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Abstract

Closed form expressions are derived for the energy of elastic interaction between

dislocation loops, and between dislocation loops and vacancy clusters, to enable

simulations of elastically biased microstructural evolution of irradiated materi-

als. The derivations assume the defects are separated by distances greater than

their size. The resulting expressions are well suited for real-space simulations of

microstructural evolution involving thousands of elastically interacting defects

in 3D. They play a similar role to interatomic potentials in molecular dynamics

simulations.
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1. Introduction

Real-space, real-time simulation of microstructural evolution occurring in

materials under irradiation is an outstanding problem in computational materi-

als science. A dislocation-based treatment of mechanical deformation, which is

essential for interpreting experimental observations of radiation hardening and5

embrittlement, requires evaluating the energy of interaction between dislocation
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loops and other defects, such as vacancies and cavities, in real space, where the

loops are treated as three-dimensional objects characterized by their position,

size, shape, and spatial orientation.

Electron microscope observations[1, 2, 3, 4, 5, 6, 7] show that at any mo-10

ment of time, most loops are separated by distances greater than their size.

Reactions between loops, resulting in their annihilation or coalescence, and oc-

curring only when the distance between them is virtually zero, typically involve

a small faction of all the defects present in the material. The identification of

reaction pathways and evaluation of reaction rates requires a consideration of15

not only the finite size of defects but also the discreteness of the crystal lattice

where the reactions occur [8]. Mathematical methods developed recently for the

identification of reaction pathways, see e.g. [9, 10, 11, 12, 13], do not involve

the treatment of long-range elastic interactions. However, microstructural evo-

lution that gives rise to reactions between defects at short range, is driven by20

long-range elastic interactions, which are the subject of this paper.

There are two approaches to the simulation of microstructural evolution

under irradiation. The rate theory approach [14] and its more recent general-

izations, based either on the Master and Fokker-Planck equations [15], or using

the cluster dynamics equations [16, 17], follow the evolution of ensemble-average25

densities of defect species. Rate theory equations assume that defect densities

are spatially homogeneous [16, 17], or that they vary slowly as functions of spa-

tial coordinates [18]. Elastic interactions are included in rate theory through

the use of effective parameters, called bias factors [14, 19, 20].

In the kinetic Monte Carlo approach, defects are treated as distinct mobile30

objects undergoing stochastic motion, and simulations are able to follow the

evolution, in real space, of fairly complex defect configurations involving a large

number of individual defects [21, 22]. Kinetic Monte Carlo simulations can

model spatially heterogeneous defect microstructure of almost arbitrary com-

plexity [22, 23]. A drawback of the kinetic Monte Carlo approach is that it is35

not easy to include long-range elastic interaction between defects [24, 25, 26].

Langevin dynamics simulations of mobile interacting nano-defects[27, 28]
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show that elastic interaction between defects strongly influences the evolution

of microstructure, leading to trapping of defects, and giving rise to defect cluster-

ing and the formation of rafts of defects. Rafts of defects are routinely observed40

experimentally in materials exposed to irradiation [1, 2, 3, 4, 5, 6, 7], provid-

ing evidence that the effect of elastic interactions on microstructural evolution

of dense ensembles of defects is significant. The computational efficiency of a

Langevin dynamics simulation, involving many interacting defects, depends pri-

marily on the speed of evaluation of forces acting between defects. In isotropic45

elasticity the energy of interaction between two dislocation loops is given exactly

by Blin’s formula, which involves double line integrals around the perimeter of

each loop [29, 28]. But this is a computationally expensive way of evaluating

interaction energies in a large scale, real space, real time simulation.

To resolve this difficulty, closed form expressions are presented for the energy50

of elastic interaction between loops separated by distances larger than their size.

The most general case of loops with different Burgers vectors and different loop

normals and with the loops separated by an arbitrary vector is solved and shown

to depend on ten angles. Simpler cases, relevant for radiation damage, involving

prismatic loops only are derived as special cases of the general formula.55

Our study provides further support for the importance of elastic interactions

in the evolution of microstructures of these defects. It is well established that

the occurrence of material-dependent temperatures, at which the response to

irradiation changes significantly, is related to activation energies of formation

and migration of defects. These energies vary from a fraction of an eV to several60

eV [30, 31]. The energy scales of elastic interactions between defects are sim-

ilar, depending on the size of defects and the distance between them [27, 28].

