
WPMAT-PR(17) 18181

PW Ma et al.

Dynamic Simulation of Structural Phase
Transitions in Magnetic Iron

Preprint of Paper to be submitted for publication in
Physical Review B

This work has been carried out within the framework of the EUROfusion Con-

sortium and has received funding from the Euratom research and training pro-

gramme 2014-2018 under grant agreement No 633053. The views and opinions

expressed herein do not necessarily reflect those of the European Commission.



This document is intended for publication in the open literature. It is made available on the clear under-
standing that it may not be further circulated and extracts or references may not be published prior to
publication of the original when applicable, or without the consent of the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EUROfu-
sion Programme Management Unit, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK or e-mail
Publications.Officer@euro-fusion.org

The contents of this preprint and all other EUROfusion Preprints, Reports and Conference Papers are
available to view online free at http://www.euro-fusionscipub.org. This site has full search facilities and
e-mail alert options. In the JET specific papers the diagrams contained within the PDFs on this site are
hyperlinked



Dynamic Simulation of Structural Phase Transitions in Magnetic Iron
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The occurrence of bcc-fcc (α-γ) and fcc-bcc (γ-δ) phase transitions in magnetic iron stems from
the interplay between magnetic excitations and lattice vibrations. However, this fact has never been
proven by a direct dynamic simulation, treating non-collinear magnetic fluctuations and dynamics
of atoms, and their coupling at a finite temperature. Starting from a large set of data generated
by ab initio simulations, we derive non-collinear magnetic many-body potentials for bcc and fcc
iron describing fluctuations in the vicinity of near perfect lattice positions. We then use spin-lattice
dynamics simulations to evaluate the difference between free energies of bcc and fcc phases, assessing
their relative stability within a unified dynamic picture. We find two intersections between the bcc
and fcc free energy curves, which correspond to α-γ bcc-fcc and γ-δ fcc-bcc phase transitions.
The maximum fcc-bcc free energy difference over the temperature interval between the two phase
transition points is 2 meV, in agreement with other experimental and theoretical estimates.

PACS numbers: 75.50.Bb, 75.10.Hk, 02.70.Ns,

I. INTRODUCTION

Pure iron undergoes bcc-fcc (α-γ) and fcc-bcc (γ-δ)
phase transitions at Tα−γ=1185K and Tγ−δ=1667K, re-
spectively. They occur in the temperature interval be-
tween the Curie temperature TC = 1043K and the melt-
ing temperature TM=1811K. These transitions have ex-
ceptionally significant practical implications as they are
responsible for the formation of martensite in steels, and
hence represent the most basic phenomena underpinning
steel manufacturing and modern metallurgy. It has long
been speculated that α-γ-δ phase transitions in iron stem
from the interplay between magnetic excitations and lat-
tice vibrations. Still, there is no explicit proof, derived
from a direct simulation, confirming this assertion. The
position is somewhat unsatisfactory as it leaves open the
fundamental question of whether, with modern materials
modelling concepts and algorithms, it is actually possible
to discover a magnetism-driven structural phase transi-
tion by exploring the dynamics of a discrete atomistic
model.
Hasegawa and Pettifor1 investigated the relative sta-

bility of bcc, fcc, and hcp phases of iron as a function
of temperature and pressure. They concluded that the
relative stability of phases was primarily determined by
the magnetic free energy contribution. Since they used
a single-site spin-fluctuation approximation, which is a
mean-field approach where the short-range magnetic or-
der (SRMO) is neglected, the predicted phase diagram
was rather qualitative than quantitative.
Recent experiments2, which explored phonon disper-

sion in iron at high temperatures, showed that the stabi-
lization of the high-temperature bcc δ phase is due pri-
marily to vibrational entropy, whereas the fcc γ phase
is stabilized by the fine balance between electronic and
vibrational entropy contributions. This agrees with cal-

culations performed using Monte Carlo Magnetic Cluster
Expansion (MCE)3,4. Although in the MCE the phonon
contribution to the free energy is derived from experi-
mental data, the MCE analysis shows that magnetic ex-
citations lower the free energy difference between the bcc
and fcc phases ∆F fcc−bcc, and stabilize the γ phase. The
bcc δ phase again becomes more stable at higher tem-
peratures, because the lattice vibrations part of the free
energy at high temperature is greater than the part as-
sociated with magnetic excitations.

Several recent studies of phase stability of iron are
based on ab initio calculations5–8 or the tight-binding
Stoner model6,7,9. Most of them explore phase stability
at 0K, since this is an intrinsic limitation associated with
density functional theory (DFT). Treating magnetism in
the framework of a tight-binding model is also not triv-
ial since the fully non-collinear version of the Hamilto-
nian, including both spin and orbital magnetism, has
been derived only recently10. In principle, the Coury
Hamiltonian10 should enable fully self-consistent non-
collinear magnetic dynamic simulations of atoms and
magnetic moments, treated at the electronic scale.

Several approaches have been developed to describe
finite-temperature magnetic excitations using ab initio
techniques, see Ref. 11 for a review. The disordered local
moments (DLM)12–15 approximation assumes randomly
distributed collinear up and down oriented magnetic mo-
ments, to imitate a fully magnetically disordered param-
agnetic (PM) state of a material. It has been applied to
modeling bcc-fcc12 and bcc-hcp15 transitions. To treat
temperatures lower than TC , where iron is in a partially
ordered ferromagnetic (FM) state, partial or uncompen-
sated DLM appromations13–15 were proposed, where the
net magnetization is constrained to a fixed value, match-
ing experimental observations. This approach reproduces
the elastic anisotropy of iron and Fe-Cr alloys13. How-
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ever, the notion of SRMO remains undefined as the DLM
approximation neglects magnetic non-collinearity.

Recently, Leonov et al.16–18 investigated the structural
stability of iron using a combination of DFT and dynam-
ical mean field theory (DMFT). The treatment involved
an explicit consideration of temperature-dependent elec-
tron correlations. In the DMFT formalism, excita-
tions associated with electron-electron interactions were
treated using a single-site mean-field approximation, and
neither collective magnetic excitations nor the SRMO
were taken into account.

SRMO can be treated in the random phase approxi-
mation (RPA) combined with rescaling19. This approach
was applied to evaluate magnetic, electronic and phonon
contributions to the free energy, and also to assess the
pressure dependence of TC

20 in iron. The treatment has
also been extended to quantum effects by rescaling the
available classical solutions21. However, the mean-field
nature of the approach gives rise to the predicted value of
TC to be higher than the observed value. An alternative
approach to modelling SRMO is the spin-wave method22.

