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The size limitation of ab initio calculations impedes first principles simulations of

crystal defects at nanometer sizes. Considering clusters of self-interstitial atoms as a

paradigm for such crystal defects, we have developed an ab initio-accuracy model to

predict formation energies of defect clusters with various geometries and sizes. Our

discrete-continuum model combines the discrete nature of energetics of interstitial

clusters and continuum elasticity for crystalline solid matrix. The model is then

applied to interstitial dislocation loops with 〈100〉 and 1/2〈111〉 Burgers vectors,

and to C15 clusters in body-centered cubic crystals Fe, W and V, to determine their

relative stabilities as a function of size. We find that in Fe the C15 clusters were

more stable than dislocation loops if the number of self-interstitial atoms involved

was fewer than 51, which corresponds to a C15 cluster with a diameter of 1.5 nm. In

V and W, the 1/2〈111〉 loops represent the most stable configurations for all defect

sizes, which is at odds with predictions derived from simulations performed using
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some empirical inter-atomic potentials. Further, the formation energies predicted by

the discrete-continuum model are reparameterized by a simple analytical expression

giving the formation energy of self-interstitial clusters as a function of their size. The

analytical scaling laws are valid over a very broad range of defect sizes and can be

used in multi-scale techniques including kinetic Monte Carlo simulations and cluster

dynamics or dislocation dynamics studies.

PACS numbers: 61.72.Jj, 61.72.Bb, 61.80.Az, 61.82.Bg, 75.40.Mg

I. INTRODUCTION

The ability of materials to sustain extreme conditions, encountered in fusion-plasma con-

finement reactors or in space exploration, depends on the formation and mobility of clusters

of vacancies and interstitial atoms. As such, a study of defects in body centered cubic re-

fractory metals and iron provides a foundation for future research in structural materials

and paves the way to better understanding of materials ageing. Over the lifetime of reactor

components, the mobility of individual defects gives rise to clustering and growth of defect

clusters. Vacancies and self-interstitial atoms (SIAs) form either two- or three-dimensional

clusters, depending on their size, as a result of competition between the interface and bulk

energies, as described by the Gibbs theory of wetting[1]. Vacancy clusters morphology of

various bcc metals is fairly well known and exhibit similar behavior. There is a competition

between planar loops and voids, as confirmed by experimental observations [2, 3]. How-

ever, SIA clusters show acutely different properties depending on the bcc material under

consideration.

Density Functional Theory (DFT) calculations and other ab initio methods provide quan-

titative insight into the nature of clusters containing a small number of defects. DFT calcu-

lations show that the most stable single SIA in Fe adopts a configuration that corresponds to

a 〈110〉 dumbbell, whereas in other bcc transition metals, a single SIA forms a defect aligned

along the 〈111〉 direction, known as a crowdion ([4–7]). These DFT predictions broadly agree

with experiment [8], which makes it desirable to extend predictions to clusters larger than a

single SIA. Dumbbells can be packed together in bundles, to form small dislocation loops.

DFT predicts that in Fe the orientation of these dumbbells changes from 〈110〉 to 〈111〉
depending on the number of SIA involved. The transition occurs at around five SIAs [9, 10].

In Fe, observation of nanometric-sized clusters of SIAs by transmission electron microscopy
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(TEM) techniques reveals the presence of planar loops, which can adopt either the 1/2〈111〉
(highly mobile) or 〈100〉 (immobile) configurations, depending on temperature ([8, 11, 12]).

The relative stability of the two types of loops in Fe is controlled by magnetism, and it has

been shown that at low temperature 1/2〈111〉 loops are more stable while at high tempera-

tures (over 700 K) 〈100〉 loops are more stable [13, 14]. TEM observations show that in all

other bcc metals, dislocation loops with 1/2〈111〉 Burgers vector are dominant which sug-

gests that they are the most stable configurations for bundles of dumbbells. Recently, much

progress has been made in the experimental field, enabling observation of small 〈100〉 loops

in W under heavy ion irradiation at low temperatures, which vanish at high temperatures

([15, 16]). The reason why the 〈100〉 loops form in W is still under debate. In the intermedi-

ate defect cluster size range, spanning the interval between individual self-interstitial atoms

and nanometric-sized dislocation loops, it is difficult to generate experimental data because

of the high resolution of observations required to characterize such small objects. According

to recent DFT calculations [10], SIA clusters can also form three-dimensional structures

with symmetry corresponding to the C15 Laves phase. In Fe, these C15 aggregates are

stable, immobile, and exhibit large antiferromagnetic moments. These C15 clusters have

been found to form directly inside atomic displacement cascades, and are able to grow by

capturing self-interstitial atoms from the surrounding material.

The energetics of interstitial clusters with nanometer size plays an important role, being

a key ingredient that enables the connection between the asymptotic limits: isolated point

defects that can be modeled using ab initio methods, and large observable dislocation loops.

Limitations on the size of a DFT simulation cell in transition metals does not permit the

exploration of clusters containing more than a few tens of SIAs. This technical problem

can be overcome in part through the development of inter-atomic potentials based on the

embedded atom method (EAM), but then unavoidable approximations result in the loss of

accuracy and transferability. Most of the EAM potentials developed to study clusters of

SIAs are built to fit the energetics of small clusters of SIAs provided by ab-initio methods

([5, 10, 17–20]). Because of this, all the potentials provide similar results in the small

cluster size limit but there is significant scatter in the predicted formation energies over

the nanometer size range for loops ([21, 22]) and C15 clusters ([10, 23]). For instance, the

EAM potentials proposed in refs.([17–19, 21, 24]) can be used to compute the formation

energy of nanometer-sized clusters in Fe containing up to 1000 SIAs in the form of 1/2〈111〉
dislocation loops, which span a fairly broad interval from 400 eV to 700 eV. Similar scatter

is observed for other bcc elements, such as W, and for different types of clusters (〈100〉 or
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C15).

One way of circumventing this difficulty is to establish scaling laws from elasticity theory

and then to use these laws to extrapolate DFT calculations from small clusters to larger

scales. One model, proposed by Soneda et al. [25] two decades ago, postulated an ad-hoc

function for the formation energy in terms of the number n of SIAs forming the cluster.

