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identified 
 Properties after annealing for 10, 100 and 1000 h at 1000°C (1273 K) have been 
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Abstract 
 
Here we elucidate the mechanisms of plastic deformation and fracture of tungsten laminated 
composites. Our results suggest that the mechanical response of the laminates is governed 
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by the plastic deformation of the tungsten plies. In most cases, the impact of the interlayer is 
of secondary importance. 
Severely cold-rolled ultrafine-grained tungsten foils possess exceptional properties in terms 
of brittle-to-ductile transition (BDT), toughness, and tensile ductility. The motivation for 
investigating laminated composites is to determine whether a bulk material can be made that 
retains the ductility of the thin tungsten foils. 
In this paper we analyse W-AgCu, W-Cu, W-V, and W-Pd laminates in their as-produced and 
annealed conditions (e.g. 10, 100 and 1000 h at 1000°C (1273 K) in vacuum). The analyses 
comprise (i) the mechanical characterisation by means of three-point bending (damage 
tolerance), Charpy impact (BDT), and tensile tests (total elongation to fracture) as well as (ii) 
the in-depth analyses of the microstructure by means of scanning electron microscopy 
(SEM), transmission electron microscopy (TEM), and Auger electron spectroscopy (AES).  
W-Cu laminates (60 vol % W) show 15.5 % total elongation to fracture in a tensile test at 
room temperature. Furthermore, the BDT of tungsten laminated composites occurs at a 
temperature that is several hundreds of Kelvin lower than the BDT temperature of the pure 
tungsten bulk counterparts. 
Finally, we present the successful fabrication of a 1000 mm long W-Cu laminated pipe and 
show its high heat flux performance. Fabrication studies of high heat flux components made 
of tungsten laminates, in which the laminates are used either as heat spreaders or structural 
pipes, are presented. 
 
 
 
1. Introduction 
 
Nuclear fusion is an ideal sustainable energy source. A major hurdle to its commercial 
development is the availability of sufficiently resilient materials [1, 2]. Tungsten and tungsten-
based materials are candidates for plasma-facing components. For these components, there 
is a need for both armour tungsten (which shields the underneath structural material from the 
high heat flux and particle flux from the plasma), as well as structural tungsten (performing 
the function such as a pipe for a cooling medium) [3]. For tungsten, its tendency to fail at low 
temperatures by brittle fracture is a major disadvantage [4]. Therefore, the main challenge 
that needs to be overcome to make a successful plasma-facing component is to make 
tungsten ductile, which means achieving improvement of  

 the tensile ductility (e.g. the total elongation to fracture, ܣ௧),  
 the toughness, ܭூ஼, or the crack growth resistance, and  
 the brittle-to-ductile transition temperature (BDTT).  

 
A method to improve these properties is the modification of the microstructure through cold-
rolling. Wei and Kecskes assessed the effect of low-temperature rolling (rolling at 800°C 
(1073 K), 600°C (873 K), and 400°C (673 K)) on the room-temperature tensile behaviour of 
pure tungsten. Their results show that the ductility (i.e. total elongation to fracture) increases 
with decreasing rolling temperature [5]. The impact of cold-rolling on the toughness and the 
crack growth resistance has been investigated by Reiser et al. [6]. Their results show that 
severely cold-rolled tungsten plates have a much lower stable crack growth onset 
temperature compared to their cold-rolled counterparts. Furthermore, Reiser et al. showed 
that a cold-rolled tungsten plate possesses a lower brittle-to-ductile-transition temperature 
compared to its hot-rolled or recrystallised counterparts [7]. Finally Németh et al. elucidated 
the nature of the brittle-to-ductile transition of severely cold-rolled and recrystallised tungsten 
foils [8]. Their results obtained from the severely cold-rolled foils indicate a brittle-to-ductile 
transition at -196°C (77 K). 
Severely cold-rolled tungsten plates exhibit extraordinary mechanical properties and will be 
used for the synthesis of the laminated composites within this study. 
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2. Background: Laminated composites based on refractory metals 
 
In this section, we present selected studies on laminated composites based on refractory 
metals (Table 1). The results obtained and the mechanisms identified by these studies are 
useful in developing successful plasma-facing components and give an impression on the 
complexity of this type of materials. 
Laminated composites or multilayer composites, as they are also called, are widespread in 
material science and technology. The idea is to tailor properties such as (i) thermal 
conductivity, (ii) thermal expansion, (iii) strength, or (iv) tensile ductility, toughness and brittle-
to-ductile transition, by an appropriate adjustment of a layered structure. 
 
 
2.1. Thermal conductivity and the coefficient of thermal expansion 
 
Laminated composites made of repeated layers of molybdenum (Mo) and copper (Cu) have 
become increasingly important in the field of thermal management. The development of 
power electronics, light emitting diodes and radio-frequency devices demands innovative 
heat sink and heat spreader materials. In particular, the thermal management of gallium 
nitride (GaN) chips demand heat spreader materials with a high thermal conductivity (> 300 
W/(m*K)), combined with an adjusted coefficient of thermal expansion (6–12 ppm/K) [9]. 
These requirements can be tailored by molybdenum copper multilayer composites, as these 
composites combine the high thermal conductivity of copper (397 W/(m*K) at room 
temperature) with the low coefficient of thermal expansion of molybdenum (4.8 ppm/K, 20–
100°C (293–373 K)) [9, 10]. In particular the thermal conductivity of a multilayer material can 
easily be estimated by using the rules of mixture (ROM).  
 
The linear and reciprocal rules of mixture provide simple analytical formulae to estimate the 
homogenised material properties. The linear rule of mixture is given by 
 

௟௜௡݌ ൌ 	 ଵܸ ∗ ଵ݌	 ൅	 ଶܸ ∗  ଶ     (1)݌	
 
and the reciprocal rule can be written as 
 

ଵ

௣ೝ೐೎
ൌ 	

௏భ
௣భ
൅	

௏మ
௣మ

       (2) 

 
where ݌ଵ and ݌ଶ are the material properties of layers 1 and 2, and ଵܸ and ଶܸ are the 
corresponding volume fractions. 
 
It has been shown by Hill [11] that for entirely linear homogenisation problems, the rules of 
mixture provide rigorous mathematical bounds. This is why the rules of mixture have proven 
useful to estimate the homogenised thermal conductivity in the in plane (linear rule of 
mixture, Eq. (1)) and in the through plane (reciprocal rule of mixture, Eq. (2)) directions (in 
Eq. (1) and (2) the thermal interface resistance due to electron scattering is not considered). 
However the rules of mixture can fail to estimate the coefficients of thermal expansion. Seiss 
et al. reported the peculiar behaviour of the coefficient of thermal expansion in Mo-Cu 
multilayer composites, which can be summarised as follows: (i) the homogenised coefficients 
of thermal expansion are found outside the region bounded by the rules of mixture, (ii) with 
increasing temperature, the coefficient of thermal expansion first decreases then gently 
increases, and (iii) the coefficient of thermal expansion changes during thermal cyclic loading 
[9, 12]. The reason for these effects is not yet understood, and is the topic of current studies. 
However it is likely that the plastic deformation of the Cu-phase plays an important role.  
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In this paper, we will report high heat flux tests of components made of heat spreader 
materials. 
 
 
2.2. Strength 
 
Multilayer composites exhibit significant increases in strength as the layer thickness is 
decreased from the micrometre scale to the nanometre scale. Furthermore, multilayer 
materials are well suited for fundamental studies on the effect of length scale on the 
strengthening mechanisms. A study on the length-scale-dependent deformation mechanisms 
in niobium copper (Nb-Cu) multilayer composites has been performed by Misa et al. [13].  
 
In the sub-microns length scale, the Hall-Petch model is found applicable. According to this 
model, the yield strength, ߪ௬௦, scales with the inverse square root of the relevant 
microstructural length scale (grain size or layer thickness, ݄) 
 

௬௦~݄ିଵߪ ଶ⁄ .      (3) 
 
A breakdown of the Hall-Petch model is observed in metallic multilayers when the layer 
thickness is in the order of a few tens of nanometres. In that case, plastic flow is confined to 
one layer and occurs by the motion of single dislocation loops. Therefore, confined layer slip 
of a single dislocation is treated as the operative mechanism. 
In detail, dislocations that are nucleated at the interface are pinned on the opposite interface 
and spread as Orowan loops. It is this Orowan bowing motion of the glide dislocation that 
leads to hardening with decreasing layer thickness. 
For further details on the strengthening mechanisms of multilayer materials such as the 
lattice parameter mismatch and dislocation-interface interaction (i.e. blocking, absorbing, 
transmission) the reader is referred to Refs. [13-15]. 
 
The mechanical and thermo-physical properties of W-Cu laminates may be significantly 
affected by the plastic deformation of the Cu-phase. By reducing the layer thickness, the 
yield stress in the Cu-phase increases according to the models presented above. This offers 
the possibility of designing multilayer materials that operate solely in the elastic regime.  
 
Strength has been the main thrust for multilayer investigations. Tensile ductility, toughness, 
and brittle-to-ductile transition have been given less attention. 
 
 
2.3. Tensile ductility, toughness, and brittle-to-ductile transition 
 
Vill et al. [16] studied tungsten molybdenum microlaminates. Molybdenum layers were 
attached in between thin tungsten layers in order to provide an enhanced toughness of the 
material. In a recent publication, we demonstrated that the brittle-to-ductile transition 
temperature can be decreased by several 100s K by the synthesis of a tungsten laminated 
composite (W-AgCu) [17]. Our results were confirmed by Basuki et al. [18], who reported the 
potential of tungsten vanadium (V) multilayer materials. Furthermore, the damage tolerance 
of a layered microstructure, demonstrated by means of three-point bending tests, has been 
reported by Shao et al. (W-TiNiNb) [19] and Zhang et al. (W-Ta) [20]. 
 
The tensile behaviour of refractory metal based laminated composites has been assessed by 
Beals and Nardone (Nb-Al2O3) [21] and Hoffmann and Weeton [22]. The latter reported a 
study of laminar composites composed of mutually insoluble sheets of tungsten and copper. 
By selecting this model system, the reactivity between tungsten and copper has been 
eliminated as a variable.  
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Hoffmann and Weeton anticipated several high-temperature uses for the laminated material: 
e.g, turbine blades, chambers for advanced rocket engines, or thrust reverses. The tensile 
behaviour of the W-Cu laminates was discussed against the results from tungsten fibre / 
copper matrix model system composites [23]. 
Hoffmann and Weeton gave consideration to the laminate failure modes and the 
experimentally determined stress-strain relations to obtain an indication of the deformation 
behaviour during tensile testing. Four stages of deformation were observed: 

 Stage 1: Elastic deformation of W, elastic deformation of Cu 
 Stage 2: Elastic deformation of W, plastic deformation of Cu 
 Stage 3: Plastic deformation of W, plastic deformation of Cu 
 Stage 4: Fracturing of W and Cu 

In particular, fracturing of the tungsten sheets was indicated by a serrated load-strain curve. 
 
With regard to the tensile behaviour of W-Cu composites that we will report within this paper, 
the investigation of Hoffmann and Weeton yielded the following major result: For W-Cu 
laminates with more than 20 vol % W, and tested at room temperature, no elongation was 
measurable for the fractured specimens. In contrast, we will present and discuss a W-Cu 
laminate with 60 vol % W that shows 15.5 % total elongation to fracture at room temperature. 
 
 
Table 1 
Selected laminated composites based on refractory metals.  
Properties of 
interest 
(technical 
application) 

Components Referred to as Fabrication 
route 

Methods Reference

Thermal 
conductivity, 
coefficient of 
thermal 
expansion 
(thermal 
management) 

Mo-Cu Multilayer 
composite 

- Transient flash, 
dilatometer 

[9] 

W-CuCrZr Laminates  Numerical 
homogenisation 
analysis, 
representative 
volume 
elements (RVE) 

[24] 

Strength Nb-Cu Multilayer 
composite 

Magneton 
sputtering 

Nano-
indentation 
hardness 

[13] 

Nb-Cu Multilayer Accumulative 
roll bonding 

 [25] 

Nb-Cu Multilayer 
composite 

Physical 
vapour 
deposition 

 [26] 

Ductility, 
toughness, 
brittle-to-
ductile 
transition 

W-Mo Microlaminates Sputtering  [16] 
W-AgCu Laminates Brazing 

(800°C 
(1073 K), 1 
min.) 

Charpy impact 
tests 

[17] 

W-Ti Laminates Diffusion 
bonding 
(900°C 
(1173 K), 35 
MPa, 1 h) 

Charpy impact 
tests 

[27] 

W-V Hybrid material Diffusion 
bonding 

Charpy impact 
tests 

[18] 
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(700°C (973 
K), 97 MPa, 
4 h) 

W-TiNiNb Laminated 
composite 

Vacuum hot 
pressing 
(1220°C 
(1493 K), 20 
MPa, 0.5 h) 

Three-point 
bending tests 

[19] 

W-TiNi Micro-
laminated 
composite 

Vacuum hot 
pressing 
(1300°C 
(1573 K), 20 
MPa, 0.5 h), 
forging at 
880°C (1153 
K) 

Three-point 
bending tests, 
compression 
tests  

[28] 

W-Ta Multilayers Spark 
plasma 
sintering 
(1700°C 
(1973 K), 95 
MPa, 5 min.) 