Whereas the spectrum of activation energies for reactions between defects is

discrete, the energies of elastic interactions are distributed continuously. Thus,

although elastic interactions do not give rise to discrete “microstructural tran-65

sitions” at certain temperatures, their influence on microstructural evolution is

just as strong as the thermally activated formation, migration and reaction of

defects [32].
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At separations large compared to their sizes the energy of interaction be-

tween two dislocation loops separates into purely radial and purely angular70

dependencies. Although the angular dependence is a function of ten indepen-

dent angles, it is remarkable that it has a simple closed form. Owing to this

separation of the dependencies the angular dependence persists at all distances

between the defects.

In the next section an approximate formula is derived for the interaction75

energy between two loops in an infinite anisotropic elastic medium. This for-

mula is directly analogous to the interaction energy between two point defects,

involving their elastic dipole tensors. Exploiting this analogy an expression is

obtained for the dipole tensor of a small dislocation loop. When the isotropic

elastic approximation is made, an approximate closed form expression is de-80

rived for the stress field of an arbitrary small loop, and the interaction energy

between two arbitrary loops separated by more than their sizes. A formula

for the energy of elastic interaction between two arbitrary dislocation loops is

derived, and also the energy of interaction between a dislocation loop and an

isotropic defect. Simpler expressions for the special cases of prismatic loops85

are derived. Using the dipole tensors for a small loop and an isotropic point

defect cluster the interaction energy between them is derived, and the special

case of a prismatic loop is also treated. The assumptions underlying the closed

form expressions are tested by comparing the approximate interaction energies

between prismatic loops with exact numerical results obtained from Blin’s for-90

mula, where the simplifying approximations in this paper are not made. It is

shown that the approximations are remarkably robust and an explanation is

offered.

2. Interaction energy between small loops

Consider two planar dislocation loops with Burgers vectors b(1) and b(2),95

loop normals n̂(1) and n̂(2), loop areas A(1) and A(2), and loop centres at r(1)

and r(2). Let r = r(1) − r(2). Throughout the paper it is assumed the elas-
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tic continuum is infinite with no free surfaces. The elastic interaction energy

between the loops is given exactly by the following equivalent surface integrals

taken over the areas of the loops:100

Eint =

∫

A(2)

b
(2)
i σ

(1)
ij n̂

(2)
j dS =

∫

A(1)

b
(1)
i σ

(2)
ij n̂

(1)
j dS. (1)

Throughout the paper summation is implied on repeated subscripts. In Eq. (1)

the interaction energy is the negative of the work done by the stress field of one

loop when the other loop is created in its presence (see Ref. [29], p.106). In the

following it is assumed the separation between the loops is much larger than

the sizes of the loops. This approximation enables each loop to be treated as105

a point-like defect in which the stress field of the other defect is approximately

constant. With this approximation Eq. (1) becomes:

Eint = A(2)b
(2)
i σ

(1)
ij (r(2))n̂

(2)
j = A(1)b

(1)
i σ

(2)
ij (r(1))n̂

(1)
j . (2)

In this approximation Volterra’s formula [33] for the displacement field at r(1)

due to the small loop centred at r(2) becomes:

u
(2)
j (r(1)) = Ckpimb

(2)
k A(2)Gij,m(r(1) − r(2))n̂(2)

p , (3)

where Gij(r
(1) − r(2)) is the elastic Green’s function relating the displacement110

ui(r
(1)) to a point force fj(r

(2)) : ui(r
(1)) = Gij(r

(1)−r(2))fj(r
(2)). Commas de-

note differentiation, thus Gij,m(r) = ∂Gij(r)/∂rm. The elastic constant tensor

is Cijkl .

Hooke’s law then yields the stress field at r(1) caused by the second loop at

r(2):115

σ
(2)
ab (r

(1)) = Cabjqu
(2)
j,q (r

(1))

= CabjqCkpimb
(2)
k A(2)Gij,mq(r

(1) − r(2))n̂(2)
p .

(4)

Inserting this equation into the second expression on the right of Eq. (2), the
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following equality is obtained:

Eint = P
(1)
qj Gij,mq(r

(1) − r(2))P
(2)
mi , (5)

which is also the equation for the interaction energy between two point defects

with dipole tensors P (1) and P (2) (see equation (4.100) of Ref. [34]). For the

dislocation loops the dipole tensors are:120

P
(i)
fg =

1

2
CfgksA

(i)
(

n̂(i)
s b

(i)
k + b(i)s n̂

(i)
k

)

. (6)

Within the approximation of loops separated by distances much greater than

their size Eq. (5) is exact, including full elastic anisotropy. Eq. (5) is also

the long range interaction energy between point defect clusters, provided their

separation is much greater than their size. It follows that Eq. (5) may also be

used to evaluate the interaction energy between dislocation loops and vacancy or125

interstitial clusters, provided the defects are much smaller than their separation.

