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Abstract

Recently we have presented direct experimental evidence for large defect clus-
ters being formed in primary damage cascades in self-ion irradiated tungsten
[Yi et al, EPL 110:36001 (2015)]. This large size is significant, as it implies
strong elastic interaction between the defects will affect their subsequent evo-
lution, especially if defects are formed close together. In this work we propose
and validate a simple exponential form for the spatial distribution of defects
within a single cascade. The cascade statistics necessary have been acquired by
developing an automated procedure for analyzing black-dot damage on trans-
mission electron microscope micrographs. We confirm that the same model also
produces a high-quality fit to the separation between larger defects observed
in MD simulations. For the first time we present experimental evidence for
the sub-nanometre-scale spatial distribution of defect clusters within individual
cascades.

Keywords: irradiation damage, electron microscopy, defect clusters, spatial
correlation

1. Introduction

Microstructural evolution of tungsten under irradiation has attracted sig-
nificant attention since tungsten has been chosen as a plasma facing material
for ITER [1]. Tungsten is a brittle metal, particularly prone to brittle fail-
ure at grain boundaries, and its thermomechanical properties only worsen on
exposure to irradiation [2, 3, 4]. Understanding engineering properties is an
inherently multiscale challenge, from the electrons in the bonds between atoms
to the movement of dislocations, so it is essential that high-quality information
is passed from one scale to the next[5]. As each primary damage cascade is
different, whether initiated by a high energy neutron in a reactor or by a high
energy ion in the lab, this information must have a solid statistical underpin-
ning: rare events which may dominate microstructural evolution are unlikely to
be captured in a small molecular dynamics (MD) database.
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Previously we have observed the average number of defect clusters formed di-
rectly in collision cascades, and containing n point defects, is well represented by
a power-law f(n) ∼ A/nS , both in MD[6, 7] and experiment[8], and accounted
for the deviation from power-law behaviour at large sizes[9]. An important point
noted in these papers is that large defect clusters are statistically significant,
and we have shown that large interstitial loops interact strongly via their elastic
fields[10]. We have not previously been able to find a good model for exactly
how closely together defects are produced. This paper addresses this spatial
separation problem directly, by analyzing images of ultra-high-purity tungsten
foils irradiated with tungsten self-ions in a cryogenic in situ transmission elec-
tron microscope (TEM).

To enable the fitting of spatial distribution functions, our model for the
production of defects visible in the TEM is highly idealized and simplified.
This is necessary as a state-of-the-art object Kinetic Monte Carlo model[11, 12]
would require thousands of independent simulation runs to judge the quality of
each trial fit[10]. We assume that the visible defects are 1/2〈111〉 interstitial-
type loops[13, 10, 8]. We further assume these defects are mobile- even at
30K- and move in one-dimension on their glide cylinders. As skew cylinders
rarely intersect, there is no appreciable growth of clusters after generation[9].
Vacancy motion and self-climb will be inactive at this temperature[14]. The
defect clusters may in reality be pinned by vacancy clusters, impurity atoms, or
other sessile atomic configurations; we simplify by stating that a one-dimensional
migrating loop is unlikely to hit a pinning site in our ultra-high-purity foil
sample[10]. Loop retention is therefore considered to be solely a result of mutual
elastic trapping of loops on skew glide cylinders[15, 10, 9]

We show that the probability of a defect cluster produced a distance r from
the centre of a cascade is given by p(r) ∼ exp(−r/λ). We find that there is
some evidence, from comparison of MD simulation results to electron microscope
images of cascade defects, that larger loops may be produced closer to the centre
of the cascade, but are unable to quantify this effect.

In section 2 we describe MD simulations and in situ TEM experiments and
generate pair radial distribution functions for the observed distance between
pairs of defects. To generate statistics for the spatial separation between defects
produced in single cascades, we have analysed many thousands of spots on
micrographs. To do this reliably and reproducibly, we have automated the
analysis of micrographs. In section 3 we outline the mathematical formalism for
parameterizing a functional form for the generation of defects, which reproduces
these radial distribution functions. Finally in section 4 we compare the spatial
generation of defects as found in MD and experiment, and comment on the
significance for subsequent microstructural evolution.

2. Generating radial distribution functions with in situ TEM and
MD

2.1. TEM

In situ irradiations were performed at the IVEM-Tandem Facility at Argonne
National Laboratory. 3mm discs were cut from tungsten sheets (Plansee Ultra-
High Purity-W (UHP-W), > 99.996 wt% pure), heat-treated in vacuum at 1673
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K for 20 hours, and finally twin-jet electropolished with 0.5wt% NaOH aqueous
solution to reach TEM transparency thickness (.100nm). The average grain size
after treatment was 10µm, and very few dislocations were observed to remain.
The samples were cooled to 30K, and (001) grains were irradiated with tungsten
ions, at an incidence angle 15◦ off normal. Ion energies were 50, 150, 300, 400keV
up to 1.25× 1016W+/m2.

Each foil region was imaged in weak-beam dark-field conditions, using (g
=200, 4.25g; g =200, 4.75g; g =200, 5.25g; g =110, 5.25g; g =110, 7.25g; and
g =110, 7.75g). Regions were superimposed using the convergent weak beam
technique of Prokhodtseva et al. [16], and then analysed with the technique
described below. A summary of the areas studied and number of spots counted
in each is given in table 2.

We automate the analysis of the micrographs with a new algorithm developed
from the method described in ref [8]. The algorithm has two parts: first the
background fluctuations are removed, then the features ( which in this case are
small bright spots ) fitted to 2d Gaussian profiles. A brief description is given
in appendix Appendix A; a full description and comparison to other techniques
is beyond the scope of this article.

2.2. MD

Individual collision cascades from recoils in bulk, and from ions incident
on a foil, were simulated with the classical molecular dynamics code PARCAS
[17, 18, 19, 20]. The simulation method is detailed in [7], and specifics of the
foil irradiation simulations are given in [8]. Briefly, cascades were initiated by
giving an atom a kinetic energy of 150 keV in a random direction in bulk, and
inclined 15◦ from the surface normal on foils. The simulation cells contained
6.8 million (bulk) or 10.9 million (foil) atoms. For bulk simulations, periodic
boundaries were applied in all directions, while for foil simulations the borders
in one direction were open, forming the top and bottom surfaces of the foil,
with a thickness of 65 nm. The initial temperature of the cell was 0 K, and a
Berendsen thermostat [21] set to 0 K was applied to the atoms in a 1.5 unit
cell thick region along all periodic boundaries. The interatomic potential for
tungsten by Derlet et al. [22] was used for all simulations. A non-local friction
force was applied to all atoms with kinetic energy above 10 eV to account for
energy losses due to electronic stopping. The stopping power was determined
by the method used in SRIM [23]. Cascades were followed until cool, at which
point the defects were stable, which amounted to 40 ps in bulk, and 60 ps in
foils.