Three-point 
bending tests 

[20] 

Nb-Al2O3 Composite 
laminate 

Vacuum hot 
pressing 
(1500°C 
(1773 K), 
104 MPa, 1 
h) 

Tensile tests [21] 

W-Cu Laminar 
composites 

Vacuum hot 
pressing 
(982°C 
(1255 K), 14 
MPa, 4 h) 

Tensile tests [22] 

W-CuCrZr Laminates  Tensile 
properties 
obtained by a 
numerical 
homogenisation 
analysis, RVE 

[24] 

 
 
Detailed information on the synthesis of the laminates as well as an overview of the materials 
and methods used in our investigations will be given in the next section. 
 
 
3. Materials and methods 
 
This section is divided into three parts. In the first part we provide details on the synthesis of 
the tungsten foil laminates. This includes a description of the microstructure and the chemical 
composition of the tungsten foils and the interlayer sheets. Furthermore, details of the 
thermal ageing conditions of the tungsten foil laminates are given. The first part closes with a 
description of the processing history and microstructure of the tungsten plate materials used 
for benchmark experiments. In the second part, details of the mechanical tests such as the 
three-point bending, tensile, and Charpy impact tests are presented. Finally, in the third part, 
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the rotated cube component, {100}<011>. For further details of the microstructure of the 
recrystallised foils, the reader is referred to Ref. [31]. 
 
The tungsten foil laminates were tested both in the as-produced and in the conditions after 
thermal ageing, so the recovery and recrystallisation behaviour of tungsten foils is of 
importance. Bonnekoh et al. describe the recrystallisation behaviour of ultrafine-grained 
tungsten foils as follows. The grains do not produce recrystallization nuclei, so primary 
recrystallisation is suppressed and the deformation texture is inherited. Such a situation can 
be referred to as “recrystallisation in situ” [33]. 
 
Studies of the tensile behaviour of the tungsten foils in the as-received and recrystallised 
condition (1 h / 2000°C (2273 K) and 1 h / 2700°C (3073 K) in hydrogen) can be found in 
Ref. [34]. The most important results can be summarised as follows: 

 As-received condition (ultrafine-grained): at a test temperature of 600°C (837 K) the 
engineering stress-strain curves of foils tested in the rolling direction (0°) and 
perpendicular to the rolling direction (90°) are congruent. This result can easily be 
understood by considering the 90° rotation symmetry of the {100}<011> rotated cube 
component. When the foils are tested at room temperature the situation appears 
rather different. Now the samples tested in the rolling direction (0°) show plastic 
deformation, whereas the samples tested perpendicular to the rolling direction (90°) 
are brittle. This material response is attributed to the anisotropic grain shape of the 
foils and the change of the dislocation-grain-boundary interaction. 

 Recrystallised condition (coarse-grained): at a test temperature of 600°C (837 K) the 
engineering stress-strain curves of the foils show up to 40 % plastic strain. The plastic 
deformation is accompanied by serrated flow. The microstructural origin of the 
serrated flow is associated with strain localisation and propagation (strain bursts) 
followed up by dislocation-surface-interactions (dislocation annihilation). At a test 
temperature of 20°C (293 K) the foils behave brittle.  

 
 
In the next section, details of the interlayer sheets will be provided. 
 
 
3.1.2. Interlayer 
 
The interlayer materials used for the synthesis of the laminated composites are (i) an eutectic 
silver (Ag) copper (Cu) alloy (according to DIN EN 1044, AG 401, and ISO 3677, B-Ag72Cu-
780, 72 wt % Ag, 28 wt % Cu, melting temperature, ௠ܶ = 780°C (1053 K)), (ii) pure copper (> 
99.99 wt % Cu, ௠ܶ = 1084°C (1357 K)), (iii) vanadium (V) (> 99.8 wt % V, ௠ܶ = 1910°C (2183 
K)), and (iv) palladium (Pd) (> 99.9 wt % Pd, ௠ܶ = 1555°C (1828 K)). 
 
 
3.1.3. Laminate synthesis 
 
In Section 4.1. “W-AgCu laminates”, three-point bending tests were performed on W-AgCu 
laminates. The material consisted of eight layers of tungsten foil (100 m, as-received 
condition) brazed together to a laminate using seven layers of AgCu foil (100 m). The 
laminate had a total thickness of 1.5 mm. From this laminate, specimens with dimensions of 
1.5 mm x 10 mm x 20 mm were cut by spark erosion. The specimens represent the L-S 
crack system, without notch. 
Section 4.1. “W-AgCu laminates”, also describes Charpy impact properties. The material 
used for these tests consisted of repeated layers of 100 m tungsten (20 sheets, as-received 
condition) and 100 m AgCu (19 sheets) brazed together into a laminate with a total 
thickness of 3.9 mm. From this laminate, specimens with dimensions of 3 mm x 3.9 mm x 27 
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mm, 1 mm notch (approx. KLST-type) were cut by spark erosion. The specimens represent 
the L-S, T-S and LT-S crack systems.  
Furthermore, in Section 4.1. “W-AgCu laminates”, the results of laminates made from 
recrystallised tungsten foils (annealed for 1 h at 1800°C (2073 K) in vacuum) are presented. 
The laminate consisted of 20 layers of tungsten foil (100 m, in the recrystallised condition) 
brazed together using 19 layers of AgCu foil (100 m). The laminate had a total thickness of 
3.9 mm. From this laminate, specimens with dimensions of 3 mm x 3.9 mm x 27 mm, 1 mm 
notch (approx. KLST-type) were cut by spark erosion. The specimens represent the L-S 
crack system. 
Finally, in Section 4.1. “W-AgCu laminates”, tensile properties are displayed. The material 
tested consisted of three layers of 100 m tungsten (as-received condition) and two layers of 
100 m AgCu, brazed together into a laminate with a total thickness of 0.5 mm. From these 
laminates, tensile test specimens were cut by spark erosion. The samples had a width of 2 
mm and a gauge length of 13 mm. The samples were aligned in such a way that the tensile 
loading direction was congruent with the rolling direction of the tungsten foils (0°). 
 
Further tensile properties are described in Section 4.2. “W-Cu laminates”. Again, the material 
tested consisted of three layers of 100 m tungsten (as-received condition) and two layers of 
100 m copper, brazed together into a laminate with a total thickness of 0.5 mm. From this 
laminate, tensile test specimens were cut by spark erosion. The samples had a width of 2 
mm and a gauge length of 13 mm. The samples were aligned in such a way that the tensile 
loading direction was congruent with the rolling direction of the tungsten foils (0°). 
 
In Sections 4.2. “W-Cu laminates” and 4.3. “W-V and W-Pd laminates”, the Charpy impact 
properties of different kinds of tungsten laminates are displayed. The laminates were 
produced as follows: ݊ layers of tungsten foil (100 m, as-received condition) and ݊ െ 1 
sheets of an interlayer were placed on each other alternately. This stack of 2 ∗ ݊ െ 1 foils was 
then placed in an electro-mechanical universal test device (ZWICK 100). This test device 
was modified and combined with a vacuum chamber and a furnace (MAYTEC). The stack of 
foils was heated up to 900°C in a high vacuum (1 x 10-5 – 5 x 10-5 mbar) and was diffusion 
bonded for 1 h at 35 MPa. The furnace cooled down to room temperature at a cooling rate of 
450 K / h. The material condition directly after cooling is referred to as “as-produced” in this 
paper. From these laminates, specimens with dimensions of 3 mm x 3.9 mm x 27 mm, 1 mm 
notch (approx. KLST-type) were cut by spark erosion. The specimens represent the L-S 
crack system. 
 
The potential of tungsten laminates without interlayers is investigated in Section 4.4. “W-W 
laminates”. Charpy impact test samples with dimensions of 1 mm x 3 mm x 27 mm, without 
notch, were produced by diffusion bonding of 10 layers of 100 m-thick tungsten foil. The 
surfaces of the foils were activated by depositing a thin layer of tungsten by physical vapour 
deposition before bonding. The diffusion bonding was realised in the electro-mechanical 
universal test device, as described above. The process parameters were 1 h, 35 MPa, and 
vacuum. The bonding temperatures were 900°C (1173 K), 1000°C (1273 K), 1100°C (1373 
K) and 1200°C (1473 K). The specimens represent the L-S crack system. 
 
During brazing or diffusion bonding the top layers of the stacks of foils were in contact with 
alumina. We strongly recommend to prevent the top layers to get in contact with graphite, as 
there is the severe risk of contaminate tungsten with carbon, which leads to the formation of 
brittle tungsten carbides.  
 
A summary of the aforementioned laminates can be found in Table 3. 
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Table 3 
Overview of the produced tungsten laminates. After layer bonding, the laminates are referred to as “as-produced” 
in this paper. 

Section Test method Tungsten 
foil: 
thickness / 
number of 
sheets 

Interlayer: 
element / 
thickness / 
number of 
sheets 

Joining 
technology 

Dimension, 
orientation 

4.1. “W-AgCu 
laminates” 

Three-point 
bending tests 

100 m / 8 AgCu, 100 
m, 7 

Brazing 1.5 mm x 10 
mm x 20 
mm, L-S, 
without 
notch 

Charpy impact 
tests 

100 m / 20 AgCu, 100 
m, 19 

KLST, L-S 
KLST, T-S 
KLST, LT-S 

100 m / 20 
(foils 
annealed 
for 1 h / 
1800°C 
(2073 K) in 
vacuum) 

AgCu, 100 
m, 19 

KLST, L-S 

Tensile tests 100 m / 3 AgCu, 100 
m, 2 

Brazing 0.5 mm x 2 
mm x 13 
mm (gauge 
length), 0°, 
tensile 
direction = 
rolling 
direction 

4.2. “W-Cu 
laminates” 

Tensile tests 100 m / 3 Cu, 100 m, 
2 

Brazing 0.5 mm x 2 
mm x 13 
mm (gauge 
length), 0°, 
tensile 
direction = 
rolling 
direction 

Charpy impact 
tests 

100 m / 20 Cu, 100 m, 
19 

Diffusion 
bonding 

KLST, L-S 

4.3. “W-V and 
W-Pd 
laminates” 

Charpy impact 
tests 

100 m / 20 V, 100 m, 
19 

Diffusion 
bonding 

KLST, L-S 

100 m / 27 Pd, 50 m, 
26 

4.4. “W-W 
laminates” 

Charpy impact 
tests 

100 m / 10 - Diffusion 
bonding 

1 mm x 3 
mm x 27 
mm, L-S, 
without 
notch 

 
 
3.1.4. Thermal ageing conditions 
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In Sections 4.2. “W-Cu laminates” and 4.3. “W-V and W-Pd laminates”, the evolution of the 
Charpy impact properties after thermal ageing are displayed. The thermal ageing conditions 
were as follows: laminates in their as-produced condition were encapsulated in glass 
ampoules. The procedure consisted of flushing the ampoules with argon, creating vacuum 
conditions inside the ampoules (1 x 10-5 – 5 x 10-5 mbar), and finally sealing the ampoules 
with a blowtorch. The laminates were annealed for 10, 100 and 1000 h at 1000°C (1273 K), 
and cooled to room temperature at a cooling rate of 100 K / h. From these plates, specimens 
with dimensions of 3 mm x 3.9 mm x 27 mm, 1 mm notch (approx. KLST-type) were cut by 
spark erosion. The specimens represent the L-S crack system (Table 4). 
 
 
Table 4 
Details of the thermal ageing conditions of the tungsten foil laminates. 

Section Time / 
temperature 

Atmosphere Cooling rate Dimension, 
orientation 

4.2. “W-Cu 
laminates” 

10 h / 1000°C 
(1273 K) 

Vacuum, 1 x 
10-5 – 5 x 10-5 
mbar 

100 K / h KLST, L-S 

100 h / 1000°C 
(1273 K) 
1000 h / 1000°C 
(1273 K) 

4.3. “W-V and W-
Pd laminates” 

10 h / 1000°C 
(1273 K) 

Vacuum, 1 x 
10-5 – 5 x 10-5 
mbar 

100 K / h KLST, L-S 

100 h / 1000°C 
(1273 K) 
1000 h / 1000°C 
(1273 K) 

 
 
3.1.5. Tungsten plates for benchmark experiments 
 
The tungsten materials used for benchmark experiments are technically pure tungsten plates 
(> 99.97 wt % W) manufactured by PLANSEE SE in a powder metallurgical route consisting 
of sintering and rolling. The impurity concentrations, which PLANSEE SE guarantees not to 
exceed, as well as the typical impurity concentrations, are shown in Table 2 [30]. 
 
In Section 4.1. “W-AgCu laminates”, the results of a comparison of the three-point bending 
behaviour of W-AgCu laminates and pure tungsten plate materials are discussed. The 
material used for the benchmark experiment was a hot- and cold-rolled tungsten plate. The 
plate was in its stress-relieved condition. The microstructure reveals a median grain size of 1 
m x 1 m x 3 m (S- x T- x L-directions). From this plate, specimens with dimensions of 1 
mm x 10 mm x 20 mm were cut by spark erosion. The specimens represent the L-S crack 
system, without notch.  
 