2.1. The isotropic elastic approximation

Making the approximation of elastic isotropy, the elastic constant tensor

becomes:

Cijkl = λ δij δkl + µ(δik δjl + δil δjk), (7)

where µ is the shear modulus, λ = 2µν/(1 − 2ν) and ν is Poisson’s ratio. The130

elastic dipole tensor for a small loop, as given by Eq. (6), is now

Pij = µbA

[

(b̂in̂j + n̂ib̂j) +
2ν

1− 2ν
b̂kn̂kδij

]

, (8)

where b = |b|, b̂ = b/b and b̂j = bj/b.

The isotropic elastic Green’s function Gik(r) is given by [33]:

Gik(r) =
1

16πµ(1− ν)r
[(3− 4ν)δik + r̂ir̂k] , (9)
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where r̂i are the components of the unit vector r̂ = r/r and r = |r|. Differenti-

ating, the following equation is obtained:135

Gik,jl(r) =
1

16πµ(1− ν)r3
×

{(3− 4ν)δik (3r̂lr̂j − δlj)

+ 15r̂ir̂j r̂k r̂l − 3(δij r̂k r̂l + δilr̂j r̂k + δjl r̂ir̂k

+ δkj r̂ir̂l + δklr̂ir̂j) + (δilδkj + δklδij)}. (10)

Using Eqns. (4), (7) and (10), the following expression for the stress σ
(2)
ij (r)

is obtained:

σ
(2)
ij (x) = −

µA(2)b(2)

4π(1− ν)r3
×

{[

3(1− 2ν)(b̂(2) · r̂)(n̂(2) · r̂) + (4ν − 1)(b̂(2) · n̂(2))
]

δij

+ (1− 2ν)(b̂
(2)
i n̂

(2)
j + n̂

(2)
i b̂

(2)
j )

+ 3ν
[

(b̂(2) · r̂)(n̂
(2)
i r̂j + r̂in̂

(2)
j ) + (n̂(2) · r̂)(b̂

(2)
i r̂j + r̂ib̂

(2)
j )

]

+ 3(1− 2ν)(b̂(2) · n̂(2))r̂ir̂j − 15(b̂(2) · r̂)(n̂(2) · r̂)r̂ir̂j

}

. (11)

Kroupa obtained the same expression in Eqn. (2.11) of Ref. [35] by regarding

the dislocation loop as a region that has undergone a transformation strain, and

applying Eshelby’s procedure to calculate the stress field[36].140

To obtain the interaction energy between two small loops, Eq. (11) may

be inserted for the stress tensor into the second expression on the right of Eq.

(2). Alternatively, Eq. (8) for the dipole tensors and Eq. (10) for the second

derivative of the Green’s function may be inserted into Eq. (5). Both routes

lead to the following general formula for the interaction energy between two145

small loops separated by the relative position vector r:
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E
(12)
int =

µb(1)b(2)A(1)A(2)

4π(1− ν)r3

[

·15(b̂(1)·r̂)(b̂(2)·r̂)(n̂(1)·r̂)(n̂(2)·r̂)

− 3ν
{

(b̂(1)·b̂(2))(n̂(1)·r̂)(n̂(2)·r̂) + (b̂(1)·n̂(2))(n̂(1)·r̂)(b̂(2)·r̂)

+ (n̂(1)·b̂(2))(n̂(2)·r̂)(b̂(1)·r̂) + (n̂(1)·n̂(2))(b̂(1)·r̂)(b̂(2)·r̂)
}

− 3(1− 2ν)(b̂(1)·n̂(1))(b̂(2)·r̂)(n̂(2)·r̂)

− 3(1− 2ν)(b̂(2)·n̂(2))(b̂(1)·r̂)(n̂(1)·r̂)

− (1− 2ν)
{

(b̂(1)·b̂(2))(n̂(1)·n̂(2)) + (b̂(1)·n̂(2))(n̂(1)·b̂(2))
}

− (4ν − 1)(b̂(1)·n̂(1))(b̂(2)·n̂(2))
]

.

(12)

This is the central result of this paper. It generalises earlier expressions for the

interaction energy between infinitesimal prismatic loops derived by Kroupa [35]

and Foreman and Eshelby [37], because in Eq. (12) the loops are of arbitrary

character, where the character is prismatic (b̂ · n̂ = ±1), shear (b̂ · n̂ = 0) or a150

mixture (0 < |b̂ · n̂| < 1). The interaction energy separates into an inverse cube

dependence on the separation between the loops and a term that depends on

ten angles. The ten angles are all the angles, taken in pairs, between the five

unit vectors r̂, b̂(1), b̂(2), n̂(1), n̂(2). Together with the magnitudes of the Burgers

vectors, the loop areas and the distance between the loop centres, the interaction155

energy is a function of fifteen variables, and it is remarkable that this function

has a closed form.

