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A -Fe54.5Cr45.5 samples irradiated in vacuum with 2 MeV Fe3+ ions at 300, 400, 475 and 

700oC to the maximum dose of 12.5 dpa were studied with the conversion electron 

Mössbauer spectroscopy (CEMS). The analysis of the room temperature CEMS spectra 

revealed an irradiation-induced redistribution of Fe atoms viz. their number on B and D sites 

decreased while on A, C and E sites increased. The degree of the redistribution was found to 

be proportional to the number of Fe atoms present on the lattice sites in the non-irradiated 

samples. The highest degree of the redistribution  was revealed in the sample irradiated at 

300oC. No change in the site occupancy was found in the sample irradiated at 700oC. 
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Iron-chromium alloys have been of industrial importance because they constitute a major 

component of various brands of stainless steels. In particular, ferritic steels (FS), like ODS, 

and ferritic-martensitic (F-MS) ones, like EUROFER, are best examples of such materials. 

Their industrial and technological relevance follows from their very good swelling, high 

temperature corrosion and creep resistance properties [1,2]. Consequently, both FS as well 

as F-MS are regarded as appropriate construction materials for applications in new 

generations of nuclear power facilities such as generation IV fission reactors and fusion 

reactors as well as for other technologically important plants e.g. high power spallation 

targets [3–5]. In particular, such devices as fuel cladding, container of the spallation target or 

primary vessel are manufactured from these steels. These devices work at service not only at 

elevated temperatures, but also under long-term irradiation conditions. At elevated 

temperatures two phenomena may occur: (a) phase decomposition into Fe-rich () and Cr-

rich (’)phases, and (b) precipitation of a sigma () phase. Both of them cause an 

enhancement of embrittlement, hence are highly undesired. The irradiation gives rise to an 

irradiation damage that can seriously deteriorate mechanical properties. On the lattice scale, 

the radiation causes lattice defects like vacancies, interstitials and dislocations. 

Consequently, a redistribution of Fe/Cr atoms occurs and can result in a short-range order 

(SRO), segregation or phase decomposition into  and ’ phases.  A better knowledge of the 

effects of irradiation on the useful properties of FS/F-MS and underlying mechanisms is an 

important issue as it may help to significantly improve properties of these materials, and to 

extend the operational life of devices constructed therefrom. The above-mentioned 

phenomena can be conveniently studied on Fe–Cr alloys that have been often used as model 

alloys for investigations of both physical and technological properties of stainless steels [6 

and references therein]. In this Letter results concerning an effect of Fe-ions irradiation on a 

-Fe54.5Cr45.5 alloy are reported. The -phase has a tetragonal unit cell - space group D14
4h - 

P42/mnm - with 30 atoms distributed on five non-equivalent lattice sites – see Table 1. 

Table 1 

Characterization of the -phase in Fe-Cr. WI stands for the Wyckoff index, CN is a 

coordination number, <d>NN is an average distance, in Å, to the nearest neighbors, <IS> is an 

average isomer shift in mm/s (relative to a Co(Rh) source). The values of <d>NN and those of 

<IS> are taken from Ref. [7]. 
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Site WI CN <d>NN  <IS> 

A 2i 2 2.506 -0.38 

B 4f 4 2.702 -0.03 

C 8i1 8 2.655 -0.16 

D 8i2 8 2.572 -0.35 

E 8j 8 2.640 -0.27 

 

Samples of -FeCr investigated in this study were prepared as described elsewhere [8]. For 

the irradiation, foils in form of 20 mm rectangles and 0.2 mm thickness were used. They 

were irradiated at the JANNUS multi-ion beam irradiation platform at CEA, Saclay, France 

with 2.0 MeV Fe3+-ions to the dose of 7.51011 Fe3+
cm-2, which is equivalent to the radiation 

damage of 12.5 dpa in maximum, as calculated by the SRIM code. The full cascade method 

was used with the SRIM default values of threshold energies. No ion channeling is to be 

suspected due to polycrystalline structures of the samples. The irradiation area was circular 

and had a diameter of 20 mm. The irradiation was performed in vacuum at 300, 400, 475 

and 700oC. Concentration and radiation damage (RD) profiles calculated with the SRIM code 

are shown in Fig.1. The samples were investigated by the conversion electron Mössbauer 

spectroscopy (CEMS), consequently a pre-surface zone of the samples with a thickness of 

0.3 m – marked in Fig. 1  by a vertical stripe - was accessible to the measurements. It can 

be seen that the sample’s volume measured with the applied technique was practically free 

of Fe3+, hence the only effect of the irradiation can be of a ballistic origin. A level of the 

damage varies between 3 and 8.5 dpa, with an average of 6 dpa.  An example of CEMS 

spectra is presented in Fig. 2. 
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Fig. 1 Fe3+ concentration and radiation damage profiles vs. depth, D, for the irradiated -

FeCr sample. 
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Fig. 2 CEMS spectra recorded at room temperature on non-irradiated and irradiated (300oC) 

sides of the -FeCr sample. Five sub spectra into which the measured spectrum was 

decomposed are indicated.  