In Sections 4.1. “W-AgCu laminates”, and 4.2. “W-Cu laminates”, the tensile properties of 
tungsten laminated composites are compared with the tensile behaviour of pure tungsten 
foils. The material used for the benchmark experiments was a severely cold-rolled tungsten 
foil. The foil was in its as-received condition and possesses a median grain size in the S-
direction of 0.5 m. The foil is the exact same type of foil that makes up the tungsten layers 
in the laminates. From this foil, specimens were cut by spark erosion. The samples were 
aligned in such a way that the tensile loading direction was congruent with the rolling 
direction of the tungsten foils (0°). 
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In Sections 4.1. “W-AgCu laminates”, 4.2. “W-Cu laminates”, and 4.3. “W-V and W-Pd 
laminates”, the Charpy impact properties of tungsten foil laminates are discussed against the 
background of the Charpy impact results of pure tungsten plate material.  
The material used for the benchmark experiments was a hot-rolled tungsten plate. The plate 
was in its stress-relieved, as-received condition with a median grain size of 4 m x 6 m x 9 
m, and in its recrystallised condition (annealed for 1 h at 2000°C (2273 K) in hydrogen) with 
a median grain size of 12 m x 18 m x 22 m. In addition, the plate was in four different 
conditions of annealing: 10, 100 and 1000 h at 1000°C (1273 K). From these plates, 
specimens with dimensions of 3 mm x 4 mm x 27 mm, 1 mm notch (KLST) were cut by spark 
erosion. The specimens represent the L-S crack system. 
 
Finally, in Section 4.4. “W-W laminates”, the Charpy impact properties of W-W laminated 
composites are compared with the properties of pure tungsten plate material. The plate 
material used for the benchmark experiments was a hot-rolled plate, as described above. 
The plate was in its as-received an in its recrystallised condition (annealed for 1 h at 2000°C 
(2273 K) in hydrogen). Specimens with dimensions of 1 mm x 3 mm x 27 mm, without notch, 
were cut by spark erosion. The specimens represent the L-S crack system. 
 
An overview of the materials used for the benchmark experiments can be found in Table 5. 
 
Table 5 
Overview of non-composite materials used for benchmark experiments. 

Section Test method Tungsten 
product 

Grain size (S- x 
T- x L-direction) 

Dimensions, 
orientation 

4.1. “W-AgCu 
laminates” 

Three-point 
bending tests 

Hot- and cold-
rolled plate 

1 m x 1 m x 3 
m 

1 mm x 10 mm x 
20 mm, L-S, 
without notch 

4.1. “W-AgCu 
laminates”, 4.2. 
“W-Cu 
laminates” 

Tensile tests Severely cold-
tolled foil 

0.5 m in the S-
direction 

0.1 mm x 2 mm 
x 13 mm (gauge 
length), 0°, 
tensile direction 
= rolling 
direction 

4.1. “W-AgCu 
laminates”, 4.2. 
“W-Cu 
laminates”, and 
4.3. “W-V and 
W-Pd laminates” 

Charpy impact 
tests 

Hot-rolled plate, 
as received 

4 m x 6 m x 9 
m 

KLST, L-S 

Hot-rolled plate, 
10 h / 1000°C 
(1273 K) 

Not measured, 
IPF see Fig. 47 

Hot-rolled plate, 
100 h / 1000°C 
(1273 K) 

Not measured, 
IPF see Fig. 47 

Hot-rolled plate, 
1000 h / 1000°C 
(1273 K) 

Not measured, 
IPF see Fig. 47 

Hot-rolled plate, 
(1 h / 2000°C 
(2273 K), in 
hydrogen) 

12 m x 18 m x 
22 m 

4.4. “W-W 
laminates” 

Charpy impact 
tests 

Hot-rolled plate, 
as received 

4 m x 6 m x 9 
m 

1 mm x 3 mm x 
27 mm, L-S, 
without notch Hot-rolled plate, 

(1 h / 2000°C 
(2273 K), in 
hydrogen) 

12 m x 18 m x 
22 m 
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3.2. Mechanical tests 
 
The mechanical properties of the tungsten laminated composites are identified by three types 
of tests. These are tensile, three-point bending, and Charpy impact tests. 
 
 
3.2.1. Tensile tests 
 
Tensile testing was conducted on a Zwick100 electro-mechanical test device. This step-
motor screw-driven test machine has a 50 kN capacity load cell and was modified and 
combined with a furnace (RT - 1300°C (1573 K)) and a vacuum chamber (operation 
pressure: 10-6 mbar, viz. 10-4 Pa). 
The tests were performed in displacement controlled mode at an extension rate of 0.1 
mm/min. The extension rate was set by the speed of the cross-head of the load frame.  
Longitudinal strain of specimens was measured using high-temperature strain gages 
(MAYTEC). The ceramic tips of the extensometer were positioned directly on the sample.  
Engineering stress strain curves were obtained for each tensile test. 
 
 
3.2.2. Three-point bending tests 
 
Three-point bending tests were performed in the same test device as used for the tensile 
tests described above. Tests were conducted at room temperature, using a cross head 
speed of 10 mm/min. The support had a span of 10 mm. No extensometer was used. Load 
displacement curves were obtained from these tests. 
 
 
3.2.3. Charpy impact tests 
 
Instrumented Charpy impact tests were performed according to the standards DIN EN ISO 
148-1 (2011) and DIN EN ISO 14556 (2006). These standards describe small-size 
specimens with dimensions of 3 mm × 4 mm × 27 mm, 1 mm notch depth, 0.1 mm notch root 
radius, and a support span of 22 mm (KLST type sample).  
The Charpy impact test device is designed in a drop-weight style. To avoid oxidation, the 
whole Charpy testing machine is placed inside a vacuum vessel, which operates at typical 
pressures of about 1×10-3 mbar. The specimens are heated up together with the support, 
which allows a precise test temperature control. For more technical details of the Charpy 
impact test device, the reader is referred to Ref. [35]. 
The Charpy impact test results display the dissipated energy plotted against the test 
temperature. In this study, only one sample for each material condition and test temperature 
was tested.  
 
At selected deformed Charpy impact test samples electron backscatter diffraction (EBSD) 
measurements and transmission electron microscope (TEM) analyses were conducted. 
 
 
3.3. Electron microscopy  
 
3.3.1. EBSD 
 
Electron backscatter diffraction measurements were performed using a Zeiss Merlin 
scanning electron microscope (SEM) equipped with an EDAX Hikari camera. The 
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measurements were performed using an acceleration voltage of 20 kV and 10 nA probe 
current. For the mappings, a step size of 400 nm was chosen.  
Points with a confidence index (CI) lower than 0.1 were removed during post-processing. 
Apart from grain CI standardisation, no cleanup of the datasets was performed. The 
orientations of the data points remained unchanged.  
Misorientations exceeding 15° were considered as high angle grain boundaries (HAGBs) and 
are highlighted in black in the inverse pole figure (IPF) maps and in the grain orientation 
spread (GOS) maps, or in white in the kernel average misorientation (KAM) maps. 
IPF maps are displayed with respect to the orthogonal sample directions. Grain orientation 
spread maps were obtained by calculating the average orientation individually for each grain. 
The orientation spread is then the average deviation between the orientation of each point 
inside the grain and the average orientation. KAM maps were calculated using only 1st 
neighbour points with misorientations between 0° and 5°. 
 
 
3.3.2. TEM 
 
A TEM specimen was prepared by the focused ion beam (FIB) method using an AURIGA 
CrossBeam system from Carl Zeiss AG. In the first step, a lamella was thinned to 200–250 
nm thickness by FIB. In the second step, the lamella was flash polished at 12 V for 50 ms in 
order to remove the layer that has been amorphised during FIB preparation. The flash 
polishing removes preparation induced defects and thus allows TEM observations of 
dislocations and other lattice defects [36]. 
The TEM investigations were performed using a Tecnai F20 FEG transmission electron 
microscope from FEI. The microscope has an accelerating voltage of 200 kV and a 0.14 nm 
resolution limit. The tungsten structure was imaged using conventional bright field 
microscopy with an ORIUS SC600 camera. 
 
 
3.3.3. Auger electron spectroscopy (AES) 
 
A Physical Electronics PHI 680 Xi Field Emission Scanning Auger Nanoprobe was used for 
AES. The analyses were performed with 10 keV acceleration voltage and 10 nA beam 
current for the electron beam. The beam size was close to 40 nm (determined according to 
ISO 18516). To remove the carbon (C) and oxygen (O) contaminants from the surface and to 
make the grain structure visible, a 15-minute period of sputter etching was applied before 
data acquisition. For sputter etching an argon (Ar) ion beam with an ion current of 500 nA 
was used. During data acquisition, a continuous sputter etching setting with very low ion 
acceleration was used to prevent a redeposition with oxygen and carbon out of the vacuum. 
For quantitative measurements in AES, peak-to-peak height measurements from the 
derivative spectra were used. The accuracies of such measurements are typically around ± 
20 %.  
To improve the measurement accuracy, the produced W-Pd laminates were first quantified 
precisely by a Camebax Microbeam electron probe micro analysis (EPMA) with a beam size 
of about 1 µm. The EPMA analyses were followed by spectral AES measurements for 
determination of the sensitivity factors. For both methods, measurement areas of ca. 10 µm x 
10 µm were placed at specific positions of the tungsten and the palladium layer. With the 
data achieved in this way, the laminate samples can be used as calibration standards for 
further AES analyses. These data were used to converge the AES sensitivity factors by 
means of an approximation algorithm. For AES data reduction, the following sensitivity 
factors were used: W-Pd laminate: Pd (at 333 eV): 0.147; W (at 182 eV): 0.091. For the W-
Cu and the W-V laminates it was not necessary to determine specific sensitivity factors 
because there was no diffusion found within the detection limits of the method. 
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4. Results and discussion 
 
This section is organised as follows. To understand the fundamental deformation 
mechanisms associated with laminated composites, the results of a study entitled “W-AgCu 
laminates and the proof of principle” will be presented first. Afterwards we focus on W-Cu 
laminated plates and pipes, and discuss their technical maturity. Finally, the mechanical 
behaviour of laminated composites with a high melting point interlayer, such as W-V and W-
Pd laminates, will be analysed and the potential of laminates without interlayers, W-W 
laminates, will be discussed. 
 
 
4.1. W-AgCu laminates and the proof of principle  
 
The aim of this section is to elucidate the deformation and fracture mechanisms of tungsten 
laminated composites. For such a study, the reactivity between the tungsten sheets and the 
interlayer material must be eliminated as a variable. Model systems comprised of mutually 
insoluble materials should be selected to avoid such reactions. In addition, a model system 
should consist of an interlayer material that has mechanical and physical properties at least 
somewhat representative of the material that is likely to be used in practical composites. 
Tungsten and an eutectic silver copper alloy were selected for this study because they fulfil 
the aforementioned requirements. 
 
The sections below will address the following questions: 

 What is the damage tolerance of W-AgCu laminates (L-S)? 
 What are the main energy dissipation mechanisms in tungsten laminated composites 

(plastic deformation of the tungsten foils, plastic deformation of the interlayer sheets, 
creation of new surfaces)? 

 What is the origin of the anisotropy of the Charpy impact properties (L-S, LT-S, T-S)? 
 What is the reason for the improved Charpy impact properties of recrystallised W-

AgCu laminates compared to their recrystallised plate material counterparts? 
 What are the tensile properties of W-AgCu laminated composites? 

 
 
4.1.1. The damage tolerance of laminated W-AgCu composites (L-S) 
 
In this section we demonstrate the crack resistance and damage tolerance of W-AgCu 
laminates by performing three-point bending tests at room temperature.  
The laminated specimens consist of eight layers of tungsten and seven layers of AgCu foil 
and represent the L-S crack system, without notch, 1.5 mm thickness. Benchmark 
experiments have been performed on pure tungsten plate material, L-S, without notch, 1 mm, 
thickness. These two materials can sustain approximately the same loads, making it a fair 
comparison. The results of the three-point bending tests are displayed in Fig. 4, where the 
load is plotted against the displacement of the striker (or more precisely: the displacement of 
the cross-head of the load frame). 
It can be clearly seen that the plate material fails by fast fracture. The fracture behaviour of 
the laminated composite is rather different. After cracking of a tungsten ply the crack is 
arrested in the soft AgCu interlayer. This behaviour is indicated graphically by a serrated 
load–displacement curve.  
The total number of steps in the load–displacement curve is more or less identical with the 
number of tungsten layers of the laminate. So each serration can be associated with the 
fracture of one tungsten ply. 
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It can be clearly seen that the brittle-to-ductile transition of the laminated composite occurs at 
a temperature which is approximately 300 K lower compared to the brittle-to-ductile transition 
of the benchmark plate material. 
Furthermore, the dissipated energy is highly anisotropic. The difference in the energy 
dissipation behaviour of L-S and T-S samples can be explained as follows: The texture 
analyses of the severely cold-rolled tungsten foils show the highest intensities for the rotated 
cube component, {100}<011>. By considering the 90°-rotation symmetry of the rotated cube 
component (rotation around the <100> axis), the same mechanical properties in the rolling 
direction (0°) and perpendicular to the rolling direction (90°) would be expected (Fig. 3). In 
other words, by considering the crystallographic texture only, the Charpy impact properties of 
L-S and T-S samples should be identical. However Fig. 5A shows that this is not the case. 
Samples with an L-S crack system dissipate a considerable amount of energy even at a 
temperature of and below 300°C (573 K), whereas for the T-S oriented samples the amount 
of dissipated energy is rather low. As both types of samples possess the same 
crystallographic texture, this difference in Charpy energy can only be explained by the 
anisotropy of the grain shape. Fig. 3 provides an illustration of the top surface of the tungsten 
foils and displays the grain size anisotropy. The grain size in the rolling direction (L-direction) 
is larger than that perpendicular to the rolling direction (T-direction). This means that from the 
statistical point of view, the ligament plane of an L-S sample faces fewer low-toughness grain 
boundaries compared to the ligament plane of a T-S sample. So the difference in the energy 
dissipation behaviour of L-S and T-S samples is a grain shape effect. 
 