For two pure prismatic loops the interaction energy can be simplified:

E
(12)
int =

µb(1)b(2)A(1)A(2)

4π(1− ν)r3
{15(n̂(1)·r̂)2(n̂(2)·r̂)2

− (4ν − 1)− 12ν(n̂(1)·n̂(2))(n̂(1)·r̂)(n̂(2)·r̂)

− (1 − 2ν)[3(n̂(2)·r̂)2 + 3(n̂(1)·r̂)2 + 2(n̂(1)·n̂(2))2]}.

(13)

The angular dependence has been reduced to just three angles between the unit

vectors r̂, n̂(1), n̂(2) taken in pairs. If the loop normals are parallel to n̂ then, as160
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first shown by Foreman and Eshelby [37], the angular dependence is a function

of only the angle θ between r̂ and n̂:

E
(12)
int =

µb(1)b(2)A(1)A(2)

4π(1− ν)r3
(

15 cos4 θ − 6 cos2 θ − 1
)

. (14)

3. Interaction energy between a small loop and a small point defect

cluster

The dipole tensor of an isotropic point defect cluster is as follows:165

Pij = BΩrelδij , (15)

where Ωrel is the relaxation volume of the defect. In an infinite medium Ωrel

is the volume of excess or deficit material in the cluster, Ωrel is positive for

interstitials and negative for vacancies. B is the bulk modulus: B = 2µ(1 +

ν)/[3(1− 2ν)].

Consider the interaction energy between the point defect cluster and another170

strain field eij(r). Provided the strain field varies sufficiently slowly that it may

be regarded as constant in the cluster then the interaction energy is given by

−Pijeij . Inserting Eq. (15) for the dipole tensor, the well known formula is

obtained for the interaction energy Eint = pΩrel, where p = −Beii is the

hydrostatic pressure acting on the defect [38].175

The hydrostatic pressure of a small dislocation loop is obtained directly from

Eq. (11) and the interaction energy is then:

Eint =
µAbΩrel

6πr3
(1 + ν)

(1 − ν)

[

3(b̂ · r̂)(n̂ · r̂)− (b̂ · n̂)
]

. (16)

If the loop is prismatic, with b̂ · n̂ = 1 Eq. (16) has a particularly simple form:

Eint =
µAbΩrel

3πr3
1 + ν

1− ν
P2(cos θ), (17)

where the sign of Eint is reversed if b̂ · n̂ = −1, P2(cos θ) =
1
2 (3 cos

2 θ − 1) is a

Legendre polynomial and cos θ = b̂ · r̂.180
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4. Comparisons with exact results

To assess the accuracy of our formulae for the isotropic elastic interaction

energy between small dislocation loops in an infinite medium, the energies cal-

culated using Eq. (13) and (14) are compared with the exact results of Blin’s

formula for the interaction energy (see Eq. (4-40) of Ref. [29]), which takes into185

account fully the variation of the stress field of one loop within the other.

In the first calculation two identical circular prismatic loops are considered

in tungsten with radius 10 Å, and Burgers vector a[001], where a is the lattice

constant. As they are prismatic loops their normals are also [001]. One loop

is placed at the origin. The second moves along the straight line r = dî + αk̂,190

where î and k̂ are unit vectors along the x1 and x3 Cartesian axes, and −400Å ≤

α ≤ 500Å. Three values of d are compared: 30, 50, 100Å. Values computed for

d = 100Å are scaled up by the factor of 37, and the values computed for d = 50Å

are scaled by the factor of 8. The results in Fig. 1 show that the small loop

approximation of Eq. (14) is remarkably accurate even when d = 30Å for which195

the closest approach of the two loops is 10Å. The reasons for the accuracy of

the approximation are discussed in the next section.

In the second example the elastic interaction energy is considered between

two circular prismatic loops of radius 10Å. The first loop has Burgers vector

a[001] and is located at the origin. The second loop has Burgers vector a/2[111]200

and moves along the line r = dî + α√
3
[111], where −250Å ≤ α ≤ 250Å. The

approximate energies were calculated using Eq. (13), and the exact energies were

obtained using Blin’s formula. It is seen in Fig. 2 that the agreement is again

remarkably good, even when the separation between the loops is comparable to

the loop size.205

5. Discussion

5.1. Accuracy of the approximations

It is instructive to consider the first order corrections to the approximate

energy of interaction between two dislocation loops, to understand why Eqs.
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Figure 1: Comparison of the elastic interaction energies between two prismatic loops

calculated with Eq. (14) (‘dipole approximation’) compared with the exact Blin for-

mula [29], see text. For d = 100Å the curves computed using the exact and approxi-

mate formulae are not distinguishable on the scale of the figure.