Final defects were analysed using the Wigner-Seitz cell method, which is
space-filling, and labels empty cells as vacancies and multiply occupied cells as
interstitials. Defects resulting from this analysis that were located at the surface
of the foil, or due to rearrangement of surface atoms, were disregarded. Clusters
were determined by an automated method, where two interstitials were consid-
ered as belonging to the same cluster if they lay within third nearest neighbour
distance of each other. The choice of cut-off distance for the cluster analysis,
within a few nearest neighbors, is found to have little effect on the results, as SIA
clusters tend to be compact, and well separated from each other. The centre of
position of a cluster is taken as the mean centre of position of all Wigner-Seitz
cells associated with the cluster.

3



Figure 1: Left: A cartoon of a cascade initiated in a foil by a high energy self-ion. The
incident ion may channel some distance through the foil, producing a handful of Frenkel pair
defects along its path. At some depth L a heat spike is initiated, which after recrystallization
leaves defect clusters in a range of sizes. We simplify by considering defect clusters to be
either interstitial- type ( open circles ) or vacancy- type ( filled circles ). Right: An example
MD simulation of a 150keV ion penetrating a foil, snapshot taken at 60 ps. Blue dots are
vacancies, red are interstitials.

MD foil simulations typically procede along the lines of the cartoon in figure
1. The incident ion may channel some distance through the crystal lattice,
leaving some Frenkel pairs along its path. Then a heat spike is initiated at a
depth L below the surface. After recrystallization defect clusters remain. In
MD simulations, and so most likely in reality, these clusters can be extremely
complex. We will simplify and categorize them as being either of interstitial-
or vacancy- type, quasi-independent objects. In this work we consider only the
interstitial defect clusters. In figure 1 there are N = 8 interstitial defect clusters
shown, of which three are crowdions in the channelling path and two are larger.
To find the spatial separation of defects within the cascade region, we should
exclude these Frenkel pairs in the channelling path. To compare to experiment,
we should find the spatial separation appropriate for the larger defect clusters,
as only these would be visible in the TEM.

3. The spatial separation of defect clusters in primary damage cas-
cades

In this section we propose an analytical functional form for the distribution
of defects produced within a single irradiation damage cascade which we may
compare to MD, and then go on to derive a form for the observed distribution
in an in situ TEM experiment.

To start our analysis, we will look at the separation between two defects
produced in the same cascade. A single high-energy displacement cascade can
be thought of as a branching tree of subcascades[24, 25, 26]. A full analysis of
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Figure 2: Sketch of our model for the geometry of cascades. Loops 1 and 2 are produced a
vector separation ~r1 and ~r2 from the origin of the cascade; their initial separation is R. One
loop then moves on its glide cylinder until it reaches a minimum separation R0. If the elastic
interaction at separation R0 is great enough, the loops are mutually trapped, otherwise they
are lost to the surface. Note that 1d diffusing objects in 3d space are unlikely to collide with
each other or with sufficiently dilute sessile pinning sites.

the cascade spatial structure should therefore have a rule for the production of
defects within a single subcascade, a rule for the branching of a cascade into
subcascades, and a rule for the separation of subcascades. We have found in this
study that including rules for subcascade branching can improve the fit to the
experimental data at the expense of additional parameters. The improvement
is not significant in a chi-squared sense. This is most likely because we observe
individual cascades amongst a background of independent cascades, which ob-
scures any long-range spatial information. We can therefore continue by con-
sidering each cascade to be spherically symmetric. This is valid in the case of
tungsten cascades, where the subcascade splitting threshold is high[27, 26]. For
high-energy iron cascades it may be necessary to use a full formulation including
the treatment of splitting of a cascade into subcascades (see section 3.1).

The geometry used for describing defect clusters spatial distribution is il-
lustrated in figure 2. One defect cluster is generated at ~r1 with respect to its
parent cascade origin, and the other generated at ~r2. The probability that they
are separated by distance R in 3-d space is

4πR2 P3d(R) ≡
∫ ∫

p(~r1, ~r2)× δ [|~r1 − ~r2| −R] d3~r1d3~r2, (1)

where for convenience we defined the radial probability distribution in such a
way that it is normalized as follows∫

P3d(R) 4πR2dR = 1. (2)

To simplify the six-dimensional integral in (1), we assume that the generating
function within one casade is both spherically symmetric and separable ( ie the
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positions of the generated defects are independent ).

p(~r1, ~r2) ≡ p(|~r1|)p(|~r2|), (3)

with normalisation ∫
p(r) 4πr2dr = 1. (4)

We can perform the integral in equation 1 in spherical polars, with the angle
between the two defects and origin θ, and exploit the azimuthal symmetry to
write

4πR2 P3d(R) =

∫
p(r1)p(r2) δ

[√
r2
1 + r2

2 − 2r1r2 cos θ −R
]

× 4πr2
1dr1 4πr2

2dr2
sin(θ)

2
dθ, (5)

leaving the simple double-integral expression

P3d(R) =
2π

R

∫ ∞
r1=0

∫ R+r1

r2=|R−r1|
p(r1)p(r2) r1r2dr1dr2. (6)

This expression is normalised according to (2). The radial distribution function
is the expected number of defects separated by a distance in the range from R
and R+ dR:

g3d(R)dR = NpairsP3d(R) 4πR2dR, (7)

Equation 7 may be directly compared to a histogram generated from MD cas-
cade simulations where Npairs pairs of defects were counted (see figure 3).

We now move to consider the distribution of loops observed in an in situ
TEM experiment. To compare to in situ TEM experiments we must work with
the 2d projection of equation 6, and account for the background of defects
produced in other cascades. The projection in 2d of a cascade produced at
depth L is readily found in cylindrical polar coordinates:

P2d(ρ) =

∫ L

z=−∞
P3d(R =

√
ρ2 + z2)dz, (8)

which has normalisation
∫
P2d(ρ) 2πdρ = 1 as L→∞. But what is actually ob-

served is somewhat more complex: we must develop this expression to account
for overlapping spots, the proportion retained in the foil, and the background
of independent cascades.