SRMO can be simulated using ab initio spin dynam-
ics (SD)23–26 combined with constrained non-collinear
calculations27–32. However, this is a computationally
highly demanding approach, applicable only to relatively
small systems. A more practical way of treating SRMO
is by deriving parameters from ab intio data and per-
forming atomic scale SD33,34 or Monte Carlo3,4,35,36 sim-
ulations.

In the treatment of structural phase transitions, mag-
netic and phonon excitations, as well as coupling between
them, appear significant. Körmann et al. proposed a
spin space averaging procedure37,38 to evaluate effective
interatomic forces at a finite temperature by interpolat-
ing wave functions between the FM and PM states and
performing statistical averaging over many magnetic mi-
crostates. The procedure was applied to phonon spectra
and changes in the spectra due to magnon-phonon inter-
actions.

Conventional many-body interatomic potentials for
molecular dynamics (MD) treat only the atomic degrees
of freedom. Many of the potentials39–43 are fitted to ab

initio data at 0K. Although some were successful39 in
reproducing bcc, fcc, hcp phases at different tempera-
tures and pressures, they required adjusting the energies
of fcc and hcp structures to compensate for the absence
of an explicit treatment of magnetic effects. Improve-
ments in the functional forms of interatomic potentials
were proposed44–46, but they still did not include mag-
netic degrees of freedom explicitly, and did not treat mag-
netic thermal excitations.

There were partially successful attempts to incorpo-
rate magnetic states explicitly in MD. For example, Lian
et al.47 performed ab initio MD simulations to obtain
the phonon dispersion of γ and δ phases over a range of
temperatures. However, only the antiferromagnetic state
(AFM) was considered as representative of the PM state.
Alling et al.48 performed DLM+MD to study the effect

of atomic vibrations on magnetic properties. No equa-
tions of motion for magnetic moments were considered,
and the dynamics of magnetic excitations was modeled as
stochastic spin flips. This leads to conceptual difficulties
in the treatment of thermalization of atoms and spins.
In this study, we use spin-lattice dynamics (SLD)49,50

to study structural phase transitions in magnetic iron.
SLD treats the dynamics of lattice and magnetic sub-
systems within a unified framework. Lattice and spin
temperatures51 can be well controlled through Langevin
thermostats34,52,53. SLD also treats anharmonicity and
the coupling of lattice vibrations to magnetic excitations.
SLD is an efficient and versatile simulation approach, and
it has been recently applied to a variety of phenomena
including the anomalous self-diffusion in iron54,55, mag-
netic excitations in thin films56 and a broad range of
other magnetic phenomena57–60.
An assessment of structural phase stability requires the

evaluation of magnetic free energy, where the treatment
of SRMO is critically important22,38 to the quantitative
prediction of phase transition temperatures. The SRMO
is treated fully by SLD through the use of dynamic spin
equations of motion. In this work, interatomic interac-
tion parameters for SLD simulations are derived from ab
initio calculations, and are given in the form of a non-
collinear magnetic many-body potential. Using SLD sim-
ulations, we are able to evaluate contributions to the free
energy from lattice and spin excitations as functions of
temperature. By a direct simulation, we find α − γ and
γ − δ phase transitions, which manifest themselves as
changes of sign of ∆F fcc−bcc. The maximum free energy
difference between bcc and fcc phases over the tempera-
ture interval between the two phase transition points is
close to 2 meV.

II. FREE ENERGY CALCULATIONS

We used two complementary techniques to carry out
free energy calculations, the umbrella sampling and ther-
modynamic integration. Both methods are well estab-
lished but they have not yet been applied to the treat-
ment of phase transitions in magnetic systems. Brief
summaries of the techniques are given below. We also
describe our approach to the evaluation of the free en-
ergy of a harmonic oscillator and a Landau oscillator in
the classical limit, and outline our sampling procedure.
Since we only treat the classical limit, our results are

valid at temperatures that are sufficiently high, close to
or above approximately one-third of the characteristic
temperature for a particular subsystem, the Debye tem-
perature for lattice vibrations and the Curie or the Néel
temperature for magnetic excitations. Low temperatures
classical results are only given for completeness, and they
should not be treated as predictions. A quantum treat-
ment, not considered below, should be applied if one is
interested in the accurate low temperature values.
In lattice case, the average number of phonons in mode
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k, 〈nk〉, is given by the Planck distribution, where at
sufficiently high temperatures

〈nk〉+
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2
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)
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+
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≈ kBT
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+
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12
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+ ...

Taking as an estimate h̄ωk ∼ kBTD, we see that classi-
cal treatment applies at T ≥ TD/

√
12 ≈ TD/3.5. The

Debye temperature of iron is close to 470K. Therefore,
one can argue that the temperature range of validity of
classical molecular dynamics is defined by the condition
T > 135K. A broadly similar argument can also be ap-
plied to magnetic excitations, which we treat classically
at temperatures above approximately one third of TC or
TN .

A. Umbrella Sampling

Umbrella sampling61 is a biased sampling technique. It
is a re-weighting technique for evaluating the free energy
difference between a reference and a target state. It is
particularly useful for sampling metastable states.
We start by considering two classical Hamiltonians H0

and H1, and their difference:

δHum = H1 −H0. (1)

The ensemble average of an observable O with respect to
Hamiltonian H0 at a particular temperature T is:

〈O〉0 =

∫

O exp(−βH0)dΩ
∫

exp(−βH0)dΩ
(2)

where β = (kBT )
−1 and dΩ is an element of volume in

classical phase space, which in this instance has 9N di-
mensions, and includes position vectors of all the atoms,
their kinematic momenta, and vectors of all the atomic
magnetic moments. Substituting (1) into (2), we arrive
at:

〈O〉0 =
〈O exp(βδHum)〉1
〈exp(βδHum)〉1

. (3)

This formula recasts the calculation of an ensemble aver-
age of a classic observable O over the equilibrium defined
by HamiltonianH0 into calculations of ensemble averages
of O exp(βδHum) and exp(βδHum) over thermodynamic
equilibrium defined by another Hamiltonian H1.
This shows a way of evaluating the difference between

free energies associated with two classical Hamiltonians
H0 and H1. For example, the expression for the free
energy corresponding to Hamiltonian H0 can be written
as

F 0 = −kBT ln

∫

exp(−βH0)dΩ

= −kBT ln

∫

exp(−β(H0 −H1 +H1)dΩ

= −kBT ln

∫

exp(βδHum − βH1)dΩ

= −kBT ln

{[
∫

exp(βδHum − βH1)dΩ
∫

exp(−βH1)dΩ

]

×
∫

exp(−βH1)dΩ

}

= −kBT ln〈exp(βδHum)〉1 + F 1. (4)

Hence, the difference between free energies of two equi-
librium configurations defined by Hamiltonians H0 and
H1 is

δFum = F 1 − F 0

= kBT ln〈exp(βδHum)〉1 (5)

If one of the free energies F 1 is known, the other free
energy F 0 can be computed by sampling the phase space
with thermodynamic weights defined byH1, and no inde-
pendent averaging over thermodynamic equilibrium de-
fined by H0 is required.