 

A shape of the spectra recorded on the irradiated sides is, in general, similar to the one 

measured on the non-irradiated sides. This can be interpreted as a proof that the irradiation 

has not changed the crystallographic structure of the samples. Consequently, the spectra 

were analyzed in terms of five sub spectra (doublets) ascribed to each of the five lattice 

sites. Values of the isomer shift and of the quadrupole splitting of each doublet were fixed 

following the analysis described elsewhere [7], whereas linewidths and amplitudes of the 

lines were treated as free parameters. A relative spectral area of each sub spectrum can be 

regarded as a probability of finding Fe atoms on the lattice site represented by the sub 

spectrum. A comparison of such-calculated probabilities makes it possible to draw 
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information on the effect of the irradiation on the population of Fe atoms on the five lattice 

sites. Figure 3 illustrates the relative spectral area (RSA) as found from the analysis of the 

spectra measured on the non-irradiated sides. 

 

Fig. 3 Relative spectral area, RSA, as found from the spectra recorded on the non-irradiated 

sides of the samples irradiated at 300, 400, 475 and 700oC (from left to right for each sub 

lattice). 

 

It fallows that the RSA-values are characteristic of a given sub lattice, and they hardly 

depend on the temperature of irradiation. 

 

Corresponding data determined for the irradiated sides are displayed in Fig. 4. 
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Fig. 4 Relative spectral area, RSA, as found from the spectra recorded on the irradiated sides 

of the samples irradiated at 300, 400, 475 and 700oC (from left to right for each sub lattice). 

 

Here, the picture is different. Namely, one can distinguish two types of behavior viz. a 

decrease of RSA with temperature (sub lattices A, C, E) and its increase (B, D). To better 

visualize the behavior, a difference between the data shown in Figs. 4 and 3,  was calculated 

and it can be seen in Fig. 5. 

 

Fig. 5 Difference in the relative spectral area, RSA, as found from the spectra recorded on 

the irradiated and non-irradiated sides of the samples irradiated at 300, 400, 475 and 700oC 

(from left to right for each sub lattice). 
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The data shown in Fig. 5 demonstrates how the population of Fe atoms on particular lattice 

sites changes upon the applied irradiation. It clearly depends both on the site and on the 

temperature. Namely, and an increase of the number of Fe atoms on the sites A, C, E is 

observed while their population on the sites B and D decreases. This means that the 

irradiation with Fe3+ ions has caused an internal redistribution of Fe atoms. Interestingly, a 

degree of the redistribution strongly depends on the temperature of irradiation viz. it 

strongly decreases with the temperature: for 700oC no redistribution was found. 

Interestingly,  this was the temperature at which a transformation of  into  in the studied 

samples was carried out [8]. The results clearly show that the five lattice sites are not 

equivalent as far as their stability against Fe-ion irradiation is concerned.  In particular, a 

binding of Fe atoms occupying B and D sites is weaker than the one of Fe atoms residing on 

sites A, C, E.  This issue concerns stability of  which is usually considered either in terms of 

electron concentration or atomic radius models [9]. Here, one is rather concerned with an 

internal stability of  i.e. changes in population at particular lattice sites. To tackle the issue 

one can consider, on one hand, a Fe atom charge-density (isomer shift)  and, on the other 

hand, a radius of the nearest-neighbor (NN) shell. Average values of these parameters are 

displayed in Table 1. It is obvious that neither the charge-density nor the radius of the NN-

shell can explain the observed redistribution of Fe atoms.  Some light can be, however, shed 

on the issue when plotting the absolute value of the difference in the relative spectral area, 

RSA, versus the number of Fe atoms on the lattice sites, N, see Fig. 6. 
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Fig. 6 The absolute value of the difference in the relative spectral area, RSA, versus the 

number of Fe atoms on the lattice sites, N. Full symbols are for the irradiation at 300oC, and 

open ones for the one at 400oC. The lines are to guide the eye. 

 

It is clear that the effect is proportional to the number of Fe atoms on a given site. This 

means that it has purely a statistical character. Yet, it does not explain why the Fe atoms are 

removed from the sites B and D. 

In summary, an effect of 2.0 MeV Fe3+ irradiation at 300, 400, 475 and 700oC on a -

Fe53.8Cr46.2 alloy was studied using CEMS Mössbauer spectroscopy. A clear cut evidence was 

found that upon the irradiation an internal redistribution of Fe atoms took place. Namely, a 

fraction of those originally occupying the sites B and D was replaced to A, C and E sites. The 

degree of the replacements was found to be proportional to the number of Fe atoms 

originally present on a given site. It also strongly depends on the temperature at which the 

irradiation was performed viz. the lower the temperature the higher the degree: at 700oC no 

change in the occupancy was revealed. 
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