One of the most obvious differences between MD and experiment is the time
scale. To compare simulations to experiment, we must always consider that the
defects formed in cascades might be mobile. For in situ ion irradiation this
has the added complication that defects may be lost to the foil surface unless
they are trapped. Following Ref. [10], we assume that for ion irradiation of
this ultra-high purity foil, mutual elastic trapping is solely responsible for the
retention of loops in the foil. Mobile defects may move along their glide cylinders
until they reach a position of elastic minimum energy, as shown in figure 2. We
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Figure 3: The distribution of defects recorded in MD simulations, together with a single-
parameter polynomial-exponential best-fit to the data. The data is shown for all interstitial
defects clusters, and for larger clusters (n > 7).
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assume without proof that the Burgers vectors of loops are independent of their
positions, and that one loop moves while the other is fixed.

From Refs [6, 8, 9] we know that the frequency distribution of defect clusters
(dislocation loops) containing n point defects is a good fit to a power law, i.e.
f(n) ∼ A/nS . The probability of a loop size n can therefore be written as
f(n)/Z for 1 ≤ n ≤ nmax and zero outside. Here Z is the normalization factor
for f(n) given by Z =

∑nmax

n=1 f(n). If the initial separation between loops is R,
and the angle between the mobile loop normal and the separation is θ, then the
distribution of the closest separation for two loops in 3d is

4πR2
0 P̃3d(R0) =

1

4π

∫ π

θ=0

∫ ∞
R=0

P3d(R)δ (|R sin θ| −R0) 4πR2dR 2π sin θdθ

=

∫ ∞
R=R0

P3d(R)√
R2 −R2

0

4πRR0dR (9)

Following ref [9](supplementary material), we neglect the complex angular
dependence of the elastic energy between two loops[28] and instead approximate
the elastic energy at this minimum separation as

E(R0) ' − µa6
0

16π(1− ν)

n1n2

R3
0

, (10)

where µ, ν are the shear modulus and Poisson’s ratio respectively, a0 is the
lattice parameter, and n1, n2 the sizes of the defects. If two loops are generated
a depth L below the surface of the foil, and one moves away, it will reach a
maximum energy at a depth approximately L/2 below the surface before being
attracted to its image[9]. The energy barrier to overcome is therefore of order

∆E ' µa6
0n1

16π(1− ν)

(
n2

R3
0

− 7n1

8L3

)
. (11)

Therefore if the effective diffusion coefficient for loop movement is D, a loop
will still be trapped at time t after generation if[29]

L2

4D
exp

(
∆E

kBT

)
& t. (12)

This introduces a very simple dynamical evolution into our model. At the time
of observation t > 0, small or isolated loops will have been lost to the surface.
Large loops are more likely to be retained.

However, finding a probability for a defect cluster to be visible in a TEM
image from this condition alone is most likely to be an overestimation. No
account has yet been taken of the possibility that an interstitial cluster may
recombine with vacancies[30]; that pairs of clusters may move in a coordinated
fashion[15]; that the incident ion channels straight through the foil[31], or that
the cluster is invisible under certain TEM imaging conditions[32] As these loop-
loss events should take place whether the defect is elastically trapped or not, we
introduce a single tuneable parameter η to account for them all. We therefore
write the probability that a defect is trapped by its pair at minimum separation
R0 as

φ(R0) = η

nmax∑
n1=1

nmax∑
n2=1

f(n1)f(n2)

Z2
Θ

[
∆E − kBT ln

(
4Dt

L2

)]
P̃3d(R0). (13)
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Note that the trapping probability is only logarithmically dependent on both
the depth below the surface L, and the time of observation t. The relevant
physics is therefore well described assuming that loops are generated below a
surface and observed some time after generation. It is also adequate to say that
all the loops are generated the same distance L below the surface and observed
60s after generation.

Equation 13 gives the probability that a single pair of loops trap each other.
To find the expected number of pairs trapped, N̄pair, we must consider all the
possible combinations of trapped and untrapped loops. The calculation of N̄pair
is an exercise in graph theory, detailed in appendix Appendix B. The important
result is that one visible loop is unlikely to be retained, whereas if multiple lare
loops are generated in a single cascade, they will all be held in place.

The experimental data ( figure 4 ) clearly shows that the apparent density
of neighbouring spots tends to zero as ρ → 0. This is a consequence of the
shadowing of spots on the micrograph, namely that loops generated too close
together are not resolved individually. We write φdistinct,intra(ρ) as the prob-
ability that two visible spots are distinct, with φdistinct,intra(ρ → 0) = 0 and
φdistinct,intra(ρ→∞) = 1. A functional form for φdistinct,intra(ρ) consistent with
the algorithm used to detect spots on the micrograph is developed in appendix
Appendix B.

We also see from the experimental data ( figure 4 ) that the apparent density
of neighbouring spots tends to a constant value at large ρ. This is the signal
from the background of independently generated cascades. However, the ap-
parent dip in the region ρ ∼ 5nm is non-trivial. We believe that this dip has
a physical origin in the interaction between cascades: for example, a loop pro-
duced independently 5nm away from an existing visible loop can feel an elastic
interaction, and so be drawn to it. As an analogue to the intra-cascade overlap,
we write φdistinct,inter(ρ) as the probability that two cascades will be not over-
lap, with φdistinct,inter(ρ → 0) = 0 and φdistinct,inter(ρ → ∞) = 1. A functional
form for φdistinct,inter(ρ) derived from the (fitted) spatial extent of the cascades
is developed in appendix Appendix B.

Finally, including the effects of shrinking the cascade as a result of elastic
forces acting between the defects and defect clusters, the probability of loop
trapping, the overlapping of spots within a cascade and the background of cas-
cades, we arrive at the observed projection of a cascade on the micrograph.
Writing the background density of spots on the micrograph as α,

g2d(ρ)dρ =

(
N̄pair

∫ L

z=−∞
φdistinct,intra(ρ)φv−v(R0)

× P̃3d(R0 =
√
ρ2 + z2)dz + αφdistinct,inter(ρ)

)
2πρdρ. (14)

Equation 14 is used to generate a comparison to experiment. Note that while
there is a good deal of physics in this expression, the spatial distribution to be
fitted is all contained in P3d(R).