B. Thermodynamic Integration

Another technique for evaluating the difference be-
tween free energies is the adiabatic switching thermo-
dynamic integration method62–64. For any two Hamilto-
nians H0 and H1, we can define a Hamiltonian that is a
linear combination

Hti(λ) = (1− λ)H0 + λH1, (6)

where λ is a switching parameter varying from 0 to 1.
The difference between Hamiltonians H1 and H0 equals
the derivative of Hti with respect to λ.

δHti = H1 −H0 =
∂Hti

∂λ
(7)

The free energy difference between the initial (λ = 0) and
final (λ = 1) states can be calculated as an integral over
the switching parameter, namely

δFti = F 1 − F 0 =

∫ 1

0

〈δHti〉λdλ. (8)

Brackets 〈...〉λ correspond to taking an ensemble aver-
age with respect to Hti(λ). We evaluate this average
using a dynamic simulation, by imposing the chain rule
dλ = (∂λ/∂t)dt and adopting a time-dependent switch-
ing function65:

λ(τ) = τ5(70τ4 − 315τ3 + 540τ2 − 420τ + 216) (9)

where τ = t/ttot, t is the elapsed time and ttot is the total
switching time. One can check that if t = 0 then λ = 0,
and if t = ttot then λ = 1.
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C. Harmonic oscillator and Landau oscillator

We use two reference states for free energy calculations.
A harmonic oscillator is used as a reference state for the
free energy of the lattice. A Landau oscillator is used as a
reference state for the treatment of magnetic excitations.
The Hamiltonian of a three-dimensional harmonic os-

cillator is

HHO =
p2

2m
+

1

2
mω2x2 + C, (10)

where p is the kinematic moment, x is the displacement,
ω is the frequency, m is the mass and C is a constant.
In the classical limit, the free energy can be evaluated
analytically as

FHO = −3kBT ln

(

kBT

h̄ω

)

+ C, (11)

where the Planck constant is introduced for dimensional
convenience. In what follows, we assume that ω equals
the Debye frequency of iron, h̄ω = kBTD, where TD =
470K.
The Landau spin Hamiltonian has the form

HLO = ALOS
2 +BLOS

4 (12)

where ALO and BLO are constants, and S is a dimension-
less spin vector. The free energy of magnetic excitations
in the Landau approximation can be written as

FLO = −kBT ln

(

4π

∫

∞

0

exp(−βHLO)S
2dS

)

(13)

where S is the magnitude of S. In this work, we choose
ALO = −1.184eV and BLO = 0.578eV to match the spec-
trum of longitudinal magnetic excitations34. The value
of FLO is then computed numerically at various temper-
atures.
Hamiltonians HHO and HLO defined above refer to an

individual atom and an individual spin. In the calcula-
tions below we will useHHO andHLO to represent all the
atoms and spins N , assuming that they are independent
of each other.

D. Sampling procedure - MD

In an MD simulation, we calculate the free energy using
the umbrella sampling. The full lattice Hamiltonian has
the form

Hl =
∑

i

p2
i

2m
+ U(R) (14)

where U(R) is the interatomic potential, R = {Ri} are
the coordinates of all the atoms, and p = {pi} are the
kinematic momenta.

The free energy of the lattice system can be computed
by using equation (4) and sampling over the thermody-
namic equilibrium of harmonic oscillators, namely

Fl = FHO − δFl, (15)

where

δFl = kBT ln〈exp(βδHl)〉HO , (16)

and δHl is defined as

δHl = HHO −Hl

=
∑

i

(

1

2
mω2x2

i + C

)

− U(R). (17)

Here xi is the displacement of atom i from its position in
the lattice R0

i , i.e. xi = Ri −R0
i . The value of constant

C is chosen to minimize the variation of δHl. A suitable
choice of C helps ensure the numerical stability of um-
brella sampling by eliminating large numerical values in
the argument of exponential function in Eq. (16).
Sampling is performed using dynamic Langevin ther-

mostat simulatons52,53 that generate the correct equilib-
rium energy distribution, assuming ergodicity. Langevin
equations of motion have the form

dRi

dt
=

pi

m
dpi

dt
= Fi − γl

pi

m
+ fi, (18)

where the regular component of the force acting on atom
i is

Fi = −∂HHO

∂Ri

. (19)

The damping constant γl and the fluctuating force fi are
related through the fluctuation-dissipation theorem52,53,
namely 〈fαi(t)fβj(t′)〉 = 2kBTγlδαβδijδ(t − t′), where
indexes α and β refer to Cartesian coordinates x, y, z.
By following the above procedure, we sample over ther-

modynamic equilibrium defined by the Einstein model
for a solid, where the lattice points are ordered as either
bcc or fcc lattices. A major advantage of umbrella sam-
pling is that it overcomes the difficulties associated with
sampling the spectra of excitations of an unstable struc-
ture. For example, the recently developed interatomic
potentials for iron40,41 predict a stable bcc phase. The
fcc phase is unstable, but since sampling is performed
over an equilibrium defined by suitably spatially ordered
harmonic oscillators, the fact that the crystal structure
is unstable has no effect on the stability of the numerical
procedure.