By analysing the tested samples, further information about the fracture and deformation 
behaviour can be gained. Fig. 6 displays images of selected samples with respect to the 
sample orientation (L-S, LT-S, and T-S) and test temperature (RT, 300°C (573 K), and 500°C 
(773 K)).  
Let us consider the LT-S samples first. At a test temperature of 200°C (473 K) and below, the 
samples dissipate less energy. The tungsten sheets fracture in a brittle manner, whereas the 
AgCu interlayers fracture in a ductile manner. Despite the ductile failure of the AgCu layers, 
the overall composite has very low energy dissipation at this test temperature (Fig. 5), 
indicating that the amount of dissipated energy caused by plastic deformation of the AgCu 
interlayer can be neglected when analysing the main energy dissipation mechanisms in 
laminated composites. Samples tested at room temperature show very straight cracks in the 
tungsten sheets. This manifestation is associated with a fracture along the primarily cleavage 
plane of tungsten, i.e. the {100} cleavage plane. The crack propagation plane is directly 
aligned with the preferred {100} cleavage plane, allowing for the straight, brittle failure of the 
tungsten layers. 
At a test temperature of 300°C (573 K) and above, the deformation mechanisms suddenly 
change. Now the samples can dissipate a considerable amount of energy. The tested 
samples are characterised by plastic deformation of the tungsten and the interlayer sheets. 
Only the most highly stressed tungsten plies failed. The fracturing of these tungsten plies is 
manifested in a zig-zag shape following the {110} planes, which are the second cleavage 
planes for tungsten. This shows that in the range of 200°C (473 K) to 300°C (573 K) a 
change of the preferred cleavage plane takes place. This change is accompanied by the 
onset of plastic deformation of the tungsten foils. 
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region), intermediate (formation and breakaway from impurity clouds), and high temperatures 
(dragging of impurity clouds) can be distinguished. 
The intermediate temperature region is also referred to as the “Portevin–Le Chatelier (PLC) 
region”. In this region, fluctuations and serrations in the load curve occur. This phenomenon 
is the PLC effect and can be described as follows: In the PLC region, the temperature is high 
enough for clouds of solute atoms (Cottrell atmospheres) to be formed around the 
dislocations. This locking of dislocations and their breakaway from the impurity clouds is the 
reason for the serrations in the load curve. 
Beyond the PLC region, and thus at high temperatures, the deformation curve is smooth 
again. Now the diffusional processes are fast enough to establish a solute cloud at 
dislocations immediately after breakaway from their obstacles.  
Serrated flow may also be caused by various modes of strain localisation and propagation. 
Ritschel et al. [39] and Luft et al. [38] reported the tensile behaviour of predeformed 
molybdenum single crystals. The deformation curve shows pronounced work softening 
accompanied by serrations. The authors associated the yield drops with the formation of 
dislocation-free cells. The mechanisms described by Ritschel et al. [39] and Luft et al. [38] 
can most likely not be applied to the recrystallised tungsten foils as the manifestation of the 
serrations are severely different.  
A popular classification of serrations in substitutional alloys can be found in Brindley and 
Worthington’s work [40], which distinguishes between type A, B, and C serrations. Type A is 
associated with nearly smooth continuous propagation of a deformation band over the 
specimen length with a sharp serration whenever a new band is initiated at one end of the 
specimen. Type B corresponds to the intermittent propagation of a narrow plastic zone. In 
type C serrations, extremely large stress drops occur, with plastic bands appearing at 
random within the specimen. 
By considering this theoretical background and comparing the manifestation of load drops of 
the recrystallised tungsten foils with serrations reported in literature, we finally arrive at the 
conclusion that the physical origin of the plastic instabilities of the load curve from Fig. 8A is 
most likely caused by strain localisation and propagation (strain bursts). We classify the 
plastic instabilities as type B serrations. As the yield drops occur for the recrystallised foils 
(0.1 mm thickness) but not for the recrystallised plates (1 mm thickness) and not for 
macroscopic single crystals, we infer that the origin of the serrated yielding may be strain 
localisation and propagation (strain bursts) followed up by dislocation-surface-interactions 
(dislocation annihilation). 
Dislocations-surface-interactions impact on the tensile properties of thin tungsten foils. In the 
next part, we will show that dislocation-interface interactions impact the Charpy properties of 
tungsten laminated composites as well. 
 
A laminated plate was made by stacking alternate layers of recrystallised tungsten (1 h at 
1800°C (2073 K)) and AgCu. From this plate, KLST specimens with an L-S crack system 
were cut. Benchmark experiments were performed on recrystallised tungsten plate material 
(1 h at 2000°C (2273 K)), L-S, KLST-type. The results of the Charpy impact tests are 
displayed in Fig. 8B, where the dissipated energy is plotted against the test temperature.  
 
The results show that the BDT of the recrystallised laminate occurs at a temperature which is 
at least 500 K lower than the BDT temperature of its recrystallised plate material counterpart 
(at the maximum tested temperature of 1000°C (1273 K), the recrystallised plate does not 
have any measurable energy absorption, indicating that its BDT is higher than 1000°C (1273 
K)). This improvement is astonishing as the recrystallised tungsten foils and the recrystallised 
tungsten plate have the same metallic purity (> 99.97 wt % W) and microstructure (grain 
size). This raises the question of what mechanisms cause this enormous decrease of the 
BDT temperature. To elucidate the physical origin of this behaviour we will now first present 
in-depth SEM and TEM analyses of the Charpy impact test sample representing the lowest 
temperature of the ductile regime (indicated by “1” in Fig. 8B). This is followed by a brief 
overview of the current discussion on the controlling mechanisms of the BDT and crack-tip 
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The EBSD analyses provided an overview impression of the microstructure of the deformed 
Charpy test samples. For more details on the dislocation activity, a TEM analysis was 
performed and will be presented in the next paragraph. 
 
A TEM lamella was prepared in order to characterize the deformed microstructure. The 
lamella was taken out from sample “1” from the region where the highest tensile stress 
occurred. The position of the TEM lamella as well as its orientation relative to the Charpy 
impact test sample can be found from Figs. 13A-C. The red frame in Fig. 13C gives the 
position from which the TEM bright-field images have been taken. An overview of the 
deformed microstructure can be derived from Figs. 13D and E. These images display severe 
dislocation activity and thus confirm that the energy dissipation of sample “1” is at least 
somewhat caused by plastic deformation. In contrast, nearly no dislocations are seen in the 
recrystallised tungsten material in the undeformed condition, as seen in a bright-field TEM 
image in Ref. [31]. 
Further insights into the dislocation arrangements can be gained from Figs. 13F and G. 
These images display detailed views representing areas with an inhomogeneous (Fig. 13F) 
and a homogeneous (Fig. 13G) dislocations distribution. Fig. 13F shows that close to the 
grain boundary the dislocation density is low, whereas at a distance of about 500 nm and 
parallel to the grain boundary, an area of increased dislocation density can be found. 
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will provide an assumption to this question by considering issues of the brittle-to-ductile-
transition and crack-tip plasticity next. 
 
The elucidation of crack-tip plasticity is the key to identifying the mechanisms controlling the 
brittle-to-ductile transition. Crack-tip plasticity is governed by the emission of dislocations, 
which is a two-step process starting with the nucleation of dislocations followed by the 
dislocation glide. 
The question of whether the BDT is determined mainly by dislocation nucleation or by 
dislocation mobility has been the subject of several experimental and theoretical 
investigations. Models describing the BDT as a nucleation-controlled event assume that the 
lack of active dislocation sources prevents the emission of a sufficient number of dislocations 
to provide effective shielding [41, 42]. Models describing the BDT as a mobility-controlled 
event assume that dislocations are generated in large numbers but cannot leave the crack-
tip region fast enough and thus inhibit the instantaneous nucleation of further dislocations 
[43, 44]. The latter model is what we make use of to describe the deformation behaviour of 
the Charpy impact sample “1”. 
Fracture will occur if the Griffith critical stress intensity, ܭூ஼, is reached at the crack tip [45]. 
The externally applied stress intensity, ܭ௔௣௣௟௜௘ௗ, may differ from the effective stress intensity 
at the crack tip, ܭ௘௙௙௘௖௧௜௩௘, as the effective stress intensity at the crack tip is affected by the 
elastic stress fields from dislocations (Fig. 14A).  
 
Transmission electron microscopy analyses revealed particular features of the crack-tip 
region, such as the dislocation free zone (DFZ) [46]. The appearance of a dislocation free 
zone at the crack tip can be examined by considering the elastic interaction between a crack 
and a dislocation. The shear stress, ߪ௬௭, on a screw dislocation emitted from a sharp mode III 
crack along the coplanar slip plane is given near the crack tip by 
 

ሻݔ௬௭ሺߪ ൌ 	
௄ೌ೛೛೗೔೐೏,಺಺಺
ሺଶగ௫ሻభ మ⁄ െ	

ఓ௕

ସగ௫
      (4) 

 
where ݔ is the distance from the crack tip to the dislocation, ܭ௔௣௣௟௜௘ௗ,ூூூ is the applied stress 
intensity, ߤ is the shear modulus, and ܾ is the Burgers vector. The first term in Eq. (4) 
represents the elastic crack stress and the second term is the image stress. These two 
stresses are plotted in Fig. 14A as a function of ݔ. The origin of the dislocation free zone can 
be explained as follows: if a shielding dislocation is emitted from the crack tip, it is expected 
to move away from the crack tip. The dislocation will come to a rest at ݔଵ, where the total 
stress on the dislocation is balanced by the friction stress of the lattice, f. The region 
between the crack tip and ݔଵ is dislocation free and is referred to as the dislocation free zone 
(DFZ).  
Eq. (4) describes the shear stress on a single screw dislocation. The description of a stress 
field of the crack-tip equilibrium configuration that considers (i) the shielding by a group of 
dislocations, (ii) the applied stress, ߪ௔, and (iii) a crack of finite length is mathematically more 
complicated. Details on the stress field of a crack-tip equilibrium configuration can be found 
in Ref. [46]. 
It can be seen from Fig. 14B that the stress field has a singularity at the crack tip and that the 
stress decreases to the friction stress, f, at the end of the dislocation free zone (position ݔଵ). 
The stress remains at the friction stress, f, throughout the plastic zone as no work-
hardening is assumed (position ܽ). The stress decreases to the applied stress, ߪ௔, in the 
elastic zone outside the plastic zone. The distance from the crack tip to the end of the plastic 
zone, ܽ, will now play an important role in the interpretation of the deformation behaviour of 
the Charpy impact sample “1”. 
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The results of the tensile tests of W-AgCu laminated composites can be seen in Fig. 15B. 
Tensile tests have been performed at room temperature, 200°C (473 K), 400°C (673 K), and 
600°C (873 K). When comparing the results of the laminated composites with the results of 
the pure tungsten foils, it can be concluded that (i) the ultimate strength of the laminated 
composites is about 60 % of the ultimate strength of the pure tungsten foils, which is 
reasonable when considering that the laminated composites consist of 60 vol % tungsten 
and 40 vol % AgCu, (ii) the plastic strain increases slightly, and (iii) the fractured surfaces of 
the pure tungsten foils and the fractured surfaces of the tungsten sheets of W-AgCu 
laminated composites show the same characteristics (Figs. 15C and D). More or less, the 
stress-strain-curves of the tungsten foils and the W-AgCu laminated composites are very 
similar. This indicates that the tensile properties of the W-AgCu laminated are dominated by 
the plastic deformation of the tungsten foils and that the impact of the AgCu interlayer or the 
impact of residual stresses can be neglected.  
 
In this section, we reported the results of a model system made of mutually insoluble 
materials: W-AgCu. In the next section, a further model system of mutually nonreactive 
materials, tungsten and copper, will be investigated.  
 