3.1. A functional form for intra-subcascade spatial distribution

In principle it is possible to have any form for the intra- cascade spatial
distribution function p(r), provided it tends to zero as r → ∞. With no prior
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assumptions, we tried p(r) as a sum of Gaussians. The converged (best) result
was for a single Gaussian, with a maximum at r̄ � 0, ie just showing a long tail
in the physically meaningful range r ≥ 0. This leads us to propose the simple
exponential form

p(r) =
e−r/λ

8πλ3
, (15)

which we will show leads to good results. Note that we have as yet no theoretical
justification for the form of equation 15. Using this we can find an analytical
form for P3d(R),

P3d(R) =
1

192πλ5
exp

(
−R
λ

) (
R2 + 3Rλ+ 3λ2

)
. (16)

We can also consider the possibility that defect clusters are produced in
different subcascades, with a probability x for this to occur. We then need
a function q(r) for the probability distribution of the separation between the
centres of two subcascades. We have tried a range of polynomial-exponential
functions for this, and conclude that q(r) = r2e−r/µ gives best results. The
expression for P3d(R), equivalent to equation 6 but for multiple subcascades, is
given in appendix Appendix C.

We fit for λ by matching the observed histogram of pairs counted as a func-
tion of separation, to a computed histogram. We select the result with the
greatest match determined by a chi-squared test.

4. Results

Results for fitting to the MD simulations are shown in figure 3 and table 1.
For the bulk MD simulations, we fit to the whole range of separations between
defects recorded. For the foil simulations, this proved less effective: An ion
penetrating a foil may channel some considerable distance before initiating a
cascade, leaving as it does a thin trail of point defects (see figure 1). This
trail throws the fitting procedure when all interstitial defect clusters (n ≥ 1)
are taken into account. To mitigate for this effect we fit only to separations
recorded up to 20nm. The trail would not be visible in experiment, and it is
unclear whether it would be significant for microstructural evolution in self-ion-
irradiated tungsten. Taking only larger clusters (n ≥ 7) into account, we find
no evidence of a trail, and a good fit is found for foil simulations.

We find that the total number of defect clusters produced per cascade is
similar for bulk and foil MD simulations, about 35, of which 10 having size
n ≥ 2, and 2-4 are larger clusters/loops (n ≥ 7). We also find that the spatial
extent is very similar for bulk and foil. We find λ = 2.2nm for n ≥ 2 falling to
λ = 2.0nm for n ≥ 7 and further to λ = 1.7nm for n ≥ 13. This steady decline
in apparent cascade size with increasing average loop size suggests that larger
loops are more likely to be generated closer to the centre of a cascade.

Results for fitting to the TEM experiments are shown in figure 4 and table
2. There is a minimum observable defect size in a TEM experiment, where
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the intensity of the defect becomes undetectable from background noise and,
concurrently, the resolution limit of the microscope is reached. It is generally
considered that defects of diameter < 1.5nm can not be seen, and for diameter
< 2nm the count is likely to be low[33] For this work we assume that we see
only defects with diameter > 2nm, ( n ≥ 55 ), whereas in the MD simulations
we were taking into account defect clusters containing more than n ≥ 13. The
apparent reduced size of defects in MD is actually just an artefact of the small
number of simulations performed[6, 9]. We used a single exponent to fit all the
cascade energies, S = 1.65[6, 9]. We find that the fitted total number of defect
clusters produced in the 150keV experiments is 32, which compares very well
to the MD result (35 defects per cascade), whereas only 0.1 defect clusters per
cascade are actually observed.

The characteristic spatial scale of the 150keV cascades observed experimen-
tally is λ = 0.75nm, which is considerably smaller than that found for MD (
λ = 1.73nm for nvis = 13 ). This smaller size is consistent with the conclusion
from the MD simulations that larger loops are generated closer to the centre of
a cascade, but at this point we can not claim to have proved that MD simula-
tions give the experimentally observed spatial extent. We observe that all the
experimental cascades are similar in spatial extent. This is consistent with the
subcascade splitting threshold being around 150keV for self-ions in tungsten, a
value of 160keV has been suggested recently based on analysis of BCA cascades
[26].

We emphasize that we are not claiming to see loops separated by λ = 0.75nm,
but rather that the results are most consistent with the tails of a generating dis-
tribution with the characteristic size λ = 0.75nm. The expected distance from
the centre for a single loop generated by an exponential distribution (equa-
tion 15) is 〈r〉 =

∫
rp(r) 4πr2dr = 3λ = 2.3nm for 150keV experiment and 5.2

nm in MD. The expected separation between a pair of loops (equation 6) is
〈R〉 =

∫
RP3d(R) 4πR2dR = 35λ/8 = 3.3nm for 150keV experiment and 7.6

nm in MD. An estimate for the expected volume of the cascade can be found
from the sphere which has a 50% chance of containing a randomly placed defect
cluster, ie the radius rc where∫ rc

r=0

p(r) 4πr2dr = 1/2, (17)

which can be solved numerically to give rc = 2.674λ. This suggests a con-
taining volume for the MD simulations of V = 4πr3

c/3 = 410nm3, which
can be compared with a recent BCA estimate of the molten heat spike region
VBCA = 580nm3[26].

5. Discussion and conclusions

In this work we used an algorithm for automating the analysis of black-dot
damage as seen in in situ TEM ion irradiation experiments. This has enabled
us to produce a large, reliable, and above all reproducible dataset of the po-
sitions and sizes of the loops observed in ultra-high-purity tungsten foils. We
have then pushed the analysis of this dataset to its limits by attempting to find,
we believe for the first time, the spatial separation of defects within individual
primary damage cascades. This demonstrates that with state-of-the-art electron
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Bulk
all n ≥ 2 n ≥ 7 n ≥ 13

incident ions 28 28 28 28
clusters 1014 324 102 70
pairs recorded 19080 1858 150 70
clusters per cascade N̄ 36.2 12.0 3.78 2.59
cascade size λ (nm) 2.63 2.31 1.99 1.8

Foil
all n ≥ 2 n ≥ 7 n ≥ 13

incident ions 49 49 49 49
ion depth L (nm) 19.0 16.8 14.4 15.8
clusters 1722 493 121 84
pairs recorded 33770 2717 143 66
clusters per cascade N̄ 35.14 10.06 2.47 1.71
cascade size λ (nm) 2.52 2.16 2.00 1.73

Table 1: Results for the size of primary cascades measured from MD simulations in the bulk,
and in foils.