E. Sampling procedure - SLD

In a spin-lattice dynamic (SLD) simulation, we
adopted a two-step approach to free energy calculations.
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We use the umbrella sampling, which is followed by ther-
modynamic integration. We write the spin-lattice Hamil-
tonian as a sum of the lattice and spin parts,

Hsl = Hl +Hs (20)

where the spin part Hs = Hs(R,S) depends on atomic
coordinates R and atomic spin vectors S = {Si}. Since
we use various functional forms to represent the Hamilto-
nians, in what follows we discuss the choice of the specific
functional forms adopted in simulations.
First, we apply the umbrella sampling. We define an

auxiliary Hamiltonian,

HHO,s = HHO +Hs, (21)

which is a sum of the harmonic oscillators Hamiltonian
and the spin Hamiltonian. The difference between this
Hamiltonian and the exact Hamiltonian is

δHl = HHO,s −Hsl (22)

=
∑

i

(

1

2
mω2xi + C

)

− U(R) (23)

Notably, this expression is exactly the same as that in-
vestigated in the connection with the pure MD analysis.
Sampling can again be performed using Langevin ther-
mostat simulations. Since we now also need to take into
account magnetic fluctuations, the full set of equations
now includes equations of motion for the spins34:

dSi

dt
=

1

h̄
[Si ×Hi] + γsHi + ξi (24)

where the damping constant γs and the fluctuation spin
force ξi are related by the fluctuation-dissipation theo-
rem 〈ξαi(t)ξβj(t′)〉 = 2kBTγsδαβδijδ(t−t′). The effective
exchange field acting on spin i is

Hi = −∂HHO,s

∂Si

. (25)

Forces in (18) now depend on the orientation of atomic
spins

Fi = −∂HHO,s

∂Ri

. (26)

Similarly to the MD case, we evaluate the difference
between the free energies of an equilibrium configuration
defined by the spin-lattice Hamiltonian, and a configura-
tion defined by the auxiliary Hamiltonian

δFl = FHO,s − Fsl (27)

= kBT ln〈exp(βδHl)〉HO,s. (28)

As the second step, we perform thermodynamic inte-
gration. We define a reference Hamiltonian

HHO,LO = HHO +HLO, (29)

which is a sum of the harmonic oscillators Hamiltonian
and the Landau Hamiltonian. The difference between
the reference and the auxiliary Hamiltonians is

δHs = HHO,LO −HHO,s (30)

= HLO −Hs. (31)

The Hamiltonian required for carrying out thermody-
namic integration can be written as

Hti(λ) = HHO + (1 − λ)Hs + λHLO. (32)

Langevin equations of motion remain unchanged, but the
effective field and the force now depend on the integration
parameter λ, namely

Hi = −∂Hti(λ)

∂Si

, (33)

Fi = −∂Hti(λ)

∂Ri

. (34)

The free energy difference between the equilibrium states
defined by the auxiliary and reference Hamiltonians is

δFs = FHO,LO − FHO,s (35)

=

∫ 1

0

〈δHs〉λdλ. (36)

Combining the results derived using the umbrella sam-
pling and thermodynamic integration, we find the free
energy of the equilibrium configuration defined by the
spin-lattice Hamiltonian

Fsl = FHO,LO − δFl − δFs. (37)

We note that this free energy Fsl can be represented as
a sum

Fsl = Fl + Fs, (38)

where

Fl = FHO − δFl

Fs = FLO − δFs. (39)

The above expression has a clear meaning since Fl repre-
sents a part of the free energy associated primarily with
lattice excitations, whereas Fs is a part of the free en-
ergy derived primarily from spin fluctuations. Since the
spin and lattice degrees of freedom are coupled, and we
sample through an auxiliary step, it would be inaccu-
rate to interpret Fl and Fs as independent contributions
from the lattice and spin subsystems. However, the two
quantities still provide some qualitative insight into the
relative magnitude of contributions by the two coupled
subsystems to the total free energy.
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III. SIMULATIONS USING LITERATURE

PARAMETERIZATIONS

Using the methods described above, we performed MD
and SLD simulations, using parameters taken from liter-
ature. All the simulations were performed using our MD
and SLD program SPILADY66. We used cubic simula-
tion cells containing 16000 atoms in the bcc case and
16384 atoms in the fcc case. We explored temperatures
in the range from 1K to 1400K. For each temperature, we
simulated samples at nine different volumes close to an
assumed equilibrium volume. A third-order polynomial
was then fitted to the calculated free energies. The equi-
librium volume was determined from the minimum of the
polynomial. All the quantities that we describe below are
interpolations corresponding to the equilibrium volume.
The guessed equilibrium volume itself was computed us-
ing the same method, starting from a larger interval of
trial volumes.
In Fig. 1 the free energy computed using SLD simu-

lations is plotted as a function of volume of bcc crystal
structure for 300K and 1000K. The polynomial fit inter-
polates the data points fairly well, although fluctuations
are larger at higher temperatures, affecting the accuracy
of evaluation of the equilibrium lattice constant. The
dotted curves shown in blue indicate the standard devia-
tion of the fitted curve shown in red. It is evaluated using
the covariance matrix of the coefficients of the polyno-
mial. The free energy minimum remains accurate at the
sub-meV level, as illustrated by the scale of the y-axis.
All the simulation cells were thermalized to equilibrium

before sampling. In MD, we take 100,000 data points
when performing the umbrella sampling. In SLD, we take
200,000 data points for umbrella sampling, and 0.2ns as
the total switching time for the adiabatic switching ther-
modynamic integration. The Marinica iron potential40,41

was used for both MD and SLD simulations. SLD simula-
tions are based on the spin Hamiltonian of the form34,50:

Hs = −1

2

∑

i,j

Jij(Rij) (Si · Sj − |Si||Sj |)

+
∑

i

(

AiS
2
i +BiS

4
i

)

(40)

where Jij is the exchange coupling function, and Ai and
Bi are the Landau coefficients for atom i. The form ofHs

guarantees that the energy difference between bcc and fcc
structures at 0K is the same as in the non-magnetic MD
potential case.
We assume that Jij is a pairwise function that depends

only on the distance between atoms i and j. It has the
form Jij(r) = J0(1− r/rc)

3Θ(rc− r), where J0 = 0.92eV

and rc = 3.75Å. The value of J0 is slightly larger than the
one that we derived in Ref. 50 to match the experimental
value of the Curie temperature TC . Values of parameters
Ai = −0.744824 eV and Bi = 0.345295 eV are taken
from Ref. 34. We note that the ground state of this
Hamiltonian is ferromagnetic regardless of whether the
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FIG. 1: (Color online) Free energies of bcc iron computed
using spin-lattice dynamics for T = 300K and T = 1000K as
a function of volume. The fitted curve shown in red is a third-
order polynomial. The dotted curves shown in blue illustrate
the standard deviation of the fitted curve shown in red.

underlying crystal structure is bcc or fcc.