 
4.2. W-Cu laminates 
 
This section is organised as follows. The evolution of the Charpy impact properties during 
ageing (10, 100 and 1000 h at 1000°C (1273 K) in vacuum) will be presented first. This 
comprises an analysis of the evolution of the microstructure of the tungsten sheets 
(hardness, SEM) and of the tungsten-copper interface (AES). Afterwards, we will focus on 
the tensile properties of the laminates. Finally the use of W-Cu laminates plates and pipes for 
high heat flux components will be discussed based on the latest results of high heat flux test 
campaigns. 
 
The following sections will address the questions: 

 How do the Charpy impact properties change through annealing for 10, 100 and 1000 
h at 1000°C (1273 K)? 

 Is there a relation between the evolution of the hardness of the tungsten sheets and 
the evolution of the BDT temperature of the laminates? 

 What is the role of the copper interlayer in the unique tensile properties of W-Cu 
laminates? 

 What is the performance of W-Cu laminated pipes in a high heat flux test? 
 
 
4.2.1. Charpy impact properties of W-Cu laminates 
 
The aim of this section is to identify the evolution of the fracture mechanisms of aged W-Cu 
laminated composites. This is undertaken by a comparison of the evolution of the 
microstructure with the evolution of the Charpy impact properties.  
 
The laminated specimens consist of 20 layers of tungsten and 19 layers of copper foil, and 
represent the L-S crack system, KLST-type. Four material conditions are considered: (i) the 
as-produced condition and the annealed conditions (ii) 10 h, (iii) 100 h, and (iv) 1000 h at 
1000°C (1273 K) in vacuum. 
 
 
4.2.1.1. Evolution of the microstructure of the tungsten sheets (hardness, SEM, AES) 
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Prior to the tests, we expected the following distribution of the curves. Curve “1” represents 
the case where the deformation mechanisms associated with the ultrafine-grained 
microstructure (i.e. ordered glide of screw dislocations) are dominant. Curve “3” represents 
the case where deformation mechanisms associated with coarse-grained thin foils (i.e. 
dislocation annihilation or respectively dislocation absorption/transmission at the bcc-fcc 
interface) are dominant. We had the expectation that through annealing the Charpy impact 
properties severely deteriorate, as the deformation mechanisms associated with the ultrafine-
grained microstructure are no longer present, and the deformation mechanisms associated 
with coarse-grained thin foils do not yet exist in their full extent.  
However, the results plotted in Fig. 19 yield a different picture: with increasing annealing time 
the Charpy impact properties gradually worsen, and the BDT temperature gradually 
increases. This result allows for a declaration of a best case limit (curve “1”) and a worst 
case limit (curve “3”). The definition of curve “3” as the worst case limit seems to be 
reasonable and rational, as the coarse-grained microstructure of the tungsten sheets (1 h at 
1800°C (2073 K)) cannot become any further coarse-grained by further annealing. This 
finally gives the result that the Charpy impact properties of the annealed W-Cu laminates lie 
in between the limits bounded by curve “1” and curve “3”. 
 
By comparing the results of the Charpy impact properties of the as-produced W-AgCu 
laminates (curve “1”) to those of the as-produced W-Cu laminates (curve “2”), further 
interesting insight of the deformation mechanisms can be derived. W-AgCu and W-Cu 
laminated composites have both in common that their tungsten-interlayer interfaces are 
sharp. Both are model systems comprised of mutually insoluble materials. Furthermore, they 
have in common that the contribution of the interlayer (AgCu or Cu) to the total amount of the 
dissipated energy can be neglected. Therefore, their main distinguishing characteristic is the 
state of the microstructure of the tungsten sheets. In the case of the W-AgCu laminate, the 
joining technology was brazing and the joining-process-caused heat treatment experienced 
by the tungsten plies was 1 min at 800°C (1073 K). In the case of the W-Cu laminate, the 
joining technology was diffusion bonding, and the joining-process-caused heat treatment 
experienced by the tungsten plies was 1 h at 900°C (1173 K).  
This result shows that during a heat treatment of 1 h at 900°C (1173 K) the as-rolled lattice 
defect arrangements change, which severely impacts on the mechanical properties of the 
tungsten sheets and thus the laminates. This is a further hint of the temperature sensitivity of 
a cold-rolled, ultrafine-grained microstructure and shows the necessity of developing a 
microstructure stabilised tungsten material.  
In other words, curve “1” represents a laminate made of tungsten sheets in their as-received 
condition, while curve “2” represents a laminate in an early state of recovery/recrystallisation. 
Therefore, the differences between the Charpy impact properties of the as-produced W-
AgCu laminate (curve “1”) and the as-produced W-Cu laminate (curve “2”) can be traced 
back to the recovery/recrystallisation processes.  
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In this section we presented and discussed the evolution of the Charpy impact properties of 
W-Cu laminates. In the next section, we will show how an activation energy of the annealing 
kinetics can be derived from Fig. 16. 
 
 
4.2.1.3. Quantification of annealing kinetics of the tungsten foils: activation energy 
 
The previous sections demonstrated that the tungsten-copper interface stays sharp even 
after annealing for 1000 h at 1000°C (1273 K). Therefore, the assumption that there is no 
lattice diffusion and even no considerable grain boundary diffusion of tungsten in copper and 
vice versa seems reasonable. In the case that the tungsten foils are not affected by any 
diffusion interaction with copper, they can be regarded as individual foils and their 
recrystallisation kinetics can be derived from the evolution of the hardness (Fig. 16). 
In particular, the activation energy for half recrystallisation, ܳ௑	ୀ	଴.ହ, and the apparent 
activation energy for half of the total hardness loss, ܳ∆ு௏ ଶ⁄ , are important to describe the 
annealing kinetics, and are an indirect measure of the recrystallisation mechanisms.  
Using the Johnson–Mehl–Avrami–Kolmogorov (JMAK) plots, it is possible to calculate the 
time where 50 % of the volume is recrystallised, ݐ଴.ହ. By plotting	݈݊ሺݐ଴.ହሻ against 1 ܶ⁄ , the 
slope of the fitted line is the activation energy for half recrystallisation, ܳ௑	ୀ	଴.ହ. 
A further approach to quantify the annealing kinetics is obtained by the time when half of the 
hardness loss has occurred [50] 
 

ܸܪ∆ 2⁄ ൌ 	 ሺ	ܪ ௔ܸ௦ି௥௢௟௟௘ௗ ൅	ܪ ௥ܸ௫௫ሻ 2⁄ .     (6) 
 
In Eq. (6) ܪ ௥ܸ௫௫ is the hardness of the fully recrystallised state. For the tungsten foils 
assessed here, the hardness in the as-rolled condition, ܪ ௔ܸ௦ି௥௢௟௟௘ௗ, is unknown. So instead 
we used the hardness of the as-received condition which gave a value of ܪ ௔ܸ௦ି௥௘௖௘௜௩௘ௗ = 600 
HV0.1. Note that due to this modification our calculated activation energy may be 
overestimated. In the fully recrystallised state, the hardness reaches a value of ܪ ௥ܸ௫௫ = 400 
HV0.1 [31]. The dependence of the time of half of the hardness loss, ݐ∆ு௏ ଶ⁄ , on the annealing 
temperature closely follows an Arrhenius relation 
 

ு௏∆ݐ ଶ⁄ ൌ 	 ு௏∆∗ݐ ଶ⁄ ∗ exp ቄ
ொ∆ಹೇ మ⁄

ோ்
ቅ     (7) 

 
with a prefactor, ݐ∗∆ு௏ ଶ⁄ , the universal gas constant, ܴ = 8.3144598 J/(mol*K), and an 
apparent activation energy for half of the total hardness loss, ܳ∆ு௏ ଶ⁄ . For an annealing 
temperature of 1000°C (1273 K) the time of half of the hardness loss is 200 h (Fig. 16), and 
for an annealing time of 1250°C (1523 K) it is 1 h (Fig. 10 in Ref. [31]). By making use of 
these data and Eq. (7) an apparent activation energy for half recrystallisation of 341.6 kJ/mol 
(or 3.54 eV) can be derived. 
The obtained activation energy for half recrystallisation allows extrapolation of the 
recrystallisation kinetics to lower temperatures. Accordingly, at 900°C (1173 K) and 800°C 
(1073 K), half recrystallisation would not be achieved before 0.36 years or 9.3 years 
respectively. These values are much lower than those obtained from hot-rolled plates, as 
discussed in Ref. [50], demonstrating clearly the accelerating effect of the stored energy on 
the recrystallisation kinetics of severely cold-rolled tungsten foils.  
 
Table 7 
Comparison of (apparent) activation energies: recrystallisation, grain growth after recrystallisation, bulk self-
diffusion and grain boundary diffusion. 

Type of activation 
energy 

Value in [kJ/mol] 
([eV]) 

Material Reference 
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Half recrystallisation 579 (6.01) Hot-rolled W plate, 
67 % thickness 
reduction 

Alfonso et al. [51] 

Half recrystallisation 352 (3.65) Hot-rolled W plate, 
90 % thickness 
reduction 

Alfonso et al. [50] 

Half of the hardness 
loss 

341.6 (3.55) Severely cold-rolled 
W foils 

This study 

Grain growth after 
recrystallisation 

396 (4.1) hot-rolled W plate, 75 
% thickness 
reduction 

Yuan et al. [52] 

Bulk self-diffusion 502 – 628 (5.21 – 
6.52) 

W Lassner and 
Schubert [4] 

Grain boundary 
diffusion 

377 – 460 (3.91 – 
4.77) 

W Lassner and 
Schubert [4] 

 
 
Table 7 gives a comparison of several activation energies for recrystallisation obtained from 
different tungsten plates. It can be found that the activation energy decreases with increasing 
degree of deformation.  
The activation energy for half recrystallisation of a hot-rolled tungsten plate with a thickness 
reduction of 67 % is in the range of bulk self-diffusion in tungsten [51]. However, the 
activation energies for half recrystallisation of a hot-rolled tungsten plate with a thickness 
reduction of 90 % [50] and the activation energy for half of the total hardness loss of a 
severely cold-rolled foil are in the range of grain boundary diffusion in tungsten.  
 
In this section, we have analysed the Charpy impact properties of W-Cu laminates. In the 
next section, the focus will be on their tensile properties. 
 
 
4.2.2. Tensile properties of W-Cu laminates 
 
The aim of this section is to present and discuss the tensile behaviour of W-Cu laminated 
composites.  
 
The material was built of three layers of 100 m-thick tungsten foil (as-received condition) 
and two layers of 100 m-thick copper foil, brazed together into a laminate with a total 
thickness of 0.5 mm and thus the laminate consisted of 60 vol % W. From this laminate, 
tensile test specimens were cut by spark erosion. The samples were aligned in such a way 
that the tensile loading direction was congruent with the rolling direction of the tungsten foils 
(L-direction, 11-direction). 
 
This section is organised as follows: first, the four stages of deformation associated with W-
Cu laminates are briefly described. This is followed by a comparison of the tensile properties 
of tungsten foils and W-Cu laminated composites. Finally the role of the copper interlayer on 
the unique tensile properties of W-Cu laminates is discussed.  
 
 
4.2.2.1. Four stages of deformation  
 
Studies on the tensile behaviour of W-Cu and W-CuCrZr (CuCrZr: 0.5 – 1.2 wt % Cr, 0.03 – 
0.3 wt % Zr, Cu balance) laminates have been reported by Hoffmann and Weeton [22] and 
Hohe et al. [24].  
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condition (1 h at 900°C (1173 K) in vacuum). The motivation for the annealing of the 
laminates was to produce a tungsten phase that represents a microstructure in an early state 
of recovery/recrystallisation and which is at least somehow similar to the microstructure of 
the tungsten sheets of the diffusion bonded W-Cu laminates used for the Charpy impact tests 
in the previous section. Furthermore, the tensile properties of W-Cu laminated composites 
tested at 300°C (573 K), 400°C (673 K), 500°C (773 K), and 650°C (923 K) are displayed 
(Fig. 23B). 
 
The room-temperature tensile properties of tungsten foils and of W-Cu laminated composites 
in their as-produced condition were reported in Refs. [34] and [53]. The tensile testing of the 
annealed W-Cu laminates is first reported here. The tests were performed in displacement 
controlled mode at an extension rate of 0.1 mm/min. Longitudinal strain was measured using 
strain gauges that were positioned directly on the sample.  
 