Ion energy (keV)
50 150 300 400

area (nm2) 1.71e+07 2.96e+07 1.07E+07 3.05e+07
incident ions 21300 37000 13400 36100
visible defect clusters 2282 4830 1674 8780
visible clusters per cascade 0.134 0.163 0.156 0.288
pairs recorded 8680 20440 6433 63661
ion depth L (nm) 6.9 13.7 24.7 30.6
N̄pair 0.037 0.075 0.057 0.128
efficiency η 0.011 0.0052 0.0041 0.193
clusters per cascadeN̄ 21.9 32.1 27.4 10.8
cascade size λ (nm) 0.558 0.750 0.560 0.652

Table 2: Results for the size of primary cascades measured from TEM micrographs. The
trapping efficiency η and cascade size λ are fitted parameters. Note that the average number
of defect clusters N̄ is found during the fitting process, and can be directly compared to the
total number of defect clusters produced in MD. It is much greater than the average number
of visible defect clusters per cascade.
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Figure 4: The pair radial distribution function, plotted as the density of loops as a function
of distance. The red solid lines show the best fit. The blue solid lines are refitted assuming
subcascade branching- these are tighter fits to the data but not significantly so when the
additional parameters are taken into account.
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microscopy we can discover hidden properties of self-ion-irradiation with a more
sophisticated analysis of defect statistics than counting spots alone provided.

We have shown that we can extract the spatial distribution of defect clusters
within individual primary damage cascades, and that there is some agreement
between MD simulation and experiment. We have also used a simple dynamical
argument to find the expected total number of defect clusters produced in a
cascade from the smaller number of visible loops in the micrographs. We find
excellent agreement between MD and experiment- 35 defect clusters per cascade
in MD versus a predicted 32 defect clusters per cascade in the corresponding
experiment. This is further evidence that what is seen in the microscope (0.16
defect clusters per cascade) is a tiny fraction of the total damage.

We were able to show that the placement of loops in the micrographs is
not random, but is consistent with large loops being randomly placed with a
spherically-symmetric radial probability distribution p(r) ∼ exp(−r/λ), with
λ ∼ 1nm. Comparison to MD simulations suggest there may be some tendency
for larger loops to be more centrally placed; we do not have sufficient data to
quantify this effect yet. We have asserted without proof that the loop Burgers
vectors are not correlated with their positions, and will explore this effect in the
future. We have also not managed to establish the best model for subcascade
spatial placement. Experiments performed at much lower fluence might provide
a better dataset for this fitting. It would be advantageous also to fit to higher
energy MD simulations to find a good functional form for subcascade separation.

Our results provide a second important rationalisation of irradiation damage
cascade structure. Our simple form for the spatial extent of cascades can be
readily introduced into object kinetic Monte Carlo simulations, and the effect
on the subsequent microstructural evolution assessed. It seems clear from the
analysis of experimental evidence we have provided here that the cascade size
is so small that individual defect clusters strongly interact with each other, and
this effect must not be ignored. We have demonstrated methodology to extract
and analyse spatial correlations between defects in micrographs which should
significantly help future modelling efforts.
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bulk and thin foil ion irradiation of ultra high purity Fe. J Nucl Mater.,
442:S786–S789, 2013.

[17] K. Nordlund. parcas computer code. The main principles of the molecular
dynamics algorithms are presented in Nordlund et al, PRB 57:7556 (1998)
and Ghaly et al, Phil Mag A79:795 (1999). the adaptive time step is the
same as in nordlund, comp mat sci 3:448 (1995), 2006.

[18] K. Nordlund, M. Ghaly, R. S. Averback, M. Caturla, T. Diaz de la Ru-
bia, and J. Tarus. Defect production in collision cascades in elemental
semiconductors and fcc metals. Phys. Rev. B, 57:7556–7570, Apr 1998.

[19] Mai. Ghaly, Kai. Nordlund, and R. S. Averback. Molecular dynamics inves-
tigations of surface damage produced by kiloelectronvolt self-bombardment
of solids. Phil. Mag. A, 79(4):795–820, 1999.

[20] K. Nordlund. Molecular dynamics simulation of ion ranges in the 1 100 kev
energy range. Computational Materials Science, 3(4):448 – 456, 1995.

[21] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and
J.R. Haak. Molecular dynamics with coupling to an external bath. J.
Chem. Phys., 81(8):3684–3690, 1984.

[22] P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev. Multiscale modeling
of crowdion and vacancy defects in body-centered-cubic transition metals.
Phys. Rev. B, 76:054107, 2007.

[23] J.F. Ziegler, J.P. Biersack, and U. Littmark. The stopping and range of
ions in solids. Pergamon, 1982.

[24] M. Hou. Fuzzy clustering methods: An application to atomic displacement
cascades in solids. Phys. Rev. A, 39:2817–2828, Mar 1989.

16



[25] Roger E Stoller and Lawrence R Greenwood. Subcascade formation in dis-
placement cascade simulations: Implications for fusion reactor materials1.
Journal of Nuclear Materials, 271272:57 – 62, 1999.

[26] A. De Backer, A. E. Sand, K. Nordlund, L. Luneville, D. Simeone, and
S. L. Dudarev. Subcascade formation and defect cluster size scaling in high-
energy collision events in metals. EPL (Europhysics Letters), 115(2):26001,
2016.

[27] A.I. Ryazanov, E.V. Metelkin, and E.V. Semenov. Modeling of cascade and
sub-cascade formation at high {PKA} energies in irradiated fusion struc-
tural materials. Journal of Nuclear Materials, 386388:132 – 134, 2009.
Fusion Reactor MaterialsProceedings of the Thirteenth International Con-
ference on Fusion Reactor Materials.

[28] S.L. Dudarev and A.P. Sutton. Elastic interactions between nano-scale
defects in irradiated materials. Acta Materialia, 125:425 – 430, 2017.

[29] B.U. Felderhof. Escape by diffusion from a square well across a square
barrier. Physica A, 387(1):39–56, 2008.