Fig. 2 shows equilibrium lattice constants as functions
of temperature, predicted by MD and SLD simulations.
Magnetic excitations enhance thermal expansion of both
bcc and fcc structures. The curves derived from SLD
simulations flatten in the vicinity of TC (Fig. 3). Fluc-
tuation of the curves result primarily from polynomial
fitting.

Since we use the same spin Hamiltonian for bcc and
fcc cases, they both adopt ferromagnetic ground states
at temperatures below TC . However, experimental data
for fcc iron indicate that it has a relatively low Néel tem-
perature TN of 67K67,68. Although the precise nature of
magnetic configuration at temperatures below TN is de-
batable, the net magnetization is zero. This differs from
our simulations, and we will address the issue in the fol-
lowing sections.

In Fig. 4, we plotted the free energy difference between
fcc and bcc phases as a function of temperature. We de-
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FIG. 2: (Color online) Equilibrium lattice constants of bcc
and fcc phases as functions of temperature, computed using
MD and SLD simulations.
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FIG. 3: (Color online) Magnetization as a function of tem-
perature, computed using SLD simulations.
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of the free energy at the equilibrium lattice constant.

fine ∆F fcc−bcc = F fcc−F bcc in such a way that when this
value is positive, bcc phase is stable and vice versa. In
MD, ∆F fcc−bcc is always positive and does not approach
zero when temperature increases. Interestingly, if we in-
clude magnetic excitations, then ∆F fcc−bcc decreases sig-

nificantly. We also show ∆F fcc−bcc
l = F fcc

l −F bcc
l on the

same graph, and ∆F fcc−bcc
s = F fcc

s − F bcc
s in the inset.

The free energy difference predicted by SLD simulations
largely originates from the spin subsystem, though it is
not sufficient to stabilize the fcc phase at high tempera-
ture. We also note that the derivative of ∆F fcc−bcc

s with
respect to temperature is small near the Curie temper-
ature TC of the bcc phase. Standard deviations of the
calculated free energies are also shown, which are all in
the sub-meV level.
Although we find that the magnitude of the magnetic

part of the free energy is significant, we see that param-
eters taken from literature have no chance of success in
predicting the bcc-fcc phase transition. The main defi-
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ciency of existing parameterizations is that the effective
interatomic potentials were all fitted without consider-
ing magnetic excitations. Even if we add a spin part
to the Hamiltonian in an ad-hoc manner, this still does
not fully account for the free energy contribution from
the spin system. A better approach to deriving parame-
ters for spin-lattice dynamics simulations is necessary to
model magnetic iron on the atomic scale.

IV. PARAMETRIZATION

In what follows, we present a new derivation of param-
eters for spin-lattice dynamics simulations of bcc and fcc
iron. We start by fitting a non-magnetic iron potential,
and augment it by the Heisenberg-Landau Hamiltonian.

A. Non-magnetic iron potential

We fitted a non-magnetic iron potential using an in-
teratomic potential fitting program potfit69–71. It fits a
many-body potential to a user-defined functional form.
Parameters of the potential are fitted using the force
matching method72, using the total energy and forces
taken from ab initio data. All of our ab initio calcu-
lations were performed using VASP73–76. We use the
GGA-PBE77,78 pseudo-potential with 14 valence elec-
trons. The plane wave energy cutoff is 450 eV.

We first generate ab initio data for the non-magnetic
iron. The structures include perfect bcc and fcc lattices,
and simulation cells with distortions such as rhombohe-
dral and tetragonal shape, at various volumes. We also
produced ab initio data for amorphous structures and
structures containing defects. The functional form and
parameters of the fitted potential are given in Appendix.
Since we are only interested in the energy and free en-
ergy differences between bcc and fcc structures, we are
not going to discuss other features of our non-magnetic
iron potential here.

Fig. 5 shows ab initio energies of non-magnetic bcc and
fcc phases at various lattice constants. The minimum en-
ergy of the fcc phase is 0.312eV lower than the minimum
energy of the bcc phase, in agreement with data from
Ref. 5. Fcc structure is more stable when magnetism
is not taken into account. The curves computed using
non-magnetic potential appear similar, and the energy
difference is 0.317eV. The difference between the abso-
lute values of ab initio data and non-magnetic potential
data is due to the different choice of the reference points.
Since we take the cutoff distance of the potential as 5.3Å,
the energies of all the ab initio data points are reduced by
the energy of a perfect bcc structure with lattice constant
a = 5.3× 2/

√
3 = 6.1199Å, where the nearest neighbour

distance is 5.3Å. Interatomic forces remain unaffected by
this procedure.
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FIG. 5: (Color online) Energy per atom for non-magnetic
bcc and fcc structures calculated using VASP and the fitted
non-magnetic interatomic potential.

B. Magnetic contributions

Fig. 6 shows VASP data for the energy of magnetic
bcc and fcc phases at various lattice constants. In the
bcc case, we only show the data for the FM collinear
ground state. In the fcc case, there are a number of mag-
netic configurations that all have comparable energies.
We show ab initio data for the FM, AFM, and double
layer AFM (DLAFM) magnetic configurations. If we im-
pose a constraint and consider only the collinear mag-
netic configurations, the DLAFM state has the lowest
energy. This also agrees with ab initio results given in
Ref. 5.

The energy of the FM bcc phase is now 0.11eV lower
than that of the DLAFM fcc phase. We now need to find
a way of describing magnetic excitations using a mag-
netic Hamiltonian added to the non-magnetic Hamilto-
nian. This magnetic Hamiltonian should also describe
interactions between magnetic moments that are not ex-
plicitly evident from the VASP data.
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FIG. 6: (Color online) Energies of ferromagnetic bcc struc-
ture, and ferromagnetic (high spin and low spin), single layer
anti-ferromagnetic, and double layers anti-ferromagnetic fcc
structures calculated using VASP.