The tensile properties are displayed in Figs. 23A and B, where the engineering stress is 
plotted against the engineering strain. The black curve in Fig. 23A represents 100 m-thick 
tungsten foils in their as-received condition, tested at room temperature. It is important to see 
that the tungsten foils show plastic deformation at room temperature. These foils are thus an 
example of a monolithic tungsten material that exhibits room-temperature ductility. 
The room-temperature tensile properties of W-Cu laminates in their as-produced condition 
are displayed by the red line in Fig. 23A. The ultimate tensile strength is 916 MPa and the 
total elongation to fracture, ܣ௧, is 15.5 % [53]. This elongation at room temperature is a 
remarkable result and raises the question of what mechanisms cause this extreme 
elongation.  
Let us first consider the four stages of deformation of W-Cu laminated composites. As shown 
in Fig. 22, the W-Cu laminate is in its stage 2 condition (the tungsten phase is in the elastic 
regime and the copper phase is in the plastic regime) shortly after the beginning of the 
tensile testing. With increasing tensile loading, the stress in the tungsten phase increases, 
and finally, the tungsten phase also is in its plastic regime. This point refers to the end of 
stage 2 and the beginning of stage 3. In Fig. 23A, the beginning of stage 3, thus the point 
from which both the copper phase and the tungsten phase are in their plastic regime, is 
marked by a red arrow, numbered as “1”. This arrow gives the position at which tungsten 
starts to yield. The question that now arises is why the yielding tungsten phase can reach up 
to 15 % plastic deformation (elongation to fracture, ܣ). This behaviour is extraordinary and 
requires further explanation.  
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The copper plies are not affected by the fracturing of the tungsten plies. They stay intact and 
can bear further loads. The arrow numbered as “3” gives the position at which only the 
copper plies contribute to the stress-strain curve. The smooth decrease of the stress-strain 
curve represents the necking of the copper plies. The tensile test was stopped at a total 
elongation to fracture, ܣ௧, of about 2 %, as no more information could be gained from the 
curve. 
 
The tensile properties of W-Cu laminates in their annealed condition (1 h at 900°C (1173 K) 
in vacuum) can help to explain the room-temperature properties (e.g. total elongation to 
fracture, ܣ௧, of 15.5 %) of W-Cu laminates in their as-produced condition.  
It can be clearly seen in Fig. 23A that the fracturing of a tungsten ply is accompanied by a 
yield drop in the stress-strain curve. We propose the hypothesis that the fracturing of at least 
one tungsten ply is always accompanied by a yield drop. The general validity of this 
hypothesis is confirmed by the results of the three-point bending tests, as shown in Fig. 4. In 
Fig. 4, each yield drop is associated with the fracturing of one tungsten ply.  
One may assume that the hardening behaviour of the red curve is caused by multiple cracks 
in the tungsten sheets, and that the copper phase may be able to sustain the load up to the 
final failure. However, we do not think that this is a reasonable explanation, as cracking of a 
tungsten sheet is always accompanied by a yield drop, and in the red curve, no plastic 
instabilities can be found.  
A further important issue is the impact of recovery/recrystallisation. The red curve represents 
a laminate made of tungsten sheets in their as-received condition, while the blue curve 
represents a laminate with an advanced recovered/recrystallised tungsten phase. The 
differences in the tensile properties of the as-produced W-Cu laminate (red curve) and the 
annealed laminate (blue curve) can therefore be traced back to recovery/recrystallisation 
processes. This in turn clearly demonstrates that the deformation mechanisms associated 
with the as-produced laminates strongly depend on as-rolled lattice defect arrangements. 
Note that the same argument was used when describing the evolution of the Charpy impact 
properties of W-Cu laminates through annealing (Fig. 19). 
 
Table 8 
Comparison of the room-temperature tensile properties of selected tungsten foils and W-Cu laminated 
composites. 
 W-Cu laminates 

(Hoffmann and 
Weeton [22]) 

W-Cu laminates, 
as-produced 
condition 

W-Cu laminates, 
annealed 
condition 

W-foil Thickness 0.127 mm 0.1 mm 0.1 mm 
Condition 4 h at 982°C 

(1255 K) 
As-received 1 h at 900°C 

(1173 K) 
(Total) 
elongation to 
fracture 

 - % ௧ = 2ܣ approx. zero ܣ

W-Cu laminate 
(> 20 vol % W) 

(Total) 
elongation to 
fracture 

 approx. zero ܣ % ௧ = 15.5ܣ approx. zero ܣ

 
 
An earlier study on the room-temperature tensile properties of W-Cu laminated composites 
was performed by Hoffmann and Weeton [22]. It is worth comparing their results with ours, to 
identify similarities and differences (Table 8). 
Hoffmann and Weeton used tungsten foils with a thickness of 0.127 mm. The composites 
were fabricated by vacuum hot pressing the stack of foils at 982°C (1255 K) for 4 h. Tensile 
tests at room temperature were performed on tungsten foils that experienced the same heat 
treatment as the laminated composite (982°C (1255 K) for 4 h). The average tensile strength 
of the tungsten foil was 1482 MPa, and the specimen exhibited essentially zero elongation to 
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In this section, we discussed the question of which mechanisms cause the extreme total 
elongation to fracture, ܣ௧, of 15.5 %. This question can also be addressed in an alternative 
way: why is the total elongation to fracture, ܣ௧, of a 100 m-thick tungsten foil only 2 %? 
Answering the latter question appears to be much easier. It is well known that elongation 
results are very sensitive to variables, such as specimen geometry, and in particular, the foil 
thickness. It is also well known that for thin foils under tension, the necking process causes 
an early onset of plastic instability. With increasing foil thickness, the onset of plastic 
instability is retarded.  
Based on these considerations, one may assume that a tungsten sheet with the same 
microstructure as the 100 m-thick tungsten foil, but with a thickness in the range of that of 
the W-Cu laminate, may also be able to undergo a total elongation to fracture, ܣ௧, of 15.5 % 
at room temperature. Furthermore, these considerations allow us to make an assumption of 
the role of the copper interlayer, namely, that it may retard the onset of the plastic instability 
that is caused by the necking process under tension loading.  
However, we think that this is not the only explanation. The reason for this assumption can 
be seen in Fig. 15B, where the tensile properties of W-AgCu laminated composites are 
displayed. If the total elongation to fracture, ܣ௧, of 15.5 % at room temperature is only caused 
by the thickness of the sample, then the total elongation to fracture of W-AgCu laminated 
composites should be in the same range. However, this is not the case. Thus, the origin of 
the total elongation to fracture, ܣ௧, of 15.5 % at room temperature may be traced back to 
other mechanisms.  
A further reason may be the ideal state of stress configuration of the tungsten phase. As the 
tungsten phase is in compression mode for laminates in their as-produced condition 
(hydrostatic stress), the tungsten phase reaches its yield criterion (deviatoric stresses) at a 
very low ߪଵ stress value (Fig. 21). Due to the different melting temperatures of the interlayer 
of a W-Cu laminate (melting temperature of Cu is 1084°C (1357 K)) and a W-AgCu laminate 
(melting temperature of AgCu is 780°C (1053 K)), the residual stresses in the as-brazed 
conditions are different. From this, it follows that the residual stresses in the tungsten phase 
of a W-Cu laminated composite are higher than that of a W-AgCu laminate. This impacts the 
tensile properties in the following way: first, the onset of yielding in a material with high 
hydrostatic compression stresses is at a lower ߪଵ stress value compared to a material that 
possessed low residual compression stresses, and second, the total elongation to fracture is 
higher for materials that possess high compression stresses in their as produced condition 
compared to materials that possessed low residual compression stresses in their as 
produced condition. The results of the tensile tests of W-AgCu and W-Cu laminates confirm 
these assumptions (Fig. 15B and Fig. 23B). Additionally, comparing the fracture surface of 
the tungsten layers in Fig. 15B to the fracture surface in Fig. 24 the different tungsten 
behaviour of these two composites is obvious. 
These considerations also allow us to make an assumption on the role of the copper 
interlayer and tungsten-copper interface. The copper interlayer causes residual compression 
stresses in the tungsten phase during cooling down after brazing. These compression 
stresses are beneficial for the tungsten phase and for its ability to undergo plastic 
deformation. If delamination in the tungsten-copper interface occurs, then locally the residual 
stresses in the tungsten phase are severely decreased. It is assumed that the tungsten 
sheets of the laminate may then behave like individual tungsten foils. Thus, in the case of a 
delamination event, the total elongation to fracture, ܣ௧, of the W-Cu laminates, may be in the 
range of the total elongation to fracture of a single tungsten foil.  
We finally arrive at the conclusion that the mechanisms for the 15.5% total elongation to 
fracture, ܣ௧, at room temperature are not yet understood in detail. Nevertheless, we think that 
we have provided some interesting results that may act as motivation for further systematic 
tests. 
 
In this section, we discussed the tensile properties of tungsten laminated composites. In the 
next section the use of laminates in high heat flux components will be discussed.  
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In the next sections, we will show how W-Cu laminates can be used for the manufacturing of 
successful high heat flux components.  
 
 
4.2.3.2. Fabrication and testing of mockups: W-Cu laminates used as functional 
tungsten 
 
W-Cu laminated composites allow for tailoring thermo-physical properties, such as (i) the 
thermal conductivity, ݇, and (ii) the coefficient of thermal expansion, ߙ, (CTE). This makes W-
Cu laminates an interesting functional interlayer material. 
 
Common to all contemporary divertor concepts is an interlayer at the boundary between the 
tungsten armour and the cooling structure. It has been demonstrated that an effectively 
designed interlayer can produce dramatic gains in power handling [59]. 
 
There are mainly two reasons to use a W-Cu laminate as an interlayer: (i) the coefficient of 
thermal expansion can be adjusted to lie in-between the limits bounded by the coefficient of 
thermal expansion of the tungsten armour (4.5 ppm/K, 20–100°C (293–373 K)) and the 
cooling structure (e.g. CuCrZr: 16.72 ppm/K, 20–100°C (293–373 K)), and (ii) due to the 
anisotropic thermal conductivity of the laminate (the thermal conductivity in the in-plane 
direction is higher than in the through-plane direction), the heat load can be more gently 
distributed in the cooling structure. However, to effectively design the W-Cu interlayer, 
knowledge about the evolution of the properties with temperature and the change of the 
properties with volume fraction are essential. This is why we will now re-evaluate the data 
from two self-contained studies on the thermo-physical properties of laminated composites 
from Seiss et al. [9] and Hohe et al. [24]. The result obtained and the mechanisms identified 
by these studies are useful in developing successful plasma-facing components. 
 
Both studies show that the homogenised thermal conductivity both in the in-plane (linear rule 
of mixture, Eq. (1)) and in the through-plane direction (reciprocal rule of mixture, Eq. (2)) can 
be determined using the rules of mixture. The determination of the effective thermal 
conductivity is an entirely linear homogenisation problem, for which the rules of mixture 
provide rigorous mathematical bounds. However, the determination of the homogenised 
coefficients of thermal expansion is not a linear homogenisation problem. This is mainly due 
to two reasons: (i) tungsten has isotropic elastic constants while copper does not, and (ii) the 
copper phase may be in its plastic regime. This is why the rules of mixture fail to estimate the 
coefficients of thermal expansion. 
Seiss et al. [9] performed several experiments on Mo-Cu multilayer materials that are used 
as heat spreader material in the field of thermal management for power electronics. They 
reported a peculiar behaviour of the coefficient of thermal expansion, which can be 
summarised as follows: (i) the homogenised coefficients of thermal expansion are found 
outside the region bounded by the rules of mixture (Fig. 27A), (ii) with increasing 
temperature, the coefficient of thermal expansion first decreases then gently increases (Fig. 
28A), and (iii) the coefficient of thermal expansion changes during thermal cyclic loading [12]. 
The experimental results of Seiss et al. have recently been qualitatively confirmed by a 
numerical homogenisation analysis by Hohe et al. [24].  
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the crack initiates during the cooling period, starting from the heat-loaded surface. However, 
the measured maximum surface temperatures (Fig. 33), as well as the duration of the 
applied loads, suggest that it is not very likely that recrystallisation in the tungsten armour 
took place. Another explanation for the origin of the “macro-crack” may consider the different 
coefficients of thermal expansion of the tungsten armour and the cooling structure. For the 
cooling pipe, a W-Cu laminate pipe was used. From Fig. 27, it can be seen that the 
coefficient of thermal expansion in the in-plane direction of a W-Cu laminate with 40 vol % 
Cu is nearly equal to that of pure tungsten. Therefore, this argument does not seem likely.  
A possible way to overcome the issue of “main crack” may be the use of cold-rolled tungsten 
plates. One may assume that a “macro crack” will not appear when cold-rolled or severely 
cold-rolled tungsten plates are used for the monoblocks, as it has been demonstrated that 
cold-rolled plates possess a high crack growth resistance that increases with increasing 
degree of deformation [6]. 
 
A summary of selected high heat flux test campaigns is given in Table 9. To put the applied 
heat loads into perspective, some benchmark heat loads are given: sun on a beach: 0.001 
MW/m2; space shuttle re-entry: 0.1 MW/m2; rocket nozzle throat: 5 MW/m2; and high power 
electronic devices: 5–50 MW/m2 [65]. 
 
Table 9 
Summary of the results of selected high heat flux test campaigns. All mockups were made of W-Cu laminated 
composites. The laminates were either used as functional or structural tungsten. 