[30] T. Jourdan and J.-P. Crocombette. Rate theory cluster dynamics simu-
lations including spatial correlations within displacement cascades. Phys.
Rev. B, 86:054113, Aug 2012.

[31] K. Nordlund, F. Djurabekova, and G. Hobler. Large fraction of crystal
directions leads to ion channeling. Phys. Rev. B, 94:214109, Dec 2016.

[32] Z. Zhou, M. L. Jenkins, S. L. Dudarev, A. P. Sutton, and M. A. Kirk. Sim-
ulations of weak-beam diffraction contrast images of dislocation loops by
the many-beam Howie-Basinski equations. Philosophical Magazine, 86(29-
31):4851–4881, 2006.

[33] C. Liu, L. He, Y. Zhai, B. Tyburska-Pschel, P.M. Voyles, K. Sridharan,
D. Morgan, and I. Szlufarska. Evolution of small defect clusters in ion-
irradiated 3C-SiC: Combined cluster dynamics modeling and experimental
study. Acta Materialia, 125:377 – 389, 2017.

[34] R. Fischer, K. M. Hanson, V. Dose, and W. von der Linden. Background
estimation in experimental spectra. Phys. Rev. E, 61:1152–1160, Feb 2000.

[35] A. Lindeberg. Scale-Space Theory in Computer Vision. Springer Sci-
ence+Business Media Dordrecht, 1994.

[36] T.W. Ridler and S. Calvard. Picture thresholding using an iterative se-
lection method. IEEE TRANSACTIONS ON SYSTEMS, MAN, AND
CYBERNETICS,, SMC-8:630–632, 1978.
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Appendix A. Automated micrograph analysis

A common issue with TEM micrographs is the variation in intensity of the
background due to foil thickness changes or foil bends. These variations are easy
to spot by eye as their wavelength is typically somewhat longer than the features
of interest, but they present a big problem for automated analysis- bright back-
ground may be counted as a feature, or a dim spot on a dark background may
be ignored as its intensity falls below an arbitrary threshold. Most algorithms
must start by removing background, but this is difficult to do without altering
the shape of the feature to be detected.

Our algorithm for background removal works by estimating pixel-by-pixel
both the average background intensity, and the probability that it should be
treated as background. This dual approach has previously been demonstrated
by Fischer et al[34]; our approach is simpler, and closer in feel to blob detection
in computer vision[35].

We start by convolving the image intensity f(x, y) with a Gaussian kernel
of width t (to blur):

g(x, y; t) = exp

(
−x

2 + y2

2t2

)
(A.1)

and a logistic function centred on an assumed background level b with spread s
(to separate foreground):

h(x, y; b, s) =
1

1 + exp
(
f(x,y)−b

s

) . (A.2)

Note that as defined h→ 1 for low-intensity (background) pixels. To work with
dark features on a bright background, we simply start with the negative of the
image. The convolution gives a representation of the background in scale-space
1

L(x, y; t) =

∑
x′,y′ f(x′, y′)h(x′, y′; b, s)g(x′ − x, y′ − y; t)∑

x′,y′ h(x′, y′; b, s)g(x′ − x, y′ − y; t)
(A.3)

The magnitude of the gradient |∂L/∂t| is an indication of how fast the image
intensity is varying at length-scale t. We then make the following assumption:
For a pixel in the background, the characteristic length-scale is long, but we
can use the background average of a very local region. Conversely, for a pixel
in the foreground the characteristic length-scale is short, and we should use the
background averaged over a wide region. To find a good background estimate
we therefore need to reverse length-scales. We compute a new estimate of the
background pivoting on a feature length-scale t0 with

f̃(x, y) =

∫ 2t0
t=0

∣∣∂L
∂t

∣∣L(x, y; 2t0 − t) dt∫ 2t0
t=0

∣∣∂L
∂t

∣∣ dt
. (A.4)

and then mix this with the image to find a new background

f ′0(x, y) = ξh(x, y; b, s)f(x, y) + (1− ξh(x, y; b, s)) f̃(x, y). (A.5)

1In the following treatment we assume dead pixels, foil edges, edge dislocation lines, oxide
particles and other obvious regions not to be counted are excluded from summations.
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Figure A.5: TEM image background removal. Bright-field image of Fe-9Cr irradiated to 1.8dpa
at 350C. Left: original image with varying background. Centre: computed background signal.
Right: image with background subtracted. Image courtesy Jack Haley, Oxford University.

We use a mixing parameter ξ = 1/2 for numerical stability.
To initialise the logisitic function, we set b to be the average intensity of

the background pixels below the Ridler & Calvard threshold[36], and σ their
standard deviation. We then note that were the image intensity standard de-
viation is σ, with average b then using Sommerfeld’s expansion we should find
the average under convolution with the logistic function alone would be

f̄ =

∑
x,y f(x, y)h(x, y; b, s)∑

x,y h(x, y; b, s)
= b−

√
2πσ +

√
π2

2

s2

3σ
− . . . , (A.6)

and so if we set s =
√

6σ/π, then f̄ = b, we therefore preserve the average
intensity level.

Our algorithm for background removal is then

1. seed the logistic function using the Ridler & Calvard threshold

2. compute a revised estimate for the background level with equation A.5

3. compute the new image with

f ′(x, y) = f(x, y)− f ′0(x, y) + b0, (A.7)

where b0 is the desired background level.

This process is iterated until convergence. An illustration is given in figure A.5.
The second half of the task of automated image analysis is to identify the

features. In this case we are looking for dislocation loops, which in weak-beam
dark-field imaging appear as white blobs on a dark background. At low fluence,
rings and coffee-bean shaped features are rare, so we can map the features to
2d Gaussians. This is a well-known problem in computer vision, but existing
astronomy literature solutions (eg variants of the CLEAN algorithm[37]) per-
form poorly with TEM images, where the overlaps can be large and multiple
maxima should be ascribed to the same feature.

A 2d Gaussian is defined by a centre (x, y), major- and minor- axes radii
(s1, s2), an angle θ, and intensity I: 5 parameters in all. We seek to minimise
an objective function S, using nG 2d Gaussians

S =
∑
x,y

(
f(x, y)− b0 −

nG∑
i=1

g(xi, yi, s1i, s2i, Ii)

)2

, (A.8)
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which is a straightforward minimisation problem as first derivatives are avail-
able, provided a good initial guess can be found.

