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Abstract 

 

In this work an interatomic potential for the W-Re system is fitted and benchmarked 

against experimental and density functional theory (DFT) data, of which part are 

generated in this work. Having in mind studies related to the plasticity of W-Re 

alloys under irradiation, emphasis is put on fitting point-defect properties, elastic 

constants and dislocation properties. The developed potential can reproduce the 

mechanisms responsible for the experimentally observed softening, i.e., decreasing 

shear moduli, decreasing Peierls barrier and asymmetric screw dislocation core 

structure with increasing Re content in W-Re solid solutions. In addition the potential 

predicts elastic constants in reasonable agreement with DFT data for the phases 

forming non-coherent precipitates (σ- and χ-phases) in W-Re alloys. In addition, the 

mechanical stability of the different experimentally observed phases is verified in the 

temperature range of interest (700-1500 K). As a conclusion the presented potential 

provides an excellent tool to study plasticity in W-Re alloys at the atomic level. 

 

1. Introduction 

 

The international programme on thermonuclear fusion power requires the selection and 

qualification of materials for extreme environmental conditions, including high heat, charge 

particle flux and high energy neutron loads [1]. High strength refractory metals, with tungsten 

(W) in particular, are materials that will play an important role in both the ITER and DEMO 

projects [2-4]. For ITER, W is selected as a divertor material while for DEMO it will also 

serve as first wall armor material. Because of its high melting temperature and resistance to 
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sputtering by low-energy ions, W is a promising plasma facing material for both the divertor 

and first wall.  

However, the main drawback of W for structural and armor applications is its high 

ductile-to-brittle transition temperature (DBTT), being around 300-400 °C [5]. In addition to 

this, neutron irradiation  is known to further embrittle the material, see for example [6-8]. As 

mentioned in the Fusion Material Assessment Group report, the intrinsic brittleness of W is 

one of the major risks imposed on the design of plasma-facing and high heat flux components, 

especially given the lack of data on its evolution with neutron dose [9]. Therefore, the 

investigation of ductile properties of W and the underlying mechanisms of plastic deformation 

are important for the development of advanced W-based alloys as well as for understanding 

baseline tungsten, i.e., commercially pure polycrystalline tungsten. 

Although the use of industrially pure W is considered, the production of rhenium (Re) 

under neutron irradiation will occur as a result of transmutation reactions induced by thermal 

neutrons and the concentration established under expected DEMO conditions will reach 

several percents at a dose of 10 dpa [10]. This irradiation-induced chemical modification is 

proven to have a strong impact on the microstructural evolution of the material in terms of 

accumulation of dislocation loops, voids and Re-rich precipitates [6, 11]. 

In absence of irradiation, solid solution alloying of W by Re has been shown to reduce 

its shear modulus (<10% Re) [12], the hardness (<10% Re) [13], and the brittleness (<25% 

Re) [14]. However, starting from ~10% Re the hardness and yield point increase due to solid 

solution hardening and above ~25% Re the alloy embrittles (and hardens) due to the 

formation of σ-phase precipitates (see [13] and references therein). Under irradiation, as the 

dose increases the microstructure is primary populated by dislocation loops (up to 0.1 dpa), 

then voids emerge (0.1-1 dpa) and then non-coherent precipitates start to form [6, 11]. Thus, 

Re solid solution has an important impact on the mechanical properties of W in both 

irradiation and non-irradiation conditions. Therefore, a deep understanding of the physical 

mechanisms by which Re comes into play is an important line of research. 

In recent years the investigation of plastic deformation and the radiation-induced 

micro-structure makes intensive use of computer models that serve to complement and 

rationalize experimental studies. Modern computational materials science dealing with 

plasticity phenomena underlines the role played by dislocations and grain boundaries, which 

define the plastic deformation mechanisms at atomic and meso-scale (see for example [15-

17]). The desired mechanical properties of a material tested under given conditions can be 

rationalized on the basis of crystal plasticity theory and its numerical implementation via 
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constitutive laws, including both irradiation and non-irradiation conditions (see for example 

[18, 19]). At present, many efforts are ongoing to explore the relationship between 

microstructure and mechanical response by advanced computational models (see for example 

[17, 20, 21]). 

The main input parameters required for micro-mechanical models include precise 

information about the mobility of dislocations, the thermal activation of their glide, the impact 

of solid solution on the latter and interaction rules with radiation induced defects. Atomistic 

simulations represent the most natural tool to explore the above listed processes and feed 

meso-scale models with relevant data. Radiation induced defects, as experimentally observed 

in W under fusion relevant neutron irradiation conditions, have a size ranging from one to 

several nano-meters with a density of 1022-1023 m-3. This implies that an adequate simulation 

volume must contain from several hundred thousand to a few million atoms. The required 

simulation volume does not allow a quantum mechanical treatment of the system and 

therefore classical molecular dynamics (MD) using interatomic potentials must be used. 

For metallic systems the embedded atom method (EAM) [22] is an excellent 

compromise between physical accuracy and computational efficiency. In the literature many 

EAM potentials exist for W (see [23]  for an overview), but up to our knowledge none exists 

for Re and the W-Re system. Therefore, an EAM type potential for the W-Re system is 

developed in this work. Having in mind studies related to plasticity of W-Re alloys under 

irradiation, emphasis was put on fitting point-defect properties, elastic constants and 

dislocation properties. 

For the purpose of fitting and benchmarking the EAM potential, we performed density 

functional theory (DFT) calculations. For this we focused on the interaction between Re 

atoms and point defects, the effect of Re on the ½<111> screw dislocation core structure, the 

<111> interrow potential, ½<111>{110} stacking fault energy profile and symmetric tilt grain 

boundaries. In addition the EAM potential was applied to calculate the elastic constants of the 

different experimental phases (bcc, σ, χ and hcp) and were compared to experiment and DFT 

data where available. It was checked that the latter phases are mechanically stable in the 700-

1500 K temperature range. This temperature range is taken as guideline for the typical 

operation temperature of W as material for a plasma facing component surface in the water 

cooled divertor concept in the DEMO design [9]. 

 

2. Methods 

 



4 
 

2.1. Fitting strategy 

 

In the literature, many EAM type interatomic potentials for bcc W are available (see [23] and 

references therein). A critical review assessing their strengths and weaknesses is given in [23]. 

In this work, we selected "EAM2" from the work by Marinica et al. [24], which gives good 

"overall performance". As key features, this potential provides elastic constants, point-defect, 

edge and screw dislocation properties as well as grain boundary energies consistent with DFT 

calculations or experiments (see [23] for more details). In addition, the potential was already 

applied as a part of W-H-He potentials [25] in the framework of the study of H and He 

retention in bcc W [26-28]. This choice guarantees a possible extension to the W-Re-H-He 

system.  

Up to our knowledge, no EAM potential is available for hcp Re or the W-Re system 

and therefore they are fitted here. Prior to the cross interaction, an EAM potential for pure Re 

was fitted. The target material properties fitted here are the lattice stabilities of different 

crystallographic structures (bcc, fcc and hcp), their cohesive energy Ecoh, and equilibrium 

lattice parameters, the five independent elastic constants for the equilibrium hcp lattice (C11, 

C33, C12, C13, C44), the single vacancy formation energy and Rose’s equation of state for the 

hcp lattice [29]. 

 For the W-Re cross interaction, we considered the formation energy of a single Re 

atom, the binding energy between first (1nn) and second nearest neighbor (2nn) Re-v pairs, 

the Re-v migration barrier and binding energy of the <111> mixed W-Re dumbbell in bcc W. 

To insure a physical shape of the mixed pair potential, the latter was also fitted to Rose's 

equation of state for the σ-phase. As reference compound for the σ-phase we chose the 

compound with lowest formation energy reported in [30]. 

 The fitting of an interatomic potential can be viewed as the problem of finding the 

potential parameters that allow the latter to optimally reproduce a given data set. 

Mathematically, it can be formulated as the minimization of the overall squared deviation, the 

so-called objective function, between predicted and reference data. For the details about 

different optimization strategies the reader is referred to [31, 32]. The parameterization and 

optimized parameters of the EAM potential are provided in Appendix A. 

 

2.2. Benchmark calculations 
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The developed EAM potential is tested and validated against experimental and DFT data from 

the literature as well as to additional DFT data calculated in this work. In this section we 

summarize the settings for the DFT and EAM calculations. 

The DFT calculations were performed using the Vienna ab initio simulation package 

(VASP 5.4) [33, 34]. VASP includes a plane-wave DFT code that implements the projector 

augmented wave (PAW) method [35, 36]. For consistency with our previous calculations (see 

[23]), standard PAW potentials supplied with VASP were used. The electron exchange-

correlation functional was described within the generalized gradient approximation (GGA) 

using the Perdew–Wang [37] parameterization, with a Vosko-Wilk-Nusair interpolation [38]. 

For W and Re a potential was applied with six and seven valence electrons, 

respectively. The plane wave cut-off  energy was set to 450 eV. Brillouin zone sampling was 

performed using the Monkhorst–Pack scheme [39], where the k-point meshes differ 

depending on the box size and both are given in Table 1. Finite-temperature smearing was 

obtained following the Methfessel–Paxton method [40] with a smearing width of 0.3 eV. 

Ionic relaxation was performed using the conjugate gradient optimization scheme with a force 

convergence criterion of 0.03 eVÅ−1 for each atom. 

The EAM calculations were performed using the large-scale atomic molecular 

massively parallel simulator (LAMMPS) [41]. Ionic relaxation was performed using the 

conjugate gradient optimization scheme with a convergence criterion on the 2-norm of the 

global force vector of 10-10 eVÅ−1. The specifics of box size and boundary conditions depend 

on the calculated property and are summarized in Table 1.  

The elastic constants at finite temperature were obtained from MD simulations. The 

same configurations used for the zero K computations were first thermalized for 100 ps in 

NPT ensemble to obtain the equilibrium lattice constant. Then elastic constants were obtained 

from MD simulations in NVE ensemble averaged over 1 ps under different deformations. An 

averaging time of 30 ps and time step of 1 fs proved enough to obtain convergence in the 

resulting elastic constants. 

The melting temperature, Tm, was obtained by applying an interface method. With this 

method Tm is defined as the temperature at which both solid and liquid phases coexist. Such 

simulations were performed using MD in NVE ensemble over 1 ns with a time step of 1 fs. 

The point defect properties in bcc W were calculated using a simulation box with 

principal axes oriented along the [100], [010] and [001] directions. For all other properties in 

bcc W the principal axes of the simulation box were oriented along the [110], [1�12] and 
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[11�1]  directions, except for grain boundary (GB) calculations, which all have different 

orientations of the axes depending on the GB type (see below).  

For all EAM calculations the configurations were the same as for the DFT 

calculations, but the DFT box was duplicated several times in the [110] and [1�12] directions 

or GB plane so that the distance in either direction is at least two times the potential cut-off. 

Along the [11�1] direction or orthogonal to the GB plane this condition is already satisfied for 

DFT configurations. The latter condition is necessary to satisfy the minimum image criterion 

to avoid self-interaction of the interatomic potential. This set-up allows a one-to-one 

comparison between DFT and the potential. 

The formation energy, Ef(NX,NY), of a configuration containing NX X and NY Y 

(vacancy) atoms with a total of N atoms is computed as, 

 

𝐸𝐸𝑓𝑓(𝑁𝑁𝑋𝑋 ,𝑁𝑁𝑌𝑌) = 𝑁𝑁𝐸𝐸(𝑁𝑁𝑋𝑋 ,𝑁𝑁𝑌𝑌) + 𝑁𝑁𝑋𝑋𝐸𝐸(𝑋𝑋) + 𝑁𝑁𝑌𝑌𝐸𝐸(𝑌𝑌),    (1) 

 

with E the energy per atom of the given supercell. The reference state for W, Re and v is bcc, 

hcp and vacuum (E(v)=0), respectively. Given Ef, the total binding energy between X-Y pairs 

in bcc W is computed as, 

 

𝐸𝐸𝑏𝑏(𝑋𝑋 − 𝑌𝑌) = 𝐸𝐸𝑓𝑓(𝑋𝑋,𝑌𝑌) − 𝐸𝐸𝑓𝑓(𝑋𝑋) − 𝐸𝐸𝑓𝑓(𝑌𝑌).      (2) 

 

The investigated GBs were prepared considering a mirror symmetry for bi-crystals. 

The principal axes of the crystals x, y and z correspond to the tilt axis, GB axis and normal to 

the GB plane, respectively. In both DFT and EAM calculations 3D periodic super cells were 

used and the GB energy, γGB, was calculated as, 

 

𝛾𝛾𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐺𝐺𝐺𝐺−𝑁𝑁𝐸𝐸(𝑊𝑊)
2𝑆𝑆

,         (3) 

  

with EGB the total energy of the crystal containing the GB. 

Each GB in pure W was relaxed allowing for both ionic relaxation and relaxation 

along the z-axis. Then that configuration was used to insert a Re atom at different distances 

from the GB plane. At that point only ionic relaxation at constant volume was allowed. The 

binding energy between a Re atom and the GB is estimated as the total energy difference 

between the GB configuration with Re atom in the bulk and Re atom near the GB. The bulk 
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position is located at approximately equal distances form the GB planes. For the EAM 

calculations the resulting difference is divided by the total number of Re atoms contained in 

the supercell, which is larger than one due to the minimum image criterion. 

In analogy with the GB calculations, for pure W the ½<111>{110} stacking fault 

energy profile was obtained allowing for both ionic relaxation and relaxation along the [110] 

direction. Then that configuration was used to insert a Re atom in the shear plane. At that 

point only ionic relaxation at constant volume was allowed. 

 

Table 1 – Details of the calculation set-up for the different DFT and EAM calculations. 

  DFT EAM 

Configuration Periodicity N Size (𝑎𝑎03) k-points N Size (𝑎𝑎03) 

Point defects 

in bcc W 
3D 128 4×4×4 3×3×3 2000 10.0×10.0×10.0 

Elastic 

Constants 
3D      

bcc-phase  NC NC NC 2000 10.0×10.0×10.0 

hcp-phase  NC NC NC 1200 8.8×7.6×8.5 

σ-phase  NC NC NC 7500 15.4×15.4×16.1 

χ-phase  NC NC NC 1566 9.3×9.3×9.3 

<111> inter 

row potential 
3D 72 4.2×4.9×1.7 3×3×9 216 4.2×4.9×5.1 

½<111> 

screw 

dislocation 

core 

2D NC NC NC 18144 49.5×49.0×5.2 

½<111>{110} 

stacking fault 

energy profile 

2D 120 18.9×2.4×1.7 1×7×9 720 18.9×4.8×5.1 

Grain 

boundaries 
3D      

Σ3〈110〉{111}  144 2.8×2.4×10.6 5×7×1 576 5.6×4.8×10.6 

Σ3〈110〉{112}  96 2.8×1.7×9.9 5×9×1 576 5.6×5.1×9.9 

Σ5〈100〉{013}  240 2.0×3.2×19.1 7×5×1 1440 4.0×9.6×19.1 
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Tm 3D NC NC NC 14400 28.5×59.3×139.8 

NC indicates that the DFT values were not computed in this work. 

 

3. Results 

 

3.1. Pure potentials 

 

As mentioned in Section 2.1 we chose "EAM2" from [24] to describe pure W. As key 

features, this potential provides elastic constants, point-defect, edge and screw dislocation 

properties as well as grain boundary energies consistent with DFT calculations or experiments 

(see [23] for more details). 

 The key properties of the Re EAM potential are summarized in Table 2. Clearly, EAM 

is in excellent agreement with the experimental equilibrium lattice [42] and cohesive energy 

[43]. The relative lattice stabilities between hcp and bcc/fcc were taken from DFT 

calculations [44]. EAM reproduces the order between the different lattices, but underestimates 

the relative stability between the phases, especially between bcc and hcp. The latter should 

have no influence for our target applications in the temperature range 700-1500 K. 

The experimental elastic constants [45] are well reproduced by EAM, i.e., all values 

lay within 10% of experimental values. For completeness also the Voigt average for the bulk- 

(BV) and shear modulus (GV) are provided. A comparison of the energy change of hcp Re 

under uniform compression or expansion to Rose's equation of state is provided in Fig. 5 of 

Section 3.5 (see further). 

 As a target for the vacancy formation energy, Ef(v), a rough estimate based on the 

heuristic formula (Tm/1000) [43, 46] was used. The fully relaxed value predicted by the EAM 

agrees well with this estimate. 

 The melting temperature of Re is included in Table 2. EAM overestimates Tm by 40%, 

but this shortcoming should have no influence on simulations in the target temperature range 

700-1500 K. 

 To conclude, the linear thermal expansion coefficients (𝛼𝛼𝑎𝑎
hcp and 𝛼𝛼𝑐𝑐

hcp) of Re obtained 

by EAM are compared to the experimental ones [72] (see also Fig. B1 in Appendix B). While 

for 𝛼𝛼𝑐𝑐
hcp  agreement is excellent, EAM underestimates 𝛼𝛼𝑎𝑎

hcp  by almost a factor three. This 

shortcoming, however, should have no influence on the target applications, i.e., plastic 

deformation in W-Re alloys. 
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Table 2 – Summary of the key properties of the Re EAM potential. 

Property Target EAM 

a (hcp) (Å) 2.761a 2.761 

c/a (hcp) 1.614a 1.614 

Ec(hcp) (eV) 8.03b 8.03 

a (fcc) (Å) 3.928c 3.900 

∆𝐸𝐸c(hcp-fcc) (eV) 0.06c 0.02 

a (bcc) (Å) 3.125c 3.048 

∆𝐸𝐸c(hcp-bcc) (eV) 0.32c 0.13 

BV (GPa) 372b 382 

GV (GPa) 180d 170 

C11 (GPa) 613d 611 

C33 (GPa) 683d 682 

C12 (GPa) 270d 299 

C13 (GPa) 206d 234 

C44 (GPa) 163d 159 

Ef(v) (eV) 3.46e 3.49 

Tm (K) 3459f 4836 

𝛼𝛼𝑎𝑎
hcp 7.0×10-6 g 2.5×10-6 

𝛼𝛼𝑐𝑐
hcp 5.0×10-6 g 4.2×10-6 

a Experiment – Room temperature (T=296 K), Ref. [42]. 
b Ref. [43]. 
c DFT data – Ref. [44]. 
d Experiment – Room temperature (T=298 K), Ref. [45]. 
e Based on the correlation Ef(v)=Tm/1000 [46], with Tm taken from [43]. 
f Experiment – Ref. [43]. 
g Experiment – Ref. [72]. 

 

3.2. Point defects 

 

The key point-defect properties of Re in bcc W are summarized in Table 3. Whilst fitting the 

different point-defect properties the correct reproduction of both Re-v binding energy and the 
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formation energy of Re in bcc W, Ef(Re), proved not manageable. While the Re-v binding 

energy determines the binding of a Re atom to "open volume", Ef(Re) determines the 

solubility of Re in bcc W.  

Here we opted to reproduce Ef(Re) such that full solubility is obtained above 700 K, 

which is the lower limit of the envisaged applications. Experimentally, a large solubility is 

expected at that temperature, i.e., ~25% Re below 1273 K [47]). The Re solubility at 700 K 

predicted by EAM was estimated following the methodology in [48]. Due to this choice, 

EAM predicts a Eb(Re-v) that is ~70% lower than the DFT value. 

Both the W-v and Re-v migration barriers in bcc W, Em, are slightly overestimated by 

EAM compared to DFT. The Re-v migration barrier is 0.05 eV lower than the W-v migration 

barrier, a feature that is well reproduced by EAM. 

 With respect to interstitial Re, both DFT and EAM predict the <111> mixed W-Re 

dumbbell as energetically most favorable configuration, with the same binding energy. The 

relative difference between the mixed <111> and <110> dumbbell, on the