in these experiments. Using a threshold of 20 defects for vacancies in
copper, equivalent to a stacking-fault tetrahedra of ~1.5 nm, 350 vacancies for a 1nm void in
Fe and 50 self-interstitials for a 1 nm loop in Fe, we obtain the results of the visible cluster
concentration as a function of dose in copper and iron shown in figure 3 (b). Here, the one
order of magnitude difference between copper and iron observed experimentally is clearly
reviled.  

The results for  copper and their  dependence with the different  parameters in  the OKMC
model are clear. Moreover, the cluster concentration obtained matched remarkably well the
experimental  measurements  as  shown  in  [16].  Besides  the  cluster  concentration,  the
average number of vacancies in a cluster are also in agreement with experiment, ~28 (~2
nm) and constant with dose, showing that these defects are formed directly in the collision
cascade.  Therefore,  for  copper,  the  two  most  relevant  parameters  that  can  explain  the
experimental observations are (1) formation of vacancy clusters within the few picoseconds
time frame of the collision cascade (2) fast migration of self-interstitial clusters. For the case
of  iron,  however,  the  correlation  between  simulations  and  experiments  is  not  so
straightforward. On one hand, the lack of significant clustering within the collision cascade
implies that most of the evolution of the clusters and growth to sizes that can be observed
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experimentally is going to occur through defect diffusion and defect coalescence. And the
description of these interactions depends completely on the set of reactions that the user of
the OKMC model has decided to consider as the important ones. That is, there is not an
unambiguous description of defect evolution in Fe which is, in fact, the reason for much of
the controversy in the modeling of microstructure evolution of this material. This discussion,
however, is beyond the scope of this review paper.

4. Void swelling in f.c.c. and b.c.c. materials

The influence of initial damage structure on void swelling was also studied with an OKMC
model  [42,  53].  Void swelling is a phenomena observed mostly in austenitic  steels  while
ferritic steels seem to be more resistant to it [54]. This effect is due to, on one hand, the
stabilization of vacancy clusters by the presence of impurities, mostly helium, and the fast
migration of self-interstitials to sinks [55]. Therefore, in this case, it is necessary to include in
the OKMC model all the reactions between vacancies and self-interstitials with helium. This
results in a matrix that can expand really quickly since both the number of helium and the
number of vacancies in the cluster will increase as a mixed He-vacancy cluster. Therefore,
the values for  the binding energies of  defects to clusters of  type HenVm,  where n is  the
number of helium atoms in the cluster and m is the number of vacant sites, must be obtained
from  some  model,  either  from  static  calculations  with  empirical  potentials  or  from  first
principles  density  functional  theory.  The usual  procedure  in  this  case is  to  compute  the
binding energies  of  a few representative but  small  clusters using DFT and then use an
interatomic potential that has been validated with these results, to obtain the values for larger
clusters. In this example, the values for binding energies calculated by Adams and Wolfer
[56] were used. These were calculated using empirical potentials. In the calculations these
values are kept the same for all  simulations and only the source term, that is,  the initial
distribution of defects, is changed, using defect distributions from iron and copper cascades,
similar to the example in the previous section.

Calculations are performed for the same total dose (0.1 dpa) and for different temperatures.
For each cascade a Helium atom is introduced in the simulation, or a total of 1000 appm of
He  per  dpa.  The  number  of  vacancies  in  clusters  containing  He  are  counted  as  those
contributing to swelling. From this number and assuming a relaxation volume for a vacancy
in HenVm cluster to be 0.8  W  atomic volume we obtain the equivalent of a % of swelling.
Figure 4 shows the results obtained for the % of swelling as a function of temperature for the
same total  dose  and  for  two  different  initial  configurations  of  the  cascade  damage.  We
observe that when clusters are present in the collision cascade, a swelling dependence with
temperature very similar to that measured experimentally for f.c.c. materials [54], with a clear
swelling  peak.  Note  that  not  only  vacancy  clustering  is  necessary  to  produce  swelling.
Vacancy clustering is needed as the seed to nucleate HenVm clusters, however, in order to
have swelling an efficient removal of self-interstitials is required, which in this case occurs
due to the clustering of self-interstitials and their fast migration to sinks such as dislocations
or grain boundaries. These are, in fact, the main components of the ‘production bias’ model
described by Woo and Sing [55]  and based on the early results  of  molecular  dynamics
simulations of collision cascades in metals. 