To find the best sum of 2d Gaussians, our procedure is:

1. Find a region of interest (ROI) in the image. A ROI is defined as a
contiguous region of pixels where f(x, y)−b0 > 2σ, where b0 is the average
background level and σ the background standard deviation. Crop this
region for further investigation.

2. Compute the t-test statistic t = f̄−b0
σ/
√
n

for the ROI, where f̄ is the average

intensity in the ROI, and n the number of pixels. Reject the ROI if t < 6.3,
which is equivalent to rejecting the region if there is a greater than 5%
chance it is a result of random fluctuation.

3. Perform a blur with a 1/2 pixel Gaussian kernel to reduce spurious shot
noise in the ROI.

4. Find local maxima- those pixels whose 4 nearest neighbours are all of
lower intensity. Index the pixels containing these maxima, leave other
pixels unassigned. Combine maxima within 2 pixels range.

5. For each unassigned pixel, index to same maximum as the highest intensity
assigned neighbour. Repeat until every pixel is assigned to one maximum.

6. Now consider the valleys between maxima. If there exists a pixel on an
interface between two maxima whose intensity does not drop below d =
90% of the linearly interpolated intensity between the maxima, there must
be a bright path between these two maxima. Combine these two maxima.
Repeat until pixel is assigned to one region.

7. For each region a, relax a single 2d Gaussian by optimising equation A.8
within its assigned pixels. Compute wa =

∑
x,y∈a(f(x, y)− b0)2 and rank

each region by weight. This step completes the initial guess.

8. Take the regions with the nG highest weights, and using the Gaussians
from the previous step as an initial condition, relax by optimising equation
A.8 over the whole ROI.

9. Select the best fit as the sum of Gaussians which produces the minimum
value nGS.

10. Reject those Gaussians for which the eccentricity e = s1/s2 > 2.5.

Our solution detects two-thirds of the spots if ten simulated spots are superim-
posed into a 30x30px square, with position and width errors of 2 and 0.5 pixels
respectively. For isolated spots we have near perfect reconstruction of simulated
images. An illustration of this procedure with simulated data is given in figure
A.6.

To complete the automated analysis we must define a loop image radius
from the 2d Gaussian. This we have done by matching the size of thousands
of individual loops determined by our automated method to the size using the
standard methodology of Kirk et al[38]. We recommend reporting the loop
image radius as 2s1, ie twice the Gaussian standard deviation in the major axis
direction. We would also recommend that the intensity level for maxima to be
combined (d) and maximum permitted eccentricity (e) be tuned for best results.
An illustration is given in figure A.7.
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Figure A.6: Fitting 2D Gaussians to noisy images. Left- 8 computer generated overlapping
peaks. Middle- analysing the watersheds and combining maxima leaves five potential regions.
Right- computer interpretation of five 2d Gaussian peaks. The algorithm finds good positions
and spot sizes, but will unavoidably lose a few peaks in a noisy image.

Figure A.7: Automatic analysis of loops. 150keV W+ in UHP W @ 30K, WBDF TEM
( shown in negative to emphasize the background variation ). Left: received TEM image.
Centre: background subtracted image. Right: analysed image.
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Appendix B. Probability of elastic trapping, and of intra- and inter-
cascade overlap

Equation 13 gives the probability that a single pair is trapping. We can
integrate to find the trapping probability per pair is φ =

∫
φ(R0) 4πR2

0dR0.
We can find the conditional probability that a pair is trapped given that it is
between a visible loop and an invisible cluster (φv−i), or between two visible
loops (φv−v), by changing the ranges of the summations (and normalisation) in
equation 13.
To find the number of visible loops trapped, and hence the number of visible
pairs we must go further: at some percolation threshold all loops will be trapped.
If there is a small number Nv visible loops, and a small number Ni invisible
clusters, it is a simple matter to evaluate all possible graphs 2 and compute the
probability for the number of visible, trapped loops explicitly. IfNv+Ni & 8, the
number of graphs becomes prohibitive. But we can find a good approximation
to the probability of the number of loops as follows: If the loops are generated
independently, the probability distribution for the number of visible loops will
be binomially distibuted. We then approximate the probability distributions
for the number of visible-invisible trapping bonds (nv−i) and for the number of
visible-visible trapping bonds (nv−v) as binomially distributed and independent
(see figure B.8). Then the probability of Nvt visible,trapped loops given N total
defects produced is approximated by the heuristic

p(Nvt|φv−v, φv−i, N) ∼
N∑

Nv=0

Nvt(Nvt−1)/2∑
nv−v=0

NvtNi∑
nv−i=0

(
N
Nv

)(
Nv
Nvt

)
pNv
v (1− pv)N−Nv

×
(
Nvt(Nvt − 1)/2

nv−v

)
φ
nv−v

v−v (1− φv−v)Nv(Nv−1)/2−nv−v

×
(
NvtNi
nv−i

)
φ
nv−i

v−i (1− φv−i)NvNi−nv−i (B.1)

Note that this expression needs normalising to ensure
∑N
Nvt=0 p(Nvt|φv−v, φv−i, N) =

1.
We use explicit summations over graphs for Nv + Ni ≤ 8 and equation B.1

for Nv + Ni > 8. In practice we have found it expedient to tabulate and store
p(Nv|φv−v, φv−i, N) at a range of values for (φv−v, φv−i, N) and interpolate. If
we assume that the defects are produced independently, then the total number of
defects produced per cascade, N , is Poisson distributed. We can then compute
the number of observable spots, and visible pairs, per incident ion:

N̄vt =
∑
N

∑
Nvt

Nvt p(Nvt|φv−v, φv−i, N)PPoisson(N |N̄) (B.2)

N̄pair =
∑
N

∑
Nvt

Nvt(Nvt − 1)

2
p(Nv|φv−v, φv−i, N)PPoisson(N |N̄).(B.3)

2There are Nv(Nv − 1)/2 +NvNi pairs which might trap visible loops to consider, and so
counting pairs as trapping or not, there are two to the power of this number of graphs. We
need to draw each graph and count the number of visible defects with at least one trapping
pair.
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Figure B.8: A sketch to illustrate finding the probability of Nvt trapped, visible loops. Nv = 4
circles represent loops large enough to be visible, of which Nvt = 3 filled circles are trapped.
Ni = 3 crosses are loops too small to be visible. Bold lines between visible loops have a
probability φv−v of being trapping, faint lines have probability φv−i of being trapping. We
must find all combinations of Nvt(Nvt − 1)/2 visible-visible traps, together with all NvtNi

visible-invisible traps, counting only those graphs where Nvt visible loops have one or more
trapping pairs. This can be done explicitly for Nv +Ni ≤ 8, and approximately using equation
B.1 for larger numbers.