Mockup 
name 

Heat 
load in 
[MW/m2]

Component: 
Armour 
material / 
interlayer / 
structural 
part 

W-Cu 
laminate 
used as: 

Coolant HHF test 
device 

Result Reference

Saddle 
mockup 

6 W / W-Cu 
laminate / 
austenitic 
steel 
(1.4571, 
316Ti) 

Functional 
interlayer 
material 

Water, 
RT, 10 
bar, 10 
m/s, 
1.13 l/s 

GLADIS, 
IPP, 
Germany

Cu 
phase 
started 
melting 

Reiser et 
al. [55] 

W-Cu /Mo-
Cu 
laminated 
pipe 

4.5 Tests on 
the bare 
pipe 

Structural 
part 

Water, 
RT, 
1.26 
bar, 9 
l/min 

Solar 
furnace, 
PSA, 
Spain 

Loss of 
the 
black 
surface 
coating 

Reiser et 
al. [55] 

W-Cu 
laminated 
pipe 

28 Tests on 
the bare 
pipe 

Structural 
part 

Water, 
RT, 10 
bar, 10 
m/s, 
1.55 l/s 

GLADIS, 
IPP, 
Germany

Onset 
of 
boiling 
crisis 

This study

Monoblock 
mockup 

13 W / Cu / W-
Cu laminate 

Structural 
part 

Water, 
RT, 10 
bar, 10 
m/s, 
1.5 l/s 

GLADIS, 
IPP, 
Germany

“macro-
crack” 
in W 
armour 

This study

 
 
Up to this point, only model systems comprised of mutually insoluble materials have been 
investigated. In the next section, laminates that show reactivity between tungsten and the 
interlayer will be analysed. 
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The first point to mention is that the measurements of the AES line scans from Fig. 43 fit 
perfectly well with the data from the phase diagram. The phase diagram displays a maximum 
solubility of tungsten in palladium at 1100°C (1372 K) and below of 21.5 at %. This is more or 
less the value which is found in the Pd-rich phase after annealing for 1000 h at 1000°C (1273 
K). Furthermore, the phase diagram reveals that there is only small solubility of palladium in 
tungsten. This statement is again confirmed by the line scans in Fig. 43, represented by very 
straight vertical lines at the palladium-tungsten interfaces. The solubility of tungsten in 
palladium and the very low solubility of palladium in tungsten at the relevant temperatures 
are also confirmed by the coloured thermal maps in Fig. 44. 
 
Let us now focus on the W-rich phase. The lattice diffusion of palladium into tungsten is very 
slow and will be neglected in the further discussion. However, grain boundary diffusion will 
be taken into account. Astonishingly, the microstructure of the W-rich phase is already 
coarse-grained after a heat treatment of 10 h at 1000°C (1273 K). This distinguished the W-
rich phase of the W-Pd laminate from the W-rich side of all the other laminates reported in 
this paper (i.e. W-Cu, W-V, W-Ti). The reason for this behaviour is unknown. One may 
speculate that the grain boundary diffusion of palladium into tungsten may enable the easy 
migration of high angle grain boundaries. However, this is just a vague assumption and is not 
grounded on a sound statistical basis.  
 
The Pd-rich phase shows the formation of considerable pores after a heat treatment of 100 h 
and more at 1000°C (1273 K). The pores form a chain and are positioned in the very middle 
of the palladium plies. At first glance, one may speculate that the pores are caused by the 
Kirkendall effect. However, the formation of Kirkendall pores is in general in the interdiffusion 
zone. As the pores are predominantly found in the very middle of the palladium sheets, we 
assume that the explanation for the origin of the pores by the Kirkendall effect is not 
reasonable.  
Moreover, one may speculate that the pores formation is caused by changes in the lattice 
parameter. The lattice parameter, ܽ, has been measured by X-ray measurements. It was 
found that for 0 at % W the lattice parameter is 0.38889 nm. At a value of around 10 at % W, 
a minimum in the lattice parameter has been observed (ܽ = 0.38857 nm) before it starts 
increasing with increasing tungsten content (20.2 at % W: ܽ = 0.38925 nm) [72]. However, 
we do not think that this is a reasonable explanation either.  
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by the Kirkendall effect) can be neglected. These assumptions are confirmed by the 
horizontal line in Fig. 45B, representing the evolution of the hardness of the Cu-rich phase.  
 
In the V-rich side, the hardness increases slightly with increasing annealing time. Volume 
diffusion of tungsten into vanadium and the formation of a V-rich solid solution may not 
contribute to this increase in hardness. As can be seen from the AES line scans in Fig. 40, 
there is no measurable formation of a solid solution. Furthermore, the hardness 
measurement in the V-rich side is not affected by the formation of voids. The manifestation of 
the voids is at the borders of the vanadium interlayers, whereas the position of the 
indentations for the hardness measurements was in the centre of the vanadium layers. This 
leaves grain boundary diffusion of tungsten in vanadium as the only mechanism responsible 
for the slight increase in hardness.  
 
In the Pd-rich phase of a W-Pd laminated composite, the hardness also increases slightly 
with increasing annealing time. However, the mechanisms causing this increase in hardness 
are different from those of the increase in hardness of the V-rich side of a W-V laminate. As 
can be seen from the line scans in Fig. 43, there is the formation of a Pd-rich solid solution, 
caused by volume diffusion of tungsten into palladium. This solid solution formation causes 
an increase in hardness. Note that the measured hardness values were obtained from areas 
that contained voids. So the measured hardness values give a homogenised value of the 
contributions of (i) solid solution and (ii) voids. The sum of both contributions leads to the 
overall increase in hardness.  
 
In summary, the evolution of the hardness can be caused by (i) recovery and 
recrystallisation, (ii) the formation of a solid solution, and (iii) the formation of voids (e.g. the 
Kirkendall effect). The contributions of these mechanisms to the overall hardness differ from 
one laminate to another.  
 
 
4.3.4. Evolution of the Charpy impact properties through annealing 
 
Fig. 46 displays the change of the Charpy impact properties through annealing for 10, 100 
and 1000 h at 1000°C (1273 K) for W-Cu (Fig. 46B), W-V (Fig. 46C), W-Pd (Fig. 46D), and 
W-Ti (Fig. 46E) laminated composites. For details on the evolution of the Charpy impact 
properties of W-Ti laminates, the reader is referred to Ref. [27]. The Charpy impact 
properties of a pure tungsten plate material serve as a benchmark and are shown in Fig. 
46A. Details on the evolution of the microstructure of the annealed plate materials can be 
gained from the IPFs shown in Fig. 47. All samples represent the L-S crack system and are 
of KLST type. 
 
In Sections 4.1. “W-AgCu laminates”, and 4.2. “W-Cu laminates”, we investigated the main 
energy dissipation mechanisms of the model systems W-AgCu and W-Cu. We came to the 
conclusion that the Charpy impact properties are governed by the plastic deformation of the 
tungsten plies. Based on this result, it is necessary to first focus on the tungsten 
microstructure and to discuss the evolution of the Charpy impact properties against the 
background of the evolution of the microstructure of the tungsten plies.  
The following changes of the tungsten microstructure affect the Charpy impact performance: 
(i) recovery and recrystallisation, (ii) the formation of an intermetallic compound, and (iii) the 
formation of a solid solution. 
Note that the volume diffusion of vanadium or palladium into tungsten is very low (see also 
titanium) and can thus be neglected. However, grain boundary diffusion of vanadium or 
palladium into tungsten and the subsequent volume diffusion of tungsten into the vanadium 
or palladium grain boundary layer have to be taken into account.  
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Let us start with the analysis of the evolution of the Charpy impact properties of the annealed 
plate material. Fig. 46A shows that plate material in its as-received condition starts to 
dissipate energy at a test temperature of 400°C (673 K) and reaches the upper shelf energy 
at 500°C (773 K). In the temperature range from 400°C (673 K) to 500°C (773 K), the 
transition from “brittle” to “delamination” takes place, thus we define 450°C (723 K) as the 
best case limit. Through annealing for 10 and 100 h at 1000°C (1273 K), the Charpy impact 
properties do not change significantly. However, after a heat treatment of 1000 h at 1000°C 
(1273 K) or 1 h at 2000°C, the Charpy impact properties are severely deteriorated. From this, 
we infer that the BDT temperature of recrystallised tungsten plates is higher than 1100°C 
(1373 K) and so is the worst case limit.  
 
In Fig. 46B, we also defined a best case and a worst case limit for W-Cu and W-AgCu 
laminated composites. The best case limit results from Charpy impact tests on W-AgCu 
laminates that have been built up of tungsten foils in their as-received condition, whereas the 
worst cases limit was derived from Charpy impact tests on W-AgCu laminates made of 
recrystallised foils (1 h at 1800°C (2073 K)). A comparison of Figs. 46A and B clearly 
demonstrates the improvement of the impact properties of the tungsten laminates compared 
to pure tungsten plate materials in both their as-produced and recrystallised conditions.  
 
The disadvantage of W-Cu laminated composites is that their operation window is limited at 
the upper end by the melting of the copper interlayer, which is at 1084°C (1357 K). Thus, the 
motivation for the W-V and the W-Pd laminates is to produce a multilayer material with an 
enhanced operation window at the upper temperature regime. However, we have to admit 
that these approaches failed, as can be seen in Figs. 46C and D. The Charpy impact 
properties of W-V laminates are good in their as-produced and their annealed for 10 and 100 
h at 1000°C (1273 K) conditions. However, after a heat treatment of 1000 h at 1000°C (1273 
K), the Charpy impact properties were severely deteriorated. This behaviour seems 
reasonable when considering the formation of the Kirkendall pores in the V-rich side (Figs. 
35 and 39). These pores weaken the material’s integrity and define the preferred fracture 
path in the laminated composites. Therefore, the W-V laminates, annealed for 1000 h at 
1000°C (1273 K) do not fracture along the ligament plane, but fail by multiple delaminations 
and the crack path is within the V interlayer and guided by the chains of Kirkendall pores.  
 
The situation for the W-Pd laminates is even worse, and can be seen in Fig. 46D. The impact 
properties are unacceptable in the as-produced condition and are severely worsened after 10 
h at 1000°C (1273 K). 
 
In summary, it can be said that the impact properties of W-Cu laminated composites are 
convincing. However, these laminates are limited at the upper operation window by the 
melting of the copper interlayer. This is why we produced and analysed laminates with a high 
melting point interlayer, such as W-V, W-Pd and W-Ti composites. It can be concluded that 
the impact properties of all these laminates deteriorate through annealing and that at least 
after a heat treatment of 1000 h at 1000°C (1273 K), the mechanical properties are 
unacceptable. Thus, the question of how to produce successful laminates with an increased 
operation window compared to W-Cu laminates arises. A possible strategy will be introduced 
in the next section. 
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formation of recrystallisation nuclei, followed by primary recrystallisation (migration of HAGBs) can be seen. This 
shows that the recovery and recrystallisation behaviour of hot-rolled, coarse-grained tungsten sheets differs from 
that of heavily cold-rolled, ultrafine-grained tungsten sheets. For the latter, grains do not produce recrystallisation 
nuclei, so primary recrystallisation is suppressed and the deformation texture is inherited. 
 
 
4.4. W-W laminates: On the potential of tungsten laminates without interlayers 
 
The idea for the W-W laminated composites is to produce a material that is not a composite 
at all. It is a material that is made of tungsten foils only and no interlayer is used. In this way, 
we intend to produce a bulk material with a thickness of e.g. 1 mm or even more, that 
possesses an ultrafine-grained, cold-rolled microstructure, combined with the melting 
temperature of pure tungsten. Thus, W-W laminates can be regarded as a type of pure 
tungsten. The question is whether W-W laminates can be produced with a quality that allows 
for the determination of Charpy impact properties and whether the mechanical properties are 
still superior compared to the properties of the benchmark plate materials.  
 
Charpy impact test samples with dimensions of 1 mm x 3 mm x 27 mm, without notch, were 
produced by diffusion bonding of 10 layers of 100 m-thick tungsten foil. The bonding 
parameters were 1 h, 35 MPa, and vacuum. No interlayer was used. The bonding 
temperatures were 900°C (1173 K), 1000°C (1273 K), 1100°C (1373 K) and 1200°C (1473 
K). The specimens represent the L-S crack system. 
 
The impact of the joining temperature on the tungsten-tungsten interface can be seen in Fig. 
48A. With increasing joining temperature, the quality of the interface continuously increases. 
However, with increasing joining temperature, thermally activated processes, such as 
recovery and recrystallisation, become more important. Thus, the sample joint at 1200°C 
(1473 K) shows the most coarse-grained microstructure compared to the microstructures of 
the samples joint at lower temperatures. This clearly demonstrates the necessity for not only 
producing an ultrafine-grained microstructure, but also for finding a way to stabilise this 
microstructure towards thermal energy.  
 
Nevertheless, the W-W laminates that have been diffusion bonded at 1200°C (1473 K) have 
been characterised by means of Charpy impact tests, and the results can be seen in Fig. 
48B. For details on the benchmark properties obtained from a hot-rolled and a recrystallised 
plate, the reader is referred to Ref. [7]. It is very encouraging and convincing to see that (i) 
W-W laminates are testable and (ii) their impact properties are superior compared to the 
properties of the benchmark materials. The sample tested at 300°C (573 K) can be seen in 
Fig. 48B.  
 