The formation energy takes the form Ef (n) = P0 + P1n
2/3, where P0 and P1 are adjustable

parameters. This popular model has been widely used in the literature, over a hundred

studies have used this simple law in order to parameterize kinetic Monte Carlo or cluster

dynamics simulations for the time evolution of a distribution of clusters (see for instance

Refs. ([9, 26–28]) and Refs. therein). However, as we shall see later, this model yields large

uncertainties at large sizes when its parameters are fitted to properties of small clusters.

In this paper, we develop a new model for the energy of clusters, which combines cluster

expansion and elasticity for crystalline solids, enabling us to predict the formation energies

for large SIA clusters directly from ab initio calculations performed on small clusters. The

main advantage of this model is that it successively treats the discrete nature of small

clusters, combining it with the continuous nature of larger clusters such as dislocation loops.

The only input required to predict the formation energies of clusters of a particular type

(〈100〉, 1/2〈111〉 or C15) are the formation energies of a number of configurations of small

clusters of that type. To test the validity of the scaling laws derived for different types

of clusters, this approach has been applied first to the case of cluster formation energies

computed using EAM inter-atomic potentials ([5, 10, 17–20]); after a calibration of the

laws with EAM data for small clusters, we have compared the scaling law predictions for

large clusters to direct computations performed using the same EAM potentials and large

simulation cells. Excellent agreement was obtained for different EAM potentials and different

types of clusters, which demonstrates that the subsequent calibration of the scaling laws

with DFT calculations can generate formation energies for large SIA clusters with ab initio

accuracy.

Our developments allow us to use the power of ab initio theory to assess the relative

stability of dislocation loops with 〈100〉 and 1/2〈111〉 Burgers vectors and the recently

proposed C15 clusters.

The paper is organized as follows. Section II describes the key aspects of the energetic

model adapted to dislocation loops (section II A) and to the C15 clusters (section II B).

The discrete-continuum model is parameterized using a database described in section III A.

Analysis given in section III B addresses the transferability of the model. Analysis of the
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relative stability of SIA clusters is presented in section III C. Ab-intio scalling laws having

simple analytical form for the formation energy of self-interstitial clusters as a function of

their size are presented in section III D. Final discussion and conclusions are given in section

IV.

II. DISCRETE-CONTINUUM MODEL

A. Discrete-Continuum model for dislocation loops

According to the elastic theory of dislocations [29], the formation energy of a 2D plate-like

clusters of SIAs is related essentially to two quantities: the line energy density of the edge

dislocation which encloses the cluster, and the stacking fault energy. The latter is very high

in bcc metals, and as a result stacking faults do not form, and are hence neglected in the

following. The elastic energy associated with the volume V which contains one dislocation

loop bordering a cluster of n SIAs with Burgers vector ~b can be written using the elastic

tensor Cijkl and the elastic field around the loop ui (summation over indices i, j, k, l is

performed over x, y and z)[30] as:

Eelastic(n,~b) =
1

2

∑
i,j,k,l

∫
V

Cijkl
∂ui
∂xj

∂uk
∂xl

dV . (1)

Using anisotropic elasticity theory and the Gauss theorem to transform the volume in-

tegral into a surface integral [13, 30, 31], we find the elastic contribution to the formation

energy as the sum of the energy stored in the elastic field and the core energy of the edge

dislocation which encloses the cluster as:

Eelastic

(
n,~b; δ, R̃, Ec−δ

)
=

[∮
K(~t)d~t

]
ln(R̃/δ) +

∮
Eδ−c(~t)d~t, (2)

where δ is the radius of the nonlinear dislocation core, R̃ is a measure of the effective range

of the elastic field of the loop and K(~t) is the pre-logarithmic energy factor for a straight

dislocation with orientation ~t in the bcc matrix. In the last term in Eq.2, Eδ−c(~t) includes

the core-traction and nonlinear core energies per unit length of a dislocation. The usual

assumption on Eδ−c(~t) is to neglect the dependency on the orientation of the dislocation. If

we define an average pre-logarithmic factor for a circular loop as: Ka = 1
2π

∮
K(~t)d~θ, then

the elastic energy becomes:

Eelastic(n,~b; δ, Ec−δ) = 2πR∗Ka ln

(
R∗

δ

)
+ 2πR∗Eδ−c, (3)
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where R∗ is the radius of an equivalent circular loop with the same perimeter and Ka depends

also on the Burgers vector ~b and the habit plane. Parameter Ka is evaluated from the elastic

tensor of the material Cijkl using Bacon’s theory [13, 32, 33] or Stroh’s sextic formalism

[30, 31, 34–38]. In this study, both theories have been tested and yielded very similar results.

R∗ is uniquely determined by the number n of SIAs. Imposing that the surface area of the

loop is equal to n times the average surface area per SIA, we obtain that R∗ is f~babcc
√
n,

where abcc is the lattice parameter of the bcc structure and f~b is a factor that depends on

the Burgers vector and the habit plane of the loop, i.e. f~b =
√

1/(2π) and
√√

2/(2π) for

the 〈100〉{001} and 1/2〈111〉{110} loops, respectively. The latter consideration allows us to

rewrite Eq.3 as follows:

Eelastic(n, b; δ, Ec−δ) = 2πf~babccKa

√
n ln

(
f~babcc

√
n

δ

)
+ 2πf~babcc

√
nEδ−c. (4)

The elastic theory, detailed above, is adapted to the treatment of large clusters. However,

we note from Eq.4 that the elastic energy varies as the square root of n, so that for small

clusters, different contributions, either from the shape of the loops or from the internal struc-

ture of the loop, are expected to become dominant below a certain value of n. Additionally,

the values of δ and Eδ−c cannot be determined solely from elastic theory but they must be

determined from atomistic calculations. To illustrate that, we write the elastic term as a

function of three unknown parameters, T, P0 and P1:

Eelastic(n, b; δ, Ec−δ) = T
√
n ln (n) + P1

√
n+ P0, (5)

where the P0 term is introduced to match the atomic data in the limit of small SIAs cluster

size, e.g., n = 1 or n = 2, for which the concepts of perimeter and surface are not well

defined.Using the sextic formalism [13, 32], the term T can be written as:

T =
1

2
f~babcc ln

(
f~babcc
δ

)∮
bibmnjnqcijklcnpmq=

[
3∑

κ=1

κηpκ
η
l

Nkn(κη)

ns
∂D(κη)
∂κs

]
dθ. (6)

For an edge dislocation ~κη = ~m+~nω(η), ~n = ~b/b and ~m = ~n×~t. ω(1), ω(2) and ω(3) are the

three complex roots of the sextic equation S(ω) = det [cijkl(mj + njω)× (ml + nlω)] = 0,

which are situated in the upper half of the complex plane ω = <ω + i=ω, where =ω > 0,

and Nik(~κ) is the matrix adjoint to Lik(~κ) = cijklκjκl, and D(~κ) = detLik(~κ). An example

of parameterization of Eq.5 is shown in Fig.1a. The best set of parameters for this model

has been obtained using a database of clusters smaller than 22 SIAs, which are accessible

to a DFT computation. The atomistic formation energies are computed using an EAM
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inter-atomic potential [18] in order to check the validity of our parametrization for large

SIAs clusters through a comparison between predictions and direct atomic scale simulations.

Two strategies have been tested for fitting. In the first case, all the three parameters, P0,

P1 and T were fitted. For that case, not described here, the predictions made from Eq.5

for large clusters stringently diverge from the atomistic values, with some relative errors up

to 60% for the two families of loops that have been examined. In a second method, T was

computed from the elastic tensor as shown in Eq.6 and only P0 and P1 were adjusted with

respect to the formation energies computed at the atomic scale for clusters with n < 22.

Using this approach, as can be seen in Fig.1a, the predictions are much better since the error

is around 10% for the 1/2〈111〉 and less than 4% for the 〈100〉 loops. The error is smaller

than ad-hoc laws proposed by Soneda [25] but still important in absolute terms for 1/2〈111〉
loops. Even worse, the accuracy of the elastic model depends strongly on the choice of the

database used for the fit. For the same number of clusters involved in the database, we

can arbitrarily change the error by choosing various shapes of clusters. In order to reduce

the variability of the results due to differences in the shapes of small clusters included in

the database, and to reduce the relative error below 3% for the two types of loops, we

must increase the maximum size of loops included in the database to 53 SIAs. However,

this is not accessible to DFT simulations in transition metals with conventional computers

because to obtain the formation energies for clusters larger than 53 SIAs with reasonable

accuracy, the total number of atoms needed in the simulation cell is larger than 5000. The

fact that a pure elastic model parametrized on small clusters fails to correctly predict the

formation energies for large clusters can be ascribed to the two following reasons: (i) the

description of dislocation loops with finite core extensions is inappropriate for small clusters

where the enclosing dislocation core is comparable in size to the radius of the cluster; (ii)

the perimeter of the enclosing loops is fixed by a function indexed on integer values i.e. the

number of interstitial atoms. In order to emphasize the latter point, we have reported in

Fig.1b the ratio of the convex hull perimeter of loops to the perimeter deduced from n using

the criterion described above. This ratio converges very slowly to 1 and for sizes included

in the fit (n between 3 to 21 SIAs) the value ranges from 0.56 to 0.85. Even if the ratio

of convex hull perimeter and perimeter deduced as function of n using
√

(n) criterion can

be improved, the ambiguity in the definition of perimeter of small and large loops remains.

Therefore the two points noted above imply that the parameters fitted to the data derived

for small loop sizes are not representative of larger loop sizes generating large errors in the

adjustment/extrapolation procedure.
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FIG. 1: (a)Formation energies of the 1/2〈111〉 and 〈100〉 dislocation loops in Fe against the number

of SIAs, computed: (i) from atomic scale simulations using an EAM inter-atomic potential [18]; (ii)

using predictions based on the law P0 + P1n
2/3(see Ref. [25]); (iii) using the anisotropic elasticity

theory (see Eq. 5) which is parametrized with atomic scale calculations up to n=21 SIAs. P0 and

P1 are fitted while term T is computed directly from the elastic tensor associated to the EAM

potential. (b) The ratio of the convex hull perimeter of the dislocation loops to the perimeter

deduced from the discrete number n of SIAs contained in the cluster. The full line curve was fitted

using the function (1− (1/(xa1 +a2))), with values of 0.70 and 0.88 for the exponent a1 of 1/2〈111〉

and 〈100〉 loops, respectively.

Hence, due to the size limitation of ab initio calculations, it is impossible at present – or

in the near future – to parameterize an elastic model using Eq.5 for the formation energies of

SIA nanometric clusters. In order to overcome this difficulty, we add a cluster-expansion like

term to the elastic model, which takes into account the discrete structure of small dislocation

loops:

Eformation(n) = Ediscrete (n, n1, n2..; {Pj}) + Eelastic (n, b; δ, Ec−δ) . (7)

The discrete term depends on a set of parameters {Pj}, and we impose a requirement that

it vanishes in the asymptotic limit n −→ ∞ i.e. Ediscrete(n, n1, n2..; {P}j) −−−→n→∞
0. The

discrete nature and the geometric structure of clusters are accounted for in the term Ediscrete

through a topological mapping to the local neighborhood of each dumbbell which is defined

by the number of first (n1), second (n2) or higher nearest neighbor pairs of dumbbells. The
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distance between dumbbells is defined as the distance between their centers. For example in

the case of a 1/2〈111〉 dislocation loop with a {110} habit plane, the first and second nearest

neighbor shells each have 4 nearest neighboring dumbbells, situated at distances
√

3abcc/2

and abcc, respectively.

The discrete part of the energy for a dislocation loop containing n SIAs is written as the

sum of contributions from all dumbbells:

Ediscrete =
n∑
i=1

Ei =
n∑
i=1

f(n;ni1, n
i
2)E(ni1, n

i
2). (8)

The local energy associated with the ith dumbbell of the cluster is expressed as Ei =

f(n;ni1, n
i
2)E(ni1, n

i
2), where the function E(ni1, n

i
2) fully determines how Ei depends on the

dumbbell neighborhood, i.e. on the number of the 1st and 2nd nearest neighbor dumb-

bells in the habit plane, denoted ni1 and ni2, respectively. Function f(n;ni1, n
i
2) fixes the

weight for the ith dumbbell energy E(ni1, n
i
2). In order to define the latter function, we

note that various atomic scale studies [21, 39, 40] have confirmed that the inter-atomic

distance between two atoms that form the dumbbells situated far from cluster’s edges re-

covers bulk coordination. For example, relaxation of dumbbells recovers perfect bulk 1st

nearest neighbor distance
√

3abcc/2 in the center of clusters. As a result, the dumbbells

that are close to the center of loops, with full nearest neighbor shells, make no contribution

to the energy of the system other than twice the cohesive bulk energy. This means that

in terms of the formation energy, these dumbbells give no contribution to the discrete en-

ergy. Therefore the function f(n, ni1, n
i
2) should be zero for the dumbbells with their full

nearest neighbour shell. A second constraint on this function is given by the asymptotic

limit at large n, i.e. f(n;n1, n2) −−−→
n→∞

0. Hence we consider the following product form:

f(n;n1, n2) = g(n)h(n1, n2), where h(n1, n2) equals unity for the atoms which do not have

full nearest neighborhood, and zero otherwise, and g(n) −→ 0 for large clusters. In order

to ensure the condition Ediscrete(n, n1, n2..; {P}j) −−−→n→∞
0 we have tried many monotonically

decreasing functions of the form proportional to 1/nα for g(n), with α in the interval from

0.5 to 1. The best choice for α was found to be 0.55.

To reduce the sum in Eq.8, we can rewrite the discrete energy contribution by introducing

the number of dumbbells having n1 and n2 first and second neighbors, (in1,n2):

Ediscrete =

Nb
1∑

n1=0

Nb
2∑

n2=0

in1,n2f(n;n1, n2)E(n1, n2) + P2, (9)

where N b
1 and N b

2 are the bulk numbers of first and second neighbors and P2 is a constant.

A pair formulation is neither a necessity nor a constraint in this approach, since the model
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FIG. 2: Structure of a 〈100〉 loop in the {001} habit plane containing 15 SIAs showing the number

of 1st and 2nd nearest neighbors of all dumbbells. Note: The loops were constructed such that each

dumbbell has at least one dumbbell in 1st nearest neighbor position. As a result, possible number

of 1st nearest neighbors varies from 1 to 4 while the number of 2nd nearest neighbors varies from

0 to 4. There exists just one exception which is the case of mono-SIA.

can be readily extended to more complex types of interaction. In order to exemplify this

energetic model, let’s take the example of a small 〈100〉{001} loop containing 15 SIAs, which

is sketched in Fig.2. In this case, the discrete part of the energy can be written as:

Ediscrete =
1

150.55 [2E(1, 2) + 4E(2, 2) + 3E(2, 3) + 2E(4, 2) + 3E(4, 3)] + P2. (10)

In the above equation h(4, 4) = 0 and h(1, 2) = h(2, 2) = h(2, 3) = h(4, 2) = 1.

Combining the elastic and discrete parts, we find that the formation energy of a loop

with n SIAs is:

Eformation(n) = T
√
n ln (n) + P1

√
n+ P0 +

Nb
1∑

n1=0

Nb
2∑

n2=0

in1,n2f(n;n1, n2)E(n1, n2). (11)

The advantage of this new formulation is that a full set of parameters E(n1, n2) and P0,1 can

be obtained from ab initio formation energies derived using a training series of configurations

of small interstitial clusters. It should be noted that P0 from the elastic part has been

combined with P2 of the discrete part to give just one constant, denoted by P0 in Eq.11.

B. Discrete-Continuum model for C15 clusters

The strategy described above has also been adopted to develop a model for C15 clusters.

C15 inclusions have different elastic properties in comparison to the host bcc matrix [41], and
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the corresponding energy is treated using the formalism of isotropic Eshelby inclusion [30,

42, 43]. The discrete contribution to the formation energy takes into account the particular

structure of C15 clusters. In comparison with the case of dislocation loops they have an

additional contribution from the atoms having perfect C15 bulk coordination situated inside

the clusters. Thence the core region of a C15 cluster does contribute non-negligibly to the

formation energy. In addition, the bcc bulk atoms of the perfect lattice are replaced by

C15 bulk atoms with different cohesive energies and consequently this difference must be

accounted for. The remaining atoms of the SIA cluster, which do not have the perfect C15

bulk coordination, correspond to the interface between the C15 cluster and the bcc matrix.

These interfacial atoms also contribute significantly to the formation energy. The present

energetic model is close to the Zhang et al. [23] model used for interpolating the formation

energy of C15 clusters provided by EAM inter-atomic potential calculations. In the Zhang

et al. model, the number of atoms situated both at the interface and in the perfect C15

bulk, are deduced from the asymptotic limit of large clusters. The present model is used

for predicting the formation energy of C15 clusters from DFT calculations. The difference

between the convex hull surface and the surface computed from the number of SIAs in a

cluster is fairly large for small sizes (even larger than that for perimeter of loops, Fig.1b).

Therefore, the number of atoms with perfect C15 bulk coordination NC15, the number of

interfacial atoms Ni, as well as the surface area SC15 and volume VC15 of C15 clusters are

deduced directly from the geometry of the cluster. The formation energy expression used in

our model is written as follows:

Eformation(n) = SC15γ +
6VC15µε

2

α
+NC15(E

bcc
coh − EC15

coh ) +Ni∆Ei, (12)

where Ebcc
coh and EC15

coh are the cohesive energies of the perfect bulk bcc and of the perfect

C15 structures, respectively. Coefficient ∆Ei is the average energy of atoms at the interface

and γ is the interface energy per unit area between the bcc matrix and the C15 inclusion.

The second term in Eq.12 is the energy of isotropic Eshelby’s inclusion, with a C15 cluster

treated as an inclusion in the otherwise isotropic bcc matrix. Eshelby discovered an elegant

way of calculating the stress, strain and displacement fields, both in the inclusion as well as

in the matrix, by using a superposition of linear elasticity and Green’s function formalism

[42, 43]. The same approach allows the computation of the strain energy contribution in

the presence of a C15 cluster. Here, µ is the isotropic shear modulus of the matrix, while

α = 1+3µ/(4BC15) where BC15 is the bulk modulus of C15 clusters and ε is the misfit strain,

which can be computed directly from atomic scale calculations. ∆Ei and γ are adjusted



12

with respect to atomic scale simulations while the cohesive energies of bcc and C15 clusters

are determined from atomistic calculations [41]. In the limit of large spherical C15 clusters,

the previous equation can be written as a function of the number n of SIAs as in the Zhang

model [23]:

Eformation(n) = 2γs
(
9πΩ2

)1/3
n2/3 +

12Ωµε2

α
n+ 3n(Ebcc

coh − EC15
coh ), (13)

where Ω is the atomic volume of bcc iron. In the large limit, a cluster with n interstitials

is obtained by replacing 2n bcc atoms by 3n C15 atoms which gives the volume of the C15

cluster as: VC15 = 2nΩ. The convex hull surface and the atomic interface energies, i.e., the

first and last terms of Eq.12, have been combined into a single term that is the first term of

Eq.13. The prefactor γs in the first term, which gives the dependence in n3/2, plays the role

of interface energy. Because of the fact that SC15 and Ni terms of the discrete formulation

in Eq. 13 take the form n3/2 in the infinite limit, the new interface energy γs combines γ

and ∆Ei.

III. PARAMETRIZATION AND RESULTS

A. Database used for parametrization of discrete-continuum model

The energy landscape of dislocation loops has been widely studied at the atomic scale by

various authors [13, 21, 33, 44, 45] and the lowest energy configurations of various clusters

have been already reported in the literature. 1/2〈111〉 dislocation loops were generated

by inserting 〈111〉 dumbbells in the {110} habit plane so as to form compact clusters.

〈100〉 dislocation loops were generated by inserting atomic 〈100〉 dumbbells in the {001}
habit planes. In addition to these configurations, we have found that some specific cluster

geometries needed to be included in the database in order to have a good parameterization

for E(n1, n2). The choice of these configurations was made to reproduce the neighborhood

of large loops i.e. those containing thousands of SIAs (see Appendix for further details). In

this work, the size of clusters included in the database is limited by the feasibility of ab initio

calculations. The size of clusters in the database ranges from 2 to 20 SIAs with a total of

about 50 configurations for 〈100〉 and from 2 to 22 SIAs with 31 configurations for 1/2〈111〉.
The choice of the largest cluster size, i.e. 22 SIAs for 1/2〈111〉, is justified by the low relative

error in the formation energy in simulation cells with 1024 + n atoms (8a× 8a× 8a cells).

As shown in Fig.3, the relative errors in the formation energies due to this size limit are
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FIG. 3: Formation energies of n SIAs of (a)1/2〈111〉 and (b)〈100〉 dislocation loops in Fe, computed

with an EAM potential [18] with different configurations in cubic simulation cells containing 250

+ n (red circle), 432 +n (blue square), 686 + n (orange triangle up) and 1024+n (green rhombus)

atoms. All energies are normalized to the asymptotic limit, taken as the formation energy in a

simulation cell containing 207646 + n atoms. Lines are guides for the eyes, obtained using a fit to

a 4th order polynomial. Formation energies have been corrected using the elastic dipole correction

method to account for the finite size of the simulation cells [47].

lower than 2%. More details, along with the exhaustive list of configurations included in the

database, are given in the Appendix.

The building block of C15 clusters is a di-interstitial cluster. A simple way to insert

a di-interstitial C15 cluster into a bcc matrix is to place a Z16 Frank-Kasper polyhedron

having 12 atoms at the interstitial positions (see Fig.4a) together with 10 vacancies around

a given bcc atomic site. Larger C15 clusters can be described as sums of Z16 Frank-Kasper

polyhedra having centers situated on a diamond network, which underlies the initial bcc

structure (this network is shown in Fig.4a-e). The present database should include the

lowest energy configurations. In order to form a cluster with a given number of SIAs, the

number of possible choices of Z16 centers is quite large and guessing the configurations with

the lowest formation energies is problematic. The database for C15 clusters contains up to
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20 configurations of SIAs. This limit is fixed, as in the case of loops, by the accuracy in

the formation energies derived from DFT calculations with a cell containing 1024+n atoms.

Systematic exploration of the energy landscape in search of the minimum energy C15 con-

figurations gives good results for small clusters. Marinica et al. [10] used the Activation

Relaxation Technique [46] for finding the lowest energy configurations for 2, 3 or 4 SIAs

clusters. Nonetheless, the number of possible configurations grow exponentially with the

size of the cluster, making a systematic search prohibitive at larger sizes. More advanced

techniques using a genetic algorithm were proposed, making it possible to find the lowest

energy configurations containing up to 10 SIAs [48]. In a more pragmatic approach, config-

urations for the present database were generated using three “selection rules” which have

been established from observation of the formation energies of several trial configurations

generated using EAM potentials [18, 21, 24]:

1. All Z16 centers must be connected by at least one nearest neighbor bond to another

center. This rule prevents the construction of configurations formed by disconnected

clusters.

2. Closed hexagonal paths made of 6 Z16 centers are favored whenever possible. The

smallest cluster having 6 Z16 connected centers is the 11 SIA cluster which is shown

in Fig.4e. Loop closure then occurs for specific sizes, referred to as magic numbers.

The next magic numbers are observed for 17 and 23 SIAs. These structures indeed

have very low formation energies. The next step is to eliminate different possible

constructions containing the same numbers of SIAs. Careful observation reveals that

closed loops in compact form have lower formation energies if compared to closed loops

in planar form.

3. The C15 clusters must be constructed in the most compact 3D way.

The C15 configurations for validation data were also generated using these three rules.

B. Validation of the discrete-continuum model using different EAM potentials

Discrete-continuum model can be parameterized through simulations performed using

different EAM inter-atomic potentials, which allows us to test model predictions for large

clusters, using large simulations cells. Several EAM potentials for Fe [17, 18, 21, 24] and for

W [5, 20, 49, 50] were used for our tests. Note that in the Fe EAM potential published in

Ref.[21], a typo was corrected in Ref.[10].
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FIG. 4: (a-d) Top: Structure of small C15 interstitial clusters in a bcc lattice of the di-, tetra-,

hexa- and octo-interstitial clusters, in a skeleton representation, i.e., only SIAs are represented

as orange spheres without any representation of vacancies and cubic lattice sites. (a-d) bottom:

centers of the Z16 Frank-Kasper polyhedron corresponding to the top C15 skeletons are represented

by green spheres. (e) The 11 SIA C15 cluster, the lowest size which forms a closed ring with the

centers of Z16 Frank-Kaspers polyhedra. This ring is emphasized by blue bonds connecting the

centers of Z16 polyhedra.

The set of cluster geometries used for training the discrete-continuum model with EAM

energies is the same as the one that will be used later for parameterizing the model from

DFT data. The tests were performed for 〈100〉{100} and 1/2〈111〉{110} dislocation loops

containing up to 1200 SIAs. Three types of shapes were considered to construct configura-

tions: rectangular, circular, and hexagonal, where the sides of the polygon correspond to the

dense directions of the habit planes. The database of C15 clusters contains configurations

with sizes up to 110 SIAs. The C15 configurations were mostly generated in accordance

with the three rules mentioned in the previous section. The few configurations which do not

obey these rules will be discussed later.

The atomistic formation energies of clusters of SIAs were computed using zero Kelvin

atomic relaxation simulations. The asymptotic values of the formation energies were ob-

tained by introducing interstitial clusters in a constant volume simulation cell with millions

of atoms, sufficient to remove any residual size effect. The system was relaxed using a con-

jugate gradient technique with a convergence criterion on the maximal force per atom of

lower than 0.02 eV/Å. We have also performed calculations where the criterion was 0.001

eV/Å, resulting in minor changes in the formation energies, less than 0.001 eV.
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FIG. 5: Cluster formation energies as a function of cluster size for (a) 1/2〈111〉 and (b)〈100〉 loops

and for (c) C15 SIA clusters in Fe calculated using the Ackland-Mendelev potential for Fe [18].

Open diamonds represent the direct EAM results derived from simulations using large cells while

the blue full diamonds represent values predicted by the discrete-continuum model. The relative

errors are plotted as insets. Note that for the nanometric clusters the relative error is less than

3%.

The formation energies calculated with EAM potentials were compared with predictions

made using the discrete-continuum model (see Fig.5). For dislocation loops the difference

is less than 2% (see Fig.5a and 5b for 1/2〈111〉 and 〈100〉 loops, respectively) using the

EAM potential from Ackland-Mendelev for Fe [18]. Similar results are obtained for all the

EAM potentials tested for Fe and W. For the C15 clusters the error is slightly larger, i.e.

3% (see Fig.5c). The error may reach 5% for some clusters e.g. clusters containing 62,

64, 66 and 67 SIAs. The main reason for this discrepancy is that such clusters don’t have

compact geometries, hence they break the spherical symmetry assumed in the model. These

configurations were created by infringing the third rule given in section III A. We estimate

that such configurations are not significant for the purpose of this study, being far from the

lowest energy configurations.

C. Ab initio based predictions of SIA cluster formation energies

Having validated the discrete-continuum model, we can now proceed to its parameteriza-

tion using the DFT formation energies of configurations included in our database. The DFT
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simulation cell for n SIAs have been chosen to contain between 250+n and 1024+n atoms

in such a way that the relative error in the formation energy is lower than 2% from the

converged values (see Fig.3). The DFT calculations were performed using VASP within the

projector augmented wave (PAW) framework [51]. The plane wave energy cutoff is 350 eV

and the Hermite-Gaussian broadening-width for Brillouin zone integration is 0.2 eV. The

calculations are performed including the p semi-core states. The exchange correlation energy

is evaluated using the Perdew-Burke-Ernzerhof (PBE) Generalized Gradient Approximation

(GGA). The k-point grid mesh was chosen from 33 for 250+n cell up to (1 or 23) for the

1024+n cell. Each configuration is relaxed using the conjugate gradient technique with a

convergence criterion on the force on each atom of 0.02 eV/Å. The size of the supercell

remains fixed in order to ensure constant volume-per-atom simulations. All the formation

energies were adjusted using the dipole-dipole correction [47].

The formation energies for the 〈100〉 and 1/2〈111〉 loops, as well as C15 clusters, were

computed for Fe, W and V (except 〈100〉 for V), and the results are shown in Figs.6, 7 and

8, respectively.

As mentioned earlier, for all bcc metals, the experimental evidence, within the limit of

detection in TEM, for instance 1-2 nm radius for loops, confirms that the most frequently

observed morphology at low temperature corresponds to 1/2〈111〉 loops. The formation

energies predicted by the discrete-continuum model for large dislocation loops (sizes larger

than hundreds of SIAs) are in agreement with this observation since the 1/2〈111〉 loops are

predicted to be energetically more stable. The model also shows that, for dislocation loops

from 10 SIAs to sizes visible in TEM, 1/2〈111〉 loops always have smaller formation energy

than the 〈100〉 loops in both Fe and W. The present study is at odds with some EAM

potentials for Fe [10, 21] and for W [5, 33, 50], which predict a crossover in the relative

stability of two families of loops around 200 SIAs. Below this critical size the 〈100〉 loops

would be more stable in W whereas they would be more stable above the critical size in

Fe. The origin of this inversion in the relative stability of loops is still unclear. It is worth

noting that the discrete-continuum model is able to reproduce the crossover predicted by

the EAM potentials if the model was calibrated using the database corresponding to the

same potential. When the model is calibrated to the database derived from DFT, the model

predicts no crossover between the loop formation energies.

In contrast, the DFT-based predictions show crossovers between C15 clusters and loops.

In Fe, one crossover appears with 1/2〈111〉 loops at clusters around 51 SIAs in size, corre-

sponding to a 1.5 nm diameter C15 cluster. There is also a crossover with 〈100〉 loops, this
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FIG. 6: (a) DFT formation energies of 1/2〈111〉, 〈100〉 and C15 clusters in Fe (empty circles, squares

and diamonds, respectively) and the DFT based predictions made using the discrete-continuum

model (full circles, squares and diamonds, respectively) (b) Extrapolation of the formation energies

at large sizes for the 1/2〈111〉 loops, 〈100〉 loops and C15 clusters in Fe - empty symbols. Full

lines represent the elastic model (Eq. 5) parameterized using the points predicted by the present

discrete-continuum model. This extrapolation can be done without size limitation. Note the

crossover between 1/2〈111〉 loops and the C15 clusters at 51 SIAs, and between 〈100〉 loops and

C15 clusters at 91 SIAs.

time both in W and Fe at 21 and 91 SIAs, respectively. In V there is no crossover, 1/2〈111〉
loops are the most stable configurations for all defect cluster sizes.

In Fe, the present results reconcile the theoretical predictions with experiments, where

only the 1/2〈111〉 loops were observed under irradiation at low temperature, by giving some

support to a mechanism recently identified as a possible route of formation of the 1/2〈111〉
and 〈100〉 loops involving the collapse of larger C15 clusters [23]. The possible formation

mechanisms of 〈100〉 loops in Fe were addressed in the past in several studies, some examples

are given in Refs. [52–55]. In particular, Refs. [52–54] propose a mechanism based on the

reaction between two 1/2〈111〉 loops having appropriate size and specific orientations. The

mechanisms proposed by Marian et al. [52] and Xu et al. [53] are similar, the only difference
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being that Xu et al. showed that this reaction holds for larger clusters and has stochastic

components. Another scenario by Chen et al. proposed transformation of 1/2〈111〉 loops into

〈100〉 by correlated translation-rotation of SIAs forming the loop [55]. All these mechanisms

involve a certain number of stringent conditions, such as the direction of loop migration

and the size of the loops, which make the corresponding events highly infrequent. Zhang

et al. [23] proposed an alternative idea involving the nucleation of C15 clusters and their

growth by trapping of single self-interstitials of 1/2〈111〉 dumbbell structure. In Fe, small

C15 clusters are energetically very stable and act as traps for small mobile SIAs. Moreover,

they are kinetically trapped, meaning that the lowest energy reaction pathway that allows

C15 clusters to transform into planar loops corresponds to very large energy barriers resulting

in highly improbable transitions. In Ref.[10], it was shown that the lowest energy pathway

that transforms a 4-SIA C15 cluster into a planar loop is of the order of a few electron-

Volts. Under irradiation, small mobile interstitial clusters, such as 1/2〈111〉 or 〈110〉 loops,

are continuously produced, facilitating the growth of C15 clusters which can reach very

large sizes, even larger than the crossover between C15 and traditional loops because of

their kinetic trapping.

At large sizes the transformation of C15 clusters into dislocation loops with 1/2〈111〉 or

〈100〉 orientation becomes very likely. This transformation is demonstrated even on the time

scale of molecular dynamics simulations, by Zhang et al. [23]. Therefore, the frequency of

formation of 〈100〉 loops is definitely larger than in any other mechanism proposed in the

past. The only condition is that the C15 clusters should be formed at small sizes, which is

confirmed by DFT calculation of [10] and present study for small (up to 8 SIAs) and large

clusters (nanometric sized), respectively. Although the mechanism proposed by Zhang et

al. is rather convincing to explain the formation of 〈100〉 loops at high temperature in Fe,

it doesn’t explain why these loops are not observed at low temperature [56]. Present work

resolves this contradiction by revealing the DFT relative energy of large clusters. All the past

interpretations of Zhang et al mechanism were based on EAM potentials energetic landscape

which is different from the presents DFT findings. As shown in Fig.6, the crossover between

the C15 clusters with 〈111〉 and 〈100〉 loops occur at 51 and 91 SIAs, respectively, in Fe.

It means that the C15 clusters which could form under irradiation and have sizes larger

than 51 and smaller than 91 SIAs can decay only into the 1/2〈111〉 clusters. This could

explain the absence of 〈100〉 loops because the C15 clusters are more stable in this size range

(between 51 and 91 SIAs). We expect that C15 clusters should have sizes much larger than

91 SIAs in order to have non-zero probability to transform into 〈100〉 loops, which further
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FIG. 7: (a) DFT formation energies of 1/2〈111〉, 〈100〉 and C15 clusters in W (empty circles,

squares and diamonds, respectively) and the DFT based extrapolation from discrete-continuum

model (coloured lines). (b) Extrapolation of formation energies at large sizes for the 1/2〈111〉

loops, 〈100〉 loops and C15 clusters in W - empty symbols. Full lines represent the elastic model

(Eq. 5) parameterized on the points predicted by the present discrete-continuum model.

increases the size range where 〈100〉 cannot appear. Even though our interpretation does not

exclude the possibility of 〈100〉 loop formation directly under irradiation at low temperature,

it drastically reduces such probability in agreement with experimental observations [56, 57].

For small cluster sizes in W and V, the formation energies of C15 clusters are much higher

than for 1/2〈111〉 loops. In W for small sizes, between 7 and 21 SIAs, the C15 clusters have

slightly lower formation energies than 〈100〉 loops as shown in Fig.7a and 〈100〉 clusters

become energetically more favorable than the C15 clusters containing more than 21 SIAs.

In V, 〈100〉 loops have the formation energies that are between those of 1/2〈111〉 loops and

C15 clusters at all sizes. We used a relatively restricted set of calculations to parameterize

an energetic model for 〈100〉 loops in V, and so this conclusion is given on the basis of

calculations for intermediate cluster sizes performed for 2, 4, 10 and 20-SIA clusters.
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FIG. 8: DFT and discrete-continuum model predictions for the formation energies of 1/2〈111〉

interstitial loops and C15 SIA clusters in V. The same conventions as in Fig.6 and Fig.7 are used.

D. Ab initio scaling laws for formation energy

One of the goals of this paper is to provide simple analytical scaling law formula for

the formation energy of self-interstitial clusters. The interest of such a formulation is the

practical application in multi-scale techniques including kinetic Monte Carlo simulations

and cluster dynamics or dislocation dynamics studies. Using the present analytical scaling

law, we restrict the input required for parametrization of defect energetics to the number of

interstitial atoms and their type. These new simple scaling law provide reliable formation

energies over a very broad range of defect sizes for any subsequent multi-scale study.
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Element a0 a1 a2

1/2〈111〉 〈100〉 C15 1/2〈111〉 〈100〉 C15 1/2〈111〉 〈100〉 C15

Fe 1.61057 1.78429 0.38563 5.54283 7.58707 1.32918 -0.92309 -7.08854 10.39754

W 3.89541 4.55664 1.09667 7.63914 11.58419 3.33199 3.50980 -0.91002 47.22336

V 1.03029 − 1.53649 0.85406 − 1.34986 3.86213 − -7.35361

TABLE I: Best fit parameters (Eq.14 and Eq. 15) for the formation energies extrapolated using

the discrete-continuum model for the three types of clusters in three different bcc crystals. a0, a1

and a2 are expressed in eV.

Therefore, we propose a simple analytical expression in order to fit the results from the

discrete-continuum model based on Eq.11 and Eq.13:

Ef (n) = a0
√
n ln (n) + a1

√
n+ a2, (14)

and of C15 clusters:

Ef (n) = a0n
2/3 + a1n+ a2. (15)

It is worth noting that for sizes larger than 10 SIAs these two laws are a very good fit to

the formation energies, with an absolute error lower than 1 eV. Parameters of Eq.14 and 15

for Fe, V and W are given in table I.

IV. CONCLUSIONS

In this paper we investigated the formation energies of SIA clusters in three bcc metals,

namely Fe, W and V. The main result was the development and validation of a discrete-

continuum model that makes it possible to perform ab initio-level accurate calculations for

clusters without any size limitation. The model allows us to treat various cases of interstitial

dislocation loops and C15 clusters from clusters containing a few SIAs to nanometer size.

From the interpretation of the present results it can be concluded that above ∼ 100

SIAs 1/2〈111〉 loops are always the most stable family of SIA-clusters – in agreement with

experimental observations of irradiation defects at low temperature in bcc metals. However,

these results are at odds with calculations made using various EAM interatomic potentials,

which yield spurious predictions concerning the relative stability of 〈100〉 and 1/2〈111〉 loops

[21]. Future developments of such potentials should consider the information provided in

the present paper, and include the appropriate additional fitting conditions on the potential

parameters.
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Our study shows that in Fe, C15 clusters are the most stable clusters of defects for

sizes lower than 51 SIAs, which is a size range not accessible to direct TEM observations.

Our model also supports the theory of formation for 〈100〉 loops proposed by Zhang et al.

[23]. The present work, which includes no thermal effects, sheds some light on the absence

of 〈100〉 loops in low temperature experiments, and reconciles the Zhang mechanism with

the experimental evidence. However, in order to validate entirely our expectations, further

analysis is required.

Finally, our work makes it possible to establish scaling laws for the formation energies of

various types of clusters in various materials, which is significant for multi-scale simulations

such as kinetic Monte-Carlo simulations [9, 27, 58–60], cluster dynamics studies [61, 62], or

mean field approximations [63], where simple analytic laws are needed to model the energy

of large clusters. However, to enable the use of scaling laws in multi-scale simulations,

the effects of temperature must be accounted for. The present formulation of the discrete-

continuum model can be extended to address the formation free energies e.g. by including

the temperature dependence of elastic constants.
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FIG. 9: Histograms showing number of occurrence of pairs of dumbbells with respect to the type

(n1, n2) for all (a) training (small clusters) and (b) validation (small up to large clusters) 〈100〉

configurations where n1 is the number of first nearest neighbors and n2 refers to the number of

second nearest neighbors. Possible (n1, n2) dumbbell pairs of the type (0, n) where n = 0 to 4 were

not included due to absence of such pairs in both training and validation configuration sets.

BABEL code.[31]

VI. APPENDIX

Parametrization of the discrete part of the present energetic model relies on the topology

of cluster configurations. The number of first or second nearest neighbors of each dumbbell

is an essential ingredient for the formation energy calculations in Eq. 11. In this appendix,

we present the constraints that we have imposed in the construction of cluster geometries

in order to set-up correctly, from the mathematical point of view, the fitting procedure of

E(n1, n2 parameters.
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FIG. 10: Database configurations of 〈100〉 loop type. The cluster dumbbells are projected (and

represented) in the 001 habit plane. The color of each dumbbell is assigned according to the

number of first and second neighbors, (n1, n2). The color assignment map is shown in Figure 2 of

the paper.

The construction of extrapolation database is based on older studies of various authors

[13, 21, 33, 44, 45] which assert that the closed-loop configurations such as rectangles, squares

or circles are more stable than possible elongated configurations for the same number of SIAs.

Adhering to this requirement, hundreds of configurations of 〈100〉 and 1/2〈111〉 dislocation

loop types were constructed for SIAs ranging from 2 to 1500. For all these configurations,

we investigated the local environment of each dumbbells. To facilitate better understanding

of the neighborhood behavior in this set of configurations, occurrence of each (n1, n2) pair

was plotted where n1 refers to the number of first nearest neighbors and n2 refers to the

number of second nearest neighbors. The plotted histogram revealed that certain (n1, n2)

pairs do not occur while others pair are overrepresented as shown in Figure 9.

The configurations contained in the training database of the discrete-continuum model

were built in keeping with the selective dumbbell neighborhood behavior of large clusters

expressed above. These configurations were constructed such that all the occurring (n1, n2)
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FIG. 11: Database configurations of 1/2〈111〉 loop type in 110 habit plane, projected in the 110

plane. The same color convenction is applied as in the Figure 10.

pairs appear in the database as well so that each occurring pair is considered for fitting.

Due to the compact form of clusters, there are some extra (n1, n2) pairs of neighbors that

occur in database. However, this is not expected to pose a problem because they do not

contribute significantly in the extrapolation. The histogram of the neighborhood of the

training database is shown in Figure 9.

Database configurations were limited to 20 SIAs in 50 configurations and 22 SIAs in 31

configurations for 〈100〉 and 1/2〈111〉, respectively. All the training database configurations

for 〈100〉 and 1/2〈111〉 clusters are shown in Figure 10 and Figure 11.
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