N̄vt is determined directly from the micrograph- it is the number of visible
spots divided by the number of incident ions. We find N̄ by numerically invert-
ing equation B.2. Equation B.3 then gives the number of pairs expected to be
recorded on the micrograph per incident ion.

We now consider the number of spots in a 2d image which can not be re-
solved because they appear to overlap. Assume that a spot is formed by a
circular dislocation loop containing n point defects with Burgers vector b, and

characteristic radius ρ(n) =
√

Ωn
πb , where Ω is the volume per atom. Two spots

may be resolved when their separation R > ζ(ρ(n1) + ρ(n2)), with ζ a small
numerical constant. Now ζ is difficult to compute generally, as it is dependent
on the shape of the spot in the imaging conditions and the algorithm used to
extract spots. Furthermore, the number of spots recorded at small R is sensi-
tive to the choice of ζ. We estimate ζ = 0.63 as follows: Consider two equal
height Gaussians of width σ separated by R. They are resolved by the auto-
matic counting procedure if their sum midway between the two is less than 90%
of the peak height, ie 2 exp(−(R/2)2/2σ2) < 0.9 ( see appendix Appendix A ).
We interpret the radii of spots on the micrograph as ρ ∼ 2σ. Hence we need

R >
√

ln
√

2/0.9(ρ(n1) + ρ(n2)) ≈ 0.63(ρ(n1) + ρ(n2)).

We can therefore find the fraction of loops which overlap as a function of
separation

φdistinct,intra(R) = 1−
nmax∑

n1=nvis

nmax∑
n2=nvis

f(n1)f(n2)

Z2
vis

Θ [ζ(ρ(n1) + ρ(n2))−R] ,

(B.4)
where Θ(x) is the Heaviside function.

Finally consider the background of cascades. If a second cascade appears
too close to the first, it will be indistinguishable. Alternatively if it is initiated
close to the first, it may interact strongly and appear to be absorbed. A full
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analysis of the dynamics of interacting primary damage cascades is beyond the
scope of this paper, and indeed it is difficult to disentangle overlap effects from
snapshots of the irradiation, but we can produce a good estimate for the fraction
of the overlap from the spatial extent. This is then used to find the density of
spots in the background which can be deemed distinct. We write the degree of
overlap for two cascades separated by ρ in the micrograph image as

φdistinct,inter(ρ) = 1−

∫
P2d,casc

(√
(x− ρ/2)2 + y2

)
P2d,casc

(√
(x+ ρ/2)2 + y2

)
dxdy∫

P2d,casc (ρ′)P2d,casc (ρ′) 2πρ′dρ′
.

(B.5)

Appendix C. Analytical forms for spatial distribution with subcas-
cades

In this appendix we present the analytical forms for the distance between two
defects and their closest approach. We start with the polynomial-exponential
forms for intra- and inter- subcascade spatial distributions.

p1(r) =
e−r/λ

8πλ3
, (A.1)

and

q(r) =
r2e−r/µ

96πµ5
, (A.2)

where we interpret q(r) as the probability distribution for the distance between
the centres of subcascades. We have also tried q(r) ∼ e−r/µ and q(r) ∼ re−r/µ,
and concluded that equation A.2 is the best form.

Using this we can find the spatial distribution for a defect in a second sub-
cascade relative to the origin of the first subcascade. We note that this is exactly
the same integral as equation 6, and write

q2(r) =
2π

r

∫ ∞
r1=0

∫ r+r1

r2=|r−r1|
p1(r1)q(r2) r1r2dr1dr2

=
λ3e−r/λ

8πr(λ2 − µ2)5

{
r(λ4 − µ4)− 10λ3µ2 − 6λµ4

}
+

e−r/µ

96πrµ(λ2 − µ2)5

{ (
r3(λ2 − µ2)3 + 12r2µλ2(λ2 − µ2)2

+12r(5λ6µ2 − 4λ4µ4 − λ2µ6) + 24λ4µ3(5λ2 + 3µ2)
) } .
(A.3)

So, if the probability that the second defect cluster is in a second subcascade is
x, we can then write the spatial distribution for the second defect cluster as a
function of the distance from the origin of the subcascade containing the first
defect cluster, p2(r) = (1 − x)p1(r) + x q2(r). The probability distribution for
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the distance between two defects is then found by employing equation 6 again:

P3d(R) =
2π

R

∫ ∞
r1=0

∫ R+r1

r2=|R−r1|
p1(r1)p2(r2) r1r2dr1dr2.

=
e−R/λ

192πλ5

{
R2 + 3Rλ+ 3λ2

}
+

xµ3e−R/µ

96πR(λ2 − µ2)7


R3(λ2 − µ2)3

+24R2λ2µ(λ2 − µ2)2

+24Rλ2µ2(λ2 − µ2)(9λ2 + µ2)
+240λ4µ3(3λ2 + µ2)



+
xµ2e−R/λ

192πRλ5(λ2 − µ2)7



5Rλ12(R2 − 3Rλ− 3λ2)
−21Rλ10µ2(R2 +Rλ− 15λ2)
+λ8µ4(37R3 + 117R2λ− 75Rλ2 − 1440λ3)
−6λ6µ6(6R3 + 21R2λ+ 45Rλ2 + 80λ3)
+21Rλ4µ8(R2 + 3Rλ+ 3λ2)
−7Rλ2µ10(R2 + 3Rλ+ 3λ2)
+Rµ12(R2 + 3Rλ+ 3λ2)


.

(A.4)

This expression is analytic in its limits

lim
R→0

P3d(R) =
1 + x

(
λ5(λ2+7λµ+16µ2)

(λ+µ)7 − 1
)

64πλ3
, (A.5)

lim
µ→λ

P3d(R) =
e−R/λ

192πλ5

{
R2 + 3Rλ+ 3λ2

}
+

xe−R/λ

1290240πλ9

{
R6 + 14R5λ+ 105R4λ2 + 525R3λ3

−4935R2λ4 − 16380Rλ5 − 16380λ6

}
.

(A.6)
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