There are various ways to describe interactions be-
tween magnetic moments. One can use the spin spi-
ral method79 or spin-cluster expansion method80. We
choose the spin Hamiltonian in the Heisenberg-Landau
form3,4,34,

Hs = −1

2

∑

i,j

Jij(Rij)Mi ·Mj

+
∑

i

(

A(ρi)M
2
i +B(ρi)M

4
i

)

(41)

where M = −gµBSi is the magnetic moment of atom
i, g = 2.0023 is the electron g−factor, µB is the Bohr
magneton, A(ρi) and B(ρi) are the Landau coefficients
that depend on the effective electron density ρi. This
is the same ρi that enters the non-magnetic interatomic
potential.
The first step is to calculate values of Jij from the low-

est energy state of bcc and fcc phases. The exchange
coupling functions are calculated using ab initio elec-
tronic structure multiple-scattering formalism. We use
the method and program developed by van Schilfgaarde
et al.81,82. It is based on the linear muffin-tin orbital ap-
proximation combined with Green’s function technique
(LMTO-GF). We calculated values of parameters Jij in-
volving various neighbours over a range of variation of
the lattice constant. Fig. 7 shows the calculated values
and the fitted curves. Ab initio data for the bcc case are
smoother, whereas the data for the fcc cases are more
scattered. A possible reason is that magnetic configura-
tion of collinear FM state in the bcc phase is fundamen-
tally simpler than the DLAFM state of the fcc phase. To
match the data, we used different functional forms for
the bcc and fcc cases. The functional forms and values
of parameters are given in Appendix.
We now evaluate the Landau coefficients. We define a
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FIG. 7: (Color online) Exchange coupling Jij for the ferro-
magnetic bcc and double layers anti-ferromagnetic fcc struc-
tures calculated using the LMTO-GF method, and the fitting
functions.
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FIG. 9: (Color online) Magnitude of magnetic moments
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mangetic fcc structures.

temporary Hamiltonian with no magnetic moment inter-
actions, assuming that on-site magnetic moments can be
treated as order parameters, i.e.

H′

s =
∑

i

(

A′M2
i +B′M4

i

)

. (42)

Since we know the difference between energies of mag-
netic and non-magnetic configurations (Fig. 8), and also
the magnitude of magnetic moments on each atoms (Fig.
9) as functions of lattice constant, we can identify the en-
ergy difference per atom and the magnitude of magnetic
moment as

∆E = A′M2
0 +B′M4

0 (43)

M0 =
√

−A′/2B′ 6= 0, (44)

or M0 = 0 if the non-magnetic state is more stable. We
obtain values of A′ and B′ at various lattice constants by
solving the above equations.
We now need to relate the values of the Landau pa-

rameters to the values of parameters characterizing the
Hamiltonian that describes interacting magnetic mo-
ments. We equate Eq. 41 and 42, and find

AM2
i = A′M2

i +
1

2

∑

j

JijMi ·Mj (45)

B = B′. (46)

Using the fitted function Jij and considering magnetic
configurations of perfect crystals, we find the values of
Landau coefficients A and B. These coefficients are plot-
ted as functions of the effective electron density ρi for
perfect crystals (Fig. 10 and 11). Again, we use different
functional forms for fitting results for bcc and fcc cases,
to match various features of the curves. The functional
forms and numerical parameters are given in Appendix.
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FIG. 10: (Color online) Landau coefficients A and B as func-
tions of the effective electron density ρ for bcc structures.

The strong scatter of values for B(ρi) is due to the small
value of M0 corresponding to the small size of the simu-
lation box.
Using the above procedure, we generated several sets

of parameters, which were derived using different meth-
ods and have various functional forms. The parameters
that have been selected are those that match experimen-
tal results well. Although all of the parameters produce
qualitatively similar predictions, Landau coefficients may
need to be adjusted through the choice of fitting intervals
to achieve sub-meV accuracy of free energy calculations.
In all cases, ab initio data provide the foundation for the
fitting procedure.

V. STRUCTURAL PHASE TRANSITIONS

We calculated the free energies of bcc and fcc phases
using the above new sets of parameters. We performed
both MD and SLD simulations. In MD, we used the
non-magnetic potential, and performed umbrella sam-
pling calculations with 100,000 data points. In SLD, we
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FIG. 11: (Color online) Landau coefficients A and B as func-
tions of effective electron density ρ for fcc structures.

used the non-magnetic potential with Heisenberg-Landau
Hamiltonian, and used the two step approach in the free
energy calculations. We took 300,000 data points for um-
brella sampling, and 0.2ns as the total switching time in
the adiabatic switching thermodynamic integration. The
magnetic configuration of bcc and fcc cases are initialized
as FM and DLAFM states, respectively. We explored a
large temperature range from 1 × 10−5K to 2000K. All
that samples are thermalized to equilibrium before sam-
pling.
The most significant results of this paper are illustrated

in Fig. 12 and 13. Fig. 12 shows the calculated free en-
ergies of bcc and fcc phases at the equilibrium volume.
In the MD case, the free energy of the fcc phase is always
lower than the free energy of the bcc phase. In SLD, the
bcc phase has lower free energy initially, but the curves
corresponding to bcc and fcc phases approach each other
at higher temperature. There are two intersections be-
tween the curves, which can be seen if one follows the dif-
ference ∆F fcc−bcc plotted in Fig. 13. The curve crosses
the zero line at around 1130K and 1600K. These tem-
peratures are close to the experimentally observed values
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FIG. 12: (Color online) Free energy of bcc and fcc phases
as functions of temperature. Both MD and SLD results are
shown.
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FIG. 13: (Color online) Difference between free energies of
bcc and fcc phases plotted as a function of temperature, where
both magnetic excitations and lattice vibrations are included.
Calculations are performed using a non-magnetic potential
combined with the Heisenberg-Landau Hamiltonian. The in-
set shows a magnified part of the same figure.

of α-γ and γ-δ phase transitions at Tα−γ=1185K and
Tγ−δ=1667K, respectively. The free energy difference at
the minimum is close to 2meV. This value agrees with
the MCE3,4 and RPA11 results, and shows that α−γ− δ
transitions are associated with fairly small free energy
differences between the competing phases, of the order
of 1 meV.
The reason for the difference between MD and SLD

simulations may be understood by considering free en-
ergy contributions from magnetic excitations and lat-

tice vibrations. Fig. 14 shows plots of ∆F fcc−bcc
l and

∆F fcc−bcc
s as functions of temperature. For compari-

son, we also plotted ∆F fcc−bcc
MD calculated using the non-



12

���DfD���
���DfD���
��DfD��

�
	


D

�

	
�


D�
��
�

	

�
�

Dn

�

g

�Vc.