(13) and (14), and presumably Eq. (12), are so accurate. Consider Volterra’s210

formula [33] for the displacement field of a dislocation loop:

ui(r) =

∫

S

Cjklm bl Gij,k(r− r′) n̂m dS(r′). (18)

This is an exact result in anisotropic linear elasticity. The surface integral in

Eq. (18) may be taken over the area of the plane enclosed by the dislocation

loop. Let R be the centre of the loop and let ρ be a vector from R to any point

inside the loop. Then r′ = R + ρ and r − r′ = (r −R) − ρ. For a plane loop215

the normal n̂ is constant. Thus the only spatial dependence in the integrand is

in the Green’s function, which may be expanded as follows:
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Figure 2: Energy of elastic interaction between two circular prismatic dislocation loops

with Burgers vectors a[001] and a/2[111] and loop radius 10Å. The curves labelled

‘dipole approximation’ were calculated with Eq. (14), while the exact results were

obtained with the Blin formula [29], see text. For d = 100Å the curves computed

using the exact and approximate formulae are not distinguishable on the scale of the

figure.

Gij,k(r−R− ρ) = Gij,k(r−R) − ρp Gij,kp(r−R)

+
1

2
ρp ρq Gij,kpq(r−R) + . . . (19)

The approximations made in this paper amount to taking just the first term

on the right hand-side of Eq. (19). If this expansion is substituted into the inte-

gral in Eq. (18) the surface integral becomes a set of moments of the loop area.220

If the loop is centrosymmetric, such as a circle, ellipse, rectangle or hexagon, the

first moments are zero. In that case there is no contribution from Gij,kp(r−R)

and the lowest order correction arises from the second moment giving terms

12



proportional to Gij,kpp(r − R). These terms give rise to contributions to the

stress field of the loop that decay with distance r as L2/r5, where L is a charac-225

teristic size of the loop. Thus the first order correction to the interaction energy

between centrosymmetric loops decays as L2/r5. This explains the remarkable

accuracy of the approximation seen in Figs. 1 and 2. It is consistent with the

statement on p.140 of Ref. [29] ‘For finite loops with shapes similar to circles

of radius R, the long-range stress fields at distances from the loop greater than230

2R converge rapidly to the stress field of the infinitesimal loop, in accord with

the expectation from St. Venant’s principle.’

5.2. Boundary conditions

Throughout this paper it has been assumed the defects are in an infinite

medium. In reality any body is finite with its surface subject to boundary235

conditions. This is particularly important for point defects where the volume

of relaxation can change by about a factor of two between the solution for an

infinite body and the solution for a finite body with free surfaces, no matter how

far the surfaces are from the defect [39]. Secondly, isotropic point defects, for

which the dipole tensor is proportional to δij , do not interact in an infinite body240

in isotropic elasticity. Formally this is because Gij,ij = 0 in Eq.5. However,

they do interact in a finite body through ‘image’ interactions. Nabarro [40]

presented the corrections to the displacement field of a small shear loop in an

infinite medium that result when the loop is at the centre of a sphere with no

tractions applied to its surface.245

In a finite body with surfaces free of tractions the relaxation volume of a

small dislocation loop is as follows [34]:

Ωloop
rel = Pjj/(3B) (20)

Inserting the dipole tensor of a loop from Eq. (8) into this equation leads to

the result that Ωloop
rel = A(b · n̂). Thus, the relaxation volume in a finite body

is zero for a shear loop, and for a prismatic loop it is equal to the number of250

interstitial atoms or vacancies in the loop multiplied by the atomic volume.
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6. Summary

A closed form expression (Eq. (12) ) has been derived for the interaction en-

ergy in an infinite isotropic elastic medium between two small dislocation loops

with arbitrary loop normals and Burgers vectors. The assumption was made255

that the loops are separated by more than their size. Comparisons were made for

the interaction energies calculated for prismatic dislocation loops between the

approximate formulae and exact numerical values obtained with Blin’s formula.

The results agreed well even at small loop separations, and an explanation was

offered. Closed form expressions have also been derived under the same con-260

ditions for elastic interactions between dislocation loops and isotropic vacancy

clusters. These formulae are useful for simulations of the evolution of radiation

damage microstructures including elastic interactions.
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