This promising result may act as a motivation for further in-depth investigations of W-W 
laminates. The production of W-W laminated pipes by a hot isostatic pressing process is 
envisaged in the next step. However, the development of W-W laminated composites must 
necessarily also contain the development of a thermal-stabilised ultrafine-grained 
microstructure.  
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 What are the main energy dissipation mechanisms in tungsten laminated 
composites (plastic deformation of the tungsten foils, plastic deformation of 
the interlayer sheets, creation of new surfaces)? 
The main energy dissipation mechanism has been identified as the plastic 
deformation of the tungsten foil (Fig. 5B). Further contributions to the total amount of 
dissipated energy, such as the plastic deformation of the interlayer or the creation of 
new surfaces, are of secondary importance. 

 
 What is the origin of the anisotropy of the Charpy impact properties (L-S, LT-S, 

T-S)?  
The fracture and deformation behaviour of W-AgCu laminates is dominated by the 
mechanical response of the tungsten foils. The anisotropy of the Charpy impact 
properties can be traced to microstructural features of the tungsten foils, such as the 
preferred cleavage plane, crystallographic texture and the grain size anisotropy (Fig. 
3). 

 
 What is the reason for the improved Charpy impact properties of recrystallised 

W-AgCu laminates compared to their recrystallised plate material 
counterparts? 
The BDT of the recrystallised W-AgCu laminates occurs at a temperature that is at 
least 600 K lower than the BDT temperature of the recrystallised plate material 
counterparts. What distinguishes the recrystallised laminate from the recrystallised 
plate material is the fact that the laminated composite possesses several bcc–fcc 
interfaces. These interfaces may allow the absorption and transmission of 
dislocations. We assume that the absorption/transmission of dislocations at the 
interfaces supports the nucleation of further shielding dislocations at the crack tip 
(Fig. 14B). This mechanism may decrease the BDT temperature. 

 
 What are the tensile properties of W-AgCu laminated composites? 

The tensile properties in terms of total elongation to fracture, ܣ௧, of these laminates is 
quite similar to the tensile properties of pure 100 m-thick tungsten foils (Figs. 15A 
and B). This result may be traced back to two mechanisms: (i) during tensile testing, 
delamination at the interface between tungsten and the AgCu interlayer may occur 
and thus the tungsten sheets of the laminate behave like individual foils, and (ii) the 
residual stresses in the W-phase of a W-AgCu laminate in its as-produced condition 
are not high enough to cause an improvement of the tensile properties. 

 
 
Returning to the questions from Section 4.2. “W-Cu laminates”, we can draw the following 
conclusions: 
 

 How do the Charpy impact properties change through annealing for 10, 100 and 
1000 h at 1000°C (1273 K)? 
In Fig. 19, the graph representing the properties of the as-produced W-AgCu 
laminates is referred to as “1” (deformation mechanisms associated with the ultrafine-
grained microstructure are dominant), and the graph representing the properties of 
the recrystallised W-AgCu laminates is referred to as “3” (deformation mechanisms 
associated with coarse-grained thin foils are dominant).  
The evolution of the Charpy impact properties through annealing can be described as 
follows: with increasing annealing time, the Charpy impact properties gradually 
worsen and the BDT temperature gradually increases. This finally gives the result that 
the Charpy impact properties of the annealed W-Cu laminates lie in between the 
limits bounded by curve “1” (best case limit) and curve “3” (worst case limit) (Fig. 19). 
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 Is there a relation between the evolution of the hardness of the tungsten sheets 
and the evolution of the BDT temperature of the laminates? 
By plotting the BDT temperature, ஻ܶ஽், against the hardness (HV0.1), a linear relation 
of the form 
 

஻ܶ஽்ሺ0.1ܸܪሻ ൌ ܭ	1539 െ 1.9 ∗  (5)     0.1ܸܪ
 
can be derived. The linear relation between the BDT temperature and the hardness 
comes as no surprise, as both the relation between the BDT temperature and the 
grain size and the relation between the hardness and the grain size can be expressed 
by a Hall-Petch relation. 

 
 What is the role of the copper interlayer in the unique tensile properties of W-

Cu laminates? 
W-Cu laminated composites possess a total elongation to fracture, A୲, of 15.5 % in a 
tensile test at room temperature. We discussed two possible contributions of the 
copper interlayer: (i) it is well known that elongation results are very sensitive to 
variables, such as the foil thickness. It is also well known that for thin foils under 
tension, the necking process causes an early onset of plastic instability. With 
increasing foil thickness, the onset of plastic instability is retarded. With respect to the 
W-Cu laminates, we assume that the copper phase contributes to the retardation of 
the onset of the plastic instability that is caused by the necking process under tension 
loading. Note that if this assumption is true, then a delamination at the tungsten-
copper interface may severely deteriorate the tensile ductility of the laminate. (ii) The 
copper phase causes residual stresses. The residual stresses that are established 
during the synthesis of the materials are of compression type in the tungsten phase 
(hydrostatic stresses). During tensile testing, the tungsten phase reaches its yield 
criterion (deviatoric stresses) at a very low σଵ stress value (Fig. 21). Thus, for the 
tungsten phase, a compression stress perpendicular to the tension stress direction 
can be regarded as the ideal state. Again, in the case of a delamination event 
between the tungsten and the copper interlayer, the residual stresses locally vanish 
and the tensile properties of the laminate may severely deteriorate. Furthermore, the 
deterioration of the tensile properties after a heat treatment of 1 h at 900°C (1173 K) 
in vacuum clearly demonstrates that the mechanical response of the laminates is 
governed by the plastic deformation of the tungsten plies (Fig. 23A). So the most 
important issue is the plastic deformation of the tungsten plies; residual stresses and 
sheet thickness are of secondary importance.  

 
 What is the performance of W-Cu laminated pipes in a high heat flux test? 

W-Cu laminated composites can be used as both functional tungsten (heat spreader, 
CTE mismatch compensator, structural pipe reinforcement (Figs. 29 and 30)), and 
structural tungsten (pipe for a cooling medium (Fig. 26)). Laminated pipes have been 
tested in GLADIS. The pipe failed at 28 MW/m², due to the onset of the boiling crisis, 
the so-called critical heat flux (Fig. 26). 
 

 
 
In Section 4.3. “W-V and W-Pd laminates”, we analysed composites with a high melting point 
interlayer. Our investigations yielded the following results: 
 

 What are the diffusion mechanisms in W-V and W-Pd laminated composites? 
For the V-W system, the values of the diffusion coefficients (i.e. the tracer diffusion 

coefficients, *
VD  and *

WD , as well as for the interdiffusion coefficient, 
~

D ) are 
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decreased by ten orders of magnitude when passing from pure vanadium to pure 
tungsten (Fig. 37). Such a strong variation of the diffusion coefficients results in 
extremely asymmetric concentration profiles during interdiffusion experiments. 
Accordingly, it can be expected that in V-rich regions of the sample the concentration 
profiles are quite extended, while in the W-rich part of the alloys practically no 
transport by (volume) diffusion occurs. For the Pd-W system and in view of the self-
diffusion coefficients [68] we expect that the interdiffusion in the Pd-rich fcc phase is 
by several orders of magnitude faster than in the W-rich bcc phase. This assumption 
is corroborated by the AES diffusion profiles. 

 
 How can AES analyses as well as thermodynamic and kinetic considerations 

contribute to an in-depth understanding of the evolution of the tungsten-
interlayer interface? 
W-V laminates: On the W-rich side of the laminate, vanadium penetrates the 
microstructure only along the network of grain boundaries. This causes a detachment 
of single tungsten grains from the tungsten bulk (Fig. 38).  
W-Pd laminates: It is suggested that the system has an intermediate Pd3W-phase 
formed below 900°C (1173 K). According to the present state-of-the-art it is unknown 
up to which temperature the Pd3W-phase is stable. Based on the results of our 
ageing experiments (up to 1000 h at 1000°C (1273 K)), we confirm that the 
intermetallic Pd3W-phase is not stable at 1000°C. 

 
 How do the Charpy impact properties of W-V and W-Pd laminates change 

through annealing for 10, 100 and 1000 h at 1000°C (1273 K))? 
The impact properties of W-Cu laminated composites are convincing. However, these 
laminates are limited at their upper operation window by the melting of the copper 
interlayer. This is why we produced and analysed laminates with a high melting point 
interlayer, such as W-V, W-Pd and W-Ti composites. It can be concluded that the 
impact properties of all these laminates deteriorate through annealing and that at 
least after a heat treatment of 1000 h at 1000°C (1273 K), the mechanical properties 
are unacceptable (Fig. 46). 

 
 
Finally, in Section 4.4. “W-W laminates”, the potential of W-W laminates has been 
investigated. The feasibility study can be summarised as follows: 
 

 Can W-W laminates be produced at such a high quality that Charpy impact 
properties can be determined and are these properties still superior compared 
to the properties of benchmark plate materials? 
A W-W laminate is a material that is made of tungsten foils only and no interlayer is 
used. A stack of tungsten foils was diffusion bonded for 1 h and 35 MPa in vacuum. 
Samples bonded at 1200°C (1473 K) have been characterised by means of Charpy 
impact tests. Their BDT occurs at a lower temperature compared to the BDT of the 
benchmark plate materials.  

 
We finally arrive at the main conclusion, which is that the mechanical response of the 
laminates is governed by the plastic deformation of the tungsten plies. The plastic 
deformation of the tungsten plies is enhanced and supported by beneficial residual stresses 
(see tensile properties of W-Cu laminates, Fig. 23A) and dislocation-interface interactions 
(see BDT of recrystallised laminates, Fig. 8B). 
 
 
6. Outlook 
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In this paper we presented some findings related to the mechanical behaviour of laminated 
composites. One major result yielded by this paper is that the plastic deformation and 
fracture of tungsten laminated composites are governed by the plastic deformation of the 
tungsten plies. Therefore, the main key to understand the improved mechanical properties of 
tungsten laminated composites compared to their pure tungsten bulk counterparts is to 
understand the mechanisms of plastic deformation and fracture of severely cold-rolled, 
ultrafine-grained tungsten sheets.  
The deformation mechanisms of ultrafine-grained tungsten foils have not been identified yet. 
In general, the expansion of the understanding of plastic deformation and fracture of 
conventional coarse-grained polycrystalline materials to materials with grain sizes in the 
range of nanometres is still incomplete [73]. Bonk et al. and Bonnekoh et al. recently 
reported studies on the deformation and fracture mechanisms of severely cold-rolled 
ultrafine-grained tungsten foils (degree of deformation (logarithmic),  = 4; median grain size 
in the S-direction, 240 nm) [32]. Their exceptional results are currently discussed against the 
background of (i) the ordered glide of screw dislocations (confined plastic slip), (ii) the 
number and mobility of vacancies, (iii) dynamic/partial recrystallisation, (iv) impeded 
intragranular dislocation plasticity, and (v) intergranular deformation mechanisms, such as (v-
a) grain boundary shear and slip, (v-b) grain rotation or grain boundary migration and (v-c) 
grain boundaries that act as sources and sinks for lattice dislocations [32, 74].  
Against the background of the possible use of tungsten laminated composites in a high-
temperature environment, the stabilisation of the ultrafine-grained microstructure is of the 
utmost importance. We have shown in this paper that the tungsten laminates lose their 
superior room-temperature properties after a heat treatment of 1 h at 900°C (1173 K). This 
shows the necessity of developing a tungsten material with a stabilised microstructure. In 
particular, potassium (K) -doped tungsten wires have proven very successful in suppressing 
the migration of HAGBs [75-79]. So the development of ultrafine-grained, potassium-doped 
tungsten foils should be the next step in material development.  
 
However, tungsten laminated composites are much more complex than concentrating on the 
impact of the tungsten plies only. Residual stresses, dislocation-interface interactions 
(blocking, vs. absorption and transmission), detachment of the interface, and crack deflection 
are further important issues that need to be taken into account. 
 
Among the laminated composites, W-Cu laminates and W-W laminates are the most 
promising candidates. 
Against the background of a possible use of a laminate in a fusion device, copper may be 
replaced by CuCrZr (CuCrZr: 0.5 – 1.2 wt % Cr, 0.03 – 0.3 wt % Zr, Cu balance). Finally, the 
thickness of the copper interlayer may be decreased to below 1 m. In this way, it is possible 
to establish a dimensional size effect, as the plastic zone in the copper phase is now 
confined and the dislocations have to channel.  
The coefficients of thermal expansion of W-Cu laminates composites show several 
peculiarities: (i) the coefficients of thermal expansion are found outside the region bounded 
by the rules of mixture, (ii) with increasing temperature, the coefficient of thermal expansion 
first decreases then gently increases, and (iii) the coefficient of thermal expansion changes 
during thermal cyclic loading. These peculiarities may be traced back to the plastic 
deformation of the Cu-phase. By decreasing the thickness of the copper layer, the yield 
stress in the Cu-phase increases according to the models presented in Section 2.2. 
“Strength”. This offers the possibility of designing multilayer materials that operate solely in 
the elastic regime. 
Until now, we have focused on the Charpy impact properties of samples with a L-S, T-S and 
LT-S crack system. Ongoing investigations should therefore assess the impact properties of 
samples with an L-T and T-L crack system (Fig. 49). 
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