�Vc−

V

Vc−

Vc.

Vc2

�
��
	�� 	
Dn!
"#��g

V 4VV )VVV )4VV −VVV

��
���

�
��
SV


��
)

T

T2Tu

T2p

T2pu

T2r

T2ru

T2a

��
��������SV������)

T uTT pTTT puTT rTTT

FIG. 14: (Color online) (a) Lattice and spin contributions to
the free energy difference between bcc and fcc structures. (b)
The standard deviation of the free energy at the equilibrium
lattice constant.

magnetic potential. The value of ∆F fcc−bcc
l is similar

to ∆F fcc−bcc
MD . Both of them increase relatively linear as

functions of temperature. On the other hand, ∆F fcc−bcc
s

decreases initially but flattens out near the Curie tem-
perature TC of the bcc phase. Hence the change of
∆F fcc−bcc

s is mainly due to the difference in the degree
of disorder associated with magnetic configurations in-
volved. If the temperature is higher than TC , the bcc
phase is in the paramagnetic state, where the long range
magnetic order vanishes. Magnetic configurations of fcc
and bcc phases become similar, making the entropy dif-
ference smaller. This interpretation is consistent with
recent experimental findings2 on phonon dispersion of
iron. Experimental data suggest that the γ phase forms
as a result of interplay between electronic and vibrational
contributions to entropy, whereas the δ phase is due pri-
marily to the contribution of vibrational entropy. The
two crossing points result from the interplay between free
energy contributions derived from lattice and spin excita-
tions. The standard deviation of the free energy remains
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FIG. 15: (Color online) Magnetization as a function of
temperature computed using SLD simulations and the
non-magnetic potential supplemented with the Heisenberg-
Landau Hamiltonian.

in the sub-meV level.

The magnetization curve of iron is plotted in Fig. 15.
For the bcc phase, the existing model predicts a rela-
tively high Curie temperature at around 1300K. For the
fcc case, the predicted magnetization is zero. We in-
vestigated the Néel temperature TN of the fcc phase by
changing the value of energy per atom as a function of
temperature (Fig. 16). We thermalized two simulation
cells to 165K and 205K. Then, we gradually increased the
temperature of the simulation cell equilibrated at 165K to
205K. This was performed by increasing the thermostat
temperature linearly over the time interval of 4 ns. Then,
we decrease the temperature of the simulation cell equi-
librated at 205K to 165K. We filtered the output data by
averaging over every 1000 data points. We see that the
magnetic subsystem undergoes a first order transition at
around 185K. A jump of about 0.01 eV in the magnetic
energy can be observed. The change of the total en-
ergy is fully accounted for by the magnetic energy. The
calculated TN is higher than the experimental value of
67K. However, such value is obtained from experiments
on small particles67,68 where the role of local stresses is
unclear. Besides, the temperatures of the α−γ and γ−δ
phase transitions are significantly higher than TN .

We also show equilibrium lattice constants of bcc and
fcc phases predicted by MD and SLD simulations in Fig.
17. The addition of the spin Hamiltonian changes the
value of the equilibrium lattice constant even at 0K. Fun-
damentally, this agrees with ab initio data shown in Fig.
5 and 6. The spin subsystem of the material affects me-
chanic properties through its contribution to the total
free energy.
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VI. CONCLUSIONS

Starting from a large amount of ab initio data, we fit-
ted non-magnetic many-body potentials and Heisenberg-
Landau Hamiltonians for bcc and fcc iron. We per-
formed free energy calculations using umbrella sampling
and thermodynamics integration. The free energy has
been sampled by molecular dynamics and spin-lattice dy-
namics simulations. Our method provides a reasonably
consistent way of assessing the phase stability of mag-
netic iron within a unified dynamic picture. It treats both
magnetic excitations and lattice vibrations and their cou-
pling self-consistently. The bcc-fcc (α-γ) and fcc-bcc (γ-
δ) phase transitions in magnetic iron are reproduced us-
ing newly fitted potential and parameters. The struc-
tural phase stability of magnetic iron is governed by non-
collinear magnetic excitations and lattice vibrations, in
agreement with other experimental and theoretical re-
sults. The maximum free energy difference between bcc
and fcc phases is about 2 meV.
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FIG. 17: (Color online) Equilibrium lattice constants of bcc
and fcc phases as functions of temperature, computed using
MD and SLD simulations using new potentials and parame-
ters.

APPENDIX A: NON-MAGNETIC IRON

POTENTIAL

The functional form of the interatomic potential
broadly follows the conventional embedded atom method
(EAM) representation

U (R1,R2, ...) =
∑

i

F (ρi) +
1

2

∑

i,j

Vij (Rij) , (A1)

where Ri is the position of atom i, ρi is the effective elec-
tron density and Vij is a pairwise function that depends
only on the distance between atoms i and j. The many-
body part of the potential takes the same form as that
proposed by Mendelev et al.83 and Ackland et al.84

F (ρi) = −√
ρi + φρ2i (A2)

where φ is a parameter. The effective electron density ρi
is defined in a slightly different way from the conventional
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φ −4.483075702293698016e − 04

rt0 2.0000000000000000e + 00

rt1 2.2000000000000000e + 00

rt2 2.6000000000000000e + 00

rt3 3.2000000000000000e + 00

rt4 3.8000000000000000e + 00

rt5 4.6000000000000000e + 00

rt6 5.3000000000000000e + 00

t0 2.5999782982854347e + 00

t1 2.9319480072508499e + 00

t2 −2.8388905185188360e + 00

t3 −1.0267419494754382e − 01

t4 1.5484736035888333e − 02

t5 −7.2805743511785065e − 02

t6 −3.6343523861565924e − 03

rV0 2.3254531341916498e + 00

rV1 2.3889005055990276e + 00

rV2 2.5614990650026459e + 00

rV3 2.5615004425308658e + 00

rV4 2.8344513929093051e + 00

rV5 2.8321879787700808e + 00

rV6 2.6382534884695783e + 00

rV7 3.4262631740080707e + 00

rV8 3.8479639767860356e + 00

rV9 3.8515517885908994e + 00

rV10 4.3740210397021579e + 00

rV11 4.4054035197078845e + 00

rV12 4.5503412747697087e + 00

rV13 4.7731075757035732e + 00

rV14 5.3000000000000000e + 00

V0 2.2831054190426084e + 01

V1 −2.1062362139531867e + 01

V2 5.6190823955741749e + 00

V3 8.0795758060570382e + 00

V4 −8.5213153270399573e + 01

V5 9.0355710040623180e + 01

V6 −8.3613137262443793e + 00

V7 −3.4250845501053456e − 01

V8 5.2035042290453923e + 01

V9 −5.1583785613198948e + 01

V10 4.0569674844835752e + 00

V11 −5.0779874829818361e + 00

V12 1.7323802861372730e + 00

V13 −3.5971267571846299e − 01

V14 −1.1478647839739256e − 01

TABLE I: Parameters of the non-magnetic iron potential.