In the case of cascade damage with small self-interstitial clusters and dispersed, isolated
vacancies, calculations show that swelling is very small (blue line in figure 4) in comparison
with the case described above where defects were mainly in clusters. This comparison is
done for the same total dose measured in dpa (displacements per atom), that is, for the



same number of defects produced in the irradiation. The green curve in this case includes
not only the vacancies in HenVm but also those in vacancy clusters without He, although no
significant differences are observed. Swelling only increases slightly with temperature in this
case, reproducing those results observed in b.c.c. materials such as iron [54]. The reason for
this difference is that now vacancies must first migrate and form clusters that serve as the
nuclei  for  HenVm bubbles or  voids.  But  many of  these vacancies will  recombine with the
nearby self-interstitial clusters which, even though they can also migrate, they are smaller
than  in  the  case  of  copper,  therefore  more  disperse  increasing  the  probability  of
recombination with vacancies. These vacancies can also diffuse to other sinks such as grain
boundaries or dislocations. In brief, the higher recombination between vacancies and self-
interstitials in a disperse collision cascade results in lower densities of nuclei for bubbles and
voids  and  consequently  lower  swelling.  As  mentioned  above,  these  results  can  only  be
qualitatively  compared  to  experiments  mainly  due  to  the  low  doses  reached  in  the
calculations compared to the existing measurements, as well as the lack of accurate enough
parameters for HenVm clusters. Despite the limitations, these simulations show that some of
the  features  observed  in  the  microstructure  evolution  of  irradiated  materials  are  directly
related  to  defect  distributions  produced  in  the  core  of  a  collision  cascade.  And this  link
between the picosecond time frame of molecular  dynamics simulations and experimental
observations can only be performed through the use of an OKMC model.

5.  Influence  of  the  interatomic  potential  on  collision  cascades  and microstructure
evolution: the case of Fe

The two cases described above involved a comparison between materials where the defect
damage distribution originated in the collision cascade is quite different in terms of clustering
of  vacancies  and  self-interstitials.  One  question  emerges  regarding  the  influence  of  the
interatomic  potential  selected  for  the  calculation  of  the  collision  cascade  on  the  later
evolution of the damage. Up to now, the results obtained from molecular dynamics on defect
distribution in the picosecond time frame can not be directly validated experimentally. Only,
as explained above, the evolution of this damage with the use of OKMC can be compared to
experiments. However, many other factors are then present in these simulations: migration
energies,  binding  energies,  reactions  between  defects  or  defect  capture  radius  among
others. On the other hand, it  is well  known that for the same material,  recoil  energy and
temperature,  different  interatomic  potentials  will  result  in  different  clustering  fractions  of
defects [57, 58], even though the total number of Frenkel pairs produced will be very similar.
This raises the question of how these differences will affect the long term damage evolution.
Are  those  differences  significant  enough  to  give  rise  to  a  difference  on  the  long  term
evolution  of  the  microstructure?  In  order  to  answer  this  question  we  performed  OKMC
calculations  where  all  parameters  regarding  migration  energies,  binding  energies,  defect
interactions and capture radius were kept the same and the only difference between the
calculations  were  the  database  of  cascades  used,  calculated  for  Fe  with  three  different
interatomic  potentials  and for  the  same energy (50 keV)  and recoil  conditions  [59].  The
database of cascades used in these calculations were obtained with the following interatomic
potentials: the one developed by Ackland, Mendelev and Srolovitz (AMS) [60], the one from
Dudarev and Derlet with short range potential fit by Björkas and Nordlund (DD-BN) [61] and
one developed by Müller, Erhart, and Albe with short range part by Björkas and Nordlund
(MEA-BN) [62].  All  three potentials produce, on average, very similar number of Frenkel-
pairs, however, the AMS potential gives rise to large self-interstitial clusters (more than 100
defects)  that  do  not  appear  in  the  other  two  potentials  within  the  statistics  of  these
calculations.  For  more details  see  ref.  [59].  Although  the number  of  large self-interstitial
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clusters  is  small,  it  is  interesting  to  see  how the presence  of  these clusters  affects  the
subsequent damage evolution.

Figure 5(a) shows the total number of clusters as a function of dose obtained for all three
potentials and the same conditions of irradiation (dose rate, temperature, concentration of
traps,  etc.)  showing  no  significant  difference.  However,  when  only  visible  clusters  are
considered,  that  is,  clusters  with  more  than  55  defects,  then  the  difference  in  damage
accumulation between the three potentials is clearly observed, as shown in figure 5(b). The
potential with the largest self-interstitial clusters formed in the collision cascade (AMS) has a
smaller slope for defect growth with dose but visible clusters appear at a lower dose than in
the case of the other two potentials that show a steeper slope.

These  results  show,  firstly,  the  importance  of  the  initial  defect  distribution  on  damage
evolution.  Even  if  the  probability  of  having  large  self-interstitial  clusters  is  small,  their
presence determines how the damage is going to grow under subsequent cascades and
over long periods of time. On the other hand, these results also provide a possible path for
validating  interatomic  potentials  in  terms  of  the  cluster  size  distribution  obtained  in  the
collision cascade. Experimentally, the slopes that are measured for cluster concentration as a
function of dose depends on the type of ion irradiation. In Fe, heavy ions give rise to a slope
close to 1, since large self-interstitial clusters are formed and therefore they can easily grow
to visible sizes,  while  irradiation with Fe ions results in higher slopes,  ~2,  meaning self-
interstitial clusters formed in the collision cascade are smaller and in order to become visible
coalescence  between  clusters  as  well  as  cluster  growth  due  to  diffusion  of  small  self-
interstitial  clusters  or  mono-interstitials  is  required  to  reach  sizes  visible  under  TEM.
However, experimentally slopes as large as 4 have not  been observed. This means that
some type of clustering must occur within the collision cascade and that the MEA interatomic
potential is not able to capture this behavior. 

It is important to point out that the validation of the interatomic potential in this manner is not
straight forward. As mentioned earlier, many other parameters are involved when looking at
microstructure evolution. This is particularly important in the case of Fe where clustering in
the collision cascade is generally small compared to other materials like W (see ref. [63]) or
Cu (see figure 2(a)). Therefore, in Fe the coalescence of self-interstitial clusters and growth
beyond the collision cascade phase is needed to reach those sizes observed experimentally.
And these processes are governed by the reactions between loops and defects mobilities
selected in  the OKMC model.  This  approach could,  in  fact,  be more successful  in  other
materials where clustering in the collision cascade is larger, and the subsequent interaction
among defects in the cascade does not play such as significant role as in Fe, like in the case
of copper mentioned in section 3 above, or tungsten for b.c.c. materials.

6. Beyond the standard OKMC models

Currently there is a wide interest on enhancing the capabilities and accuracy of kinetic
Monte Carlo models. On one hand, there is a considerable effort devoted to improve the
efficiency of  this  method so that  longer  times and larger system sizes can be modelled.
Nowadays, with the existence of supercomputers, parallelization would seem an obvious way
to improve performance of these calculations. Parallelization is relatively simple in an EKMC
or FPKMC algorithm. However, in the OKMC algorithm the total rate for all events in the
system must be computed at each time step. This means that all nodes must know of all
events  at  every time step,  therefore  making  the parallelization  very inefficient.  Recently,



Martinez et al. [64] have developed a synchronous parallel algorithm that, unlike previous
attempts, solves the same master equation as the serial algorithm. In this case, the total rate
of all events on each processor is kept fixed for all processors by including null events. A
different approach has been developed by Jimenez and Ortiz [65] making use of GPUs for
the parallelization of the OKMC algorithm.  

Another aspect in the improvement of the OKMC method is trying to find a way to avoid
the  arbitrary  selection  of  the  events  that  go  into  the  calculation.  One  of  the  great
advancements in this area is what is known as on-the-fly kinetic Monte Carlo. The basic idea
of this method is to compute the rates of the specific processes at the same time as the
kinetic  algorithm is  evolving.  That  is,  the  event  rates  are  not  tabulated before  the KMC
calculation starts. This is particularly important for those systems where the different type of
events are very large and it is not possible, a priori, to know or define every scenario. This is,
for example, the case of defect diffusion in alloys, in particular, in concentrated alloys, where
the rate of a particular reaction will  depend on the local environment. The methodologies
used  to  implement  an  on-the-fly  KMC  algorithm  differ  between  different  groups  and  is
adapted to the type of problem that needs to be solved.  Probably the first on-the-fly KMC
model is the one by Henkelman and Jónsson [66]. The authors use the dimer method [67] to
obtain the saddle points between different states and construct an event catalogue.  Stress-
assisted diffusion of hydrogen in iron has been studied [68] combining on-the-fly calculations
of barriers using empirical potentials with pre-calculated barriers with more accurate density
functional  theory.  For  other  examples  of  on-the-fly  KMC  see  references  [69-72].  One
promising  on-the-fly  method  is  the  one  developed  by  Xu  et  al  [73]  called  self-evolving
atomistic  kinetic  Monte  Carlo  (SEAKMC).  In  this  case,  longer  simulation  times  can  be
achieved by defining “active volumes” around the defect of interest [74, 75].  For the case of
defect  evolution  in  alloys  other  specific  methods  have  been  developed  to  produce  the
catalogue of transition rates in a more efficient way. One of those methods consists of using
artificial neural networks to predict the values of the energy barriers [76]. Another method
makes  use  of  the  phase  diagram  to  bias  defect  diffusion  and  considers  the  local
concentration to calculate the defect rates [77]. 

There are still challenges in the field of object kinetic Monte Carlo. Avoiding the ad hoc
selection of the processes to include in the calculations still remains an open question. And
probably one of the missing important components is taking into account in a general form
the elastic field interactions between defects, although some important advances are being
achieved as in the work of Mason et. al [78].    

7. Conclusions

In this review, after introducing the methodology behind object kinetic Monte Carlo, we have
shown  how  this  algorithm  can  be  used  to  study  microstructure  evolution  of  irradiated
materials.  The  OKMC  method  provides  a  connection  between  atomistic  simulations  of
migration energies, binding energies or defect distributions with experimentally meaningful
time and length scales, and therefore a way of validating these parameters or evaluating
their influence on microstructure evolution. In this respect, we have shown three examples of
how the picosecond time defect distribution, obtained from molecular dynamics simulations
of collision cascades, has an important impact on the microstructure evolution.

However, care must be taken when drawing conclusions from OKMC calculations as those
described here. In all these simulations there is always a selection from the part of the user
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of the reactions and mechanisms included in the calculations. A model will only be robust if,
with  the  same  input  parameters  regarding  defect  migration,  binding  energies  and
interactions, is able to reproduce different experimental conditions. Further improvements of
the OKMC algorithm to avoid this  ad hoc selection of reactions would be desirable. In this
respect, there are many efforts towards a more first principles based type of algorithm such
as the SEAKMC model developed at Oak Ridge National Laboratory [73-75] or those being
developed at CCFE  [78]. These models, however, are much more costly. If a connection to
experiments at high doses (several dpa) has to be established, then it is necessary to make
use of the OKMC approach described here with selected reactions. And these advanced
tools can help in the selection of the proper parameters and interactions.
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Tables:

Table I: Description of required input parameters for a standard calculation of defect evolution
in an irradiated material and possible methods and sources to obtain this input.

Input parameters required Possible sources/methods

Initial defect distribution CMD, BCA, random distribution

Capture radius CMD, DFT, Elasticity theory

Migration energies CMD, DFT

Dissociation energies CMD, DFT, Elasticity theory

Defect-defect interactions CDM, DFT, Elasticity theory
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Figure captions:

Figure 1: Schematic representation of an object kinetic Monte Carlo algorithm. 

Figure 2: Representative cascade damage produced by 30 keV recoil atoms in (a) copper
and (b) iron. Green spheres represent the location of the vacant sites while red ones are the
location of self-interstitials.

Figure 3: (a) Total cluster concentration as a function of dose for copper and iron (b) visible
cluster concentration.

Figure 4: Void swelling as calculated from the OKMC model as a function of temperature for
two different initial damage distributions, one with clusters as in an f.c.c. material such as
copper (red line) and one with mostly small clusters or isolated monovacancies and mono-
interstitials, like in the case of iron (blue and green curves). In the green curve, both the
vacancies in  clusters containing He and those without  are counted to obtained the void
swelling.

Figure 5: Cluster concentration in irradiated iron as a function of dose for calculations with
initial configurations of defects obtained with three different interatomic potentials (a) Total
cluster concentration (b) Visible cluster concentration.
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