bcc

J0 1.7613094778950000e − 01

rcut 5.3000000000000000e + 00

a0 −2.3827723674043900e − 01

a1 1.2945703172205700e − 02

a2 −1.1518969922985000e − 04

b0 1.0600315078586900e − 02

b1 1.6104913287021000e − 03

b2 −4.3178188078544200e − 05

fcc

J0 1.1095507874951400e − 01

rcut 5.3000000000000000e + 00

b 1.6502332463388100e + 00

c −4.1373722623161200e + 00

a0 3.1803486683085200e − 01

a1 6.0141682907976200e − 02

ρa 2.2852502987397700e + 01

b0 1.4290243674270400e − 02

b1 0.0000000000000000e + 00

ρb 3.2563330708156800e + 01

TABLE II: Parameters for exchange coupling and Landau co-
efficients

EAM potential. We write

ρi =
∑

j

t2ij (A3)

where tij = tij(Rij) is a pairwise hopping integral, which
we take a function of the distance between the atoms Rij .
We note that the derivative of ρi with respect to Rij is

∂ρi
∂Rij

= 2tij
∂tij
∂Rij

. (A4)

tij and Vij are given by the third-order splines

tij(x) =
∑

n

tn(r
t
n − x)3Θ(rtn − x) (A5)

Vij(x) =
∑

n

Vn(r
V
n − x)3Θ(rVn − x) (A6)

where n are knots, tn, Vn are parameters with dimen-
sionality eVÅ−3, and rtn and rVn are given in Å units.
Their values are given in Table I.

APPENDIX B: EXCHANGE COUPLING AND

LANDAU COEFFICIENTS

The exchange coupling function and Landau coeffi-
cients, expressed as functions of electron density, have
different functional forms for bcc and fcc cases. In the
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bcc case, we use the following form

Jij(rij) = J0(1− rij/rcut)
5, (B1)

A(ρi) = a0 + a1ρi + a2ρ
2
i , (B2)

B(ρi) = b0 + b1ρi + b2ρ
2
i . (B3)

In the fcc case, we take

Jij(rij) = J0 sin(brij + c)(1 − rij/rcut)
3, (B4)

A(ρi) = a0(1− ρi/ρa)
3 + a1, (B5)

B(ρi) = b0(1− ρi/ρb)
3 + b1. (B6)

The units of Jij , A and B are eVµ−2
B , eVµ−2

B and eVµ−4
B ,

respectively. The cutoff distance rcut is in Å units. All
the parameters are listed in Table II.

ACKNOWLEDGMENTS

This work has been carried out within the frame-
work of the EUROfusion Consortium and has received
funding from the Euratom research and training pro-
gramme 2014-2018 under grant agreement No 633053
and from the RCUK Energy Programme [grant number
EP/P012450/1]. To obtain further information on the
data and models underlying this paper please contact
PublicationsManager@ccfe.ac.uk*. The views and opin-
ions expressed herein do not necessarily reflect those of
the European Commission. We also acknowledge EU-
ROFusion for the provision of Marconi supercomputer
facility at CINECA in Italy. The authors are grateful to
M.-C. Marinica for stimulating discussions.

∗ Electronic address: Leo.Ma@ukaea.uk
1 H. Hasegawa and D. G. Pettifor, Phys. Rev. Lett. 50, 130
(1983)

2 J. Neuhaus, M. Leitner, K. Nicolaus, W. Petry, B. Hennion
and A. Hiess, Phys. Rev. B 89, 184302 (2014)

3 M. Yu. Lavrentiev, D. Nguyen-Manh, and S. L. Dudarev,
Comp. Mater. Sci. 49, S199 (2010)

4 M. Yu. Lavrentiev, D. Nguyen-Manh, and S. L. Dudarev,
Phys. Rev. B 81, 184202 (2010)

5 H. C. Herper, E. Hoffmann, and P. Entel, Phys. Rev. B
60, 3839 (1999)

6 R. Soulairol, C.-C. Fu and C. Barreteau, J. Phys.: Con-
dens. Matter 22, 295502 (2010)

7 D. Nguyen-Manh and S. L. Dudarev, Phys. Rev. B 80,
104440 (2009)

8 S. Alnemrat, J. P. Hooper, I. Vasiliev and B. Kiefer, J.
Phys.: Condens. Matter 26, 046001 (2014)

9 G. Autés, C. Barreteau, D. Spanjaard and M.-C.
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11 F. Körmann, T. Hickel and J. Neugebauer, Current Opin-
ion in Solid State and Materials Science 20, 77 (2016)

12 S. V. Okatov, A. R. Kuznetsov, Yu. N. Gornostyrev, V. N.
Urtsev and Mi. I. Katsnelson, Phys. Rev. B. 79, 094111
(2009)

13 V. I. Razumovskiy, A. V. Ruban and P. A. Korzhavyi,
Phys. Rev. Lett. 107, 205504 (2011)

14 S. Polesya, S. Mankovsky, D. Ködderitzsch, J. Minár and
H. Ebert, Phys. Rev. B 93, 024423 (2016)

15 S. Mankovsky, S. Polesya, H. Ebert, W. Bensch, O.
Mathon, S. Pascarelli and J. Minár, Phys. Rev. B 88,
184108 (2013)

16 I. Leonov, A. I. Poteryaev, V. I. Anisimov and D. Voll-
hardt, Phys. Rev. Lett. 106, 106405 (2011)

17 I. Leonov, A. I. Poteryaev, V. I. Anisimov and D. Voll-
hardt, Phys. Rev. B 85, 020401 (2012)

18 I. Leonov, A. I. Poteryaev, Yu. N. Gornostyrev, A. I. Licht-
enstein, M. I. Katsnelson, V. I. Anisimov and D. Vollhardt,
Sci. Rep. 4, 5585 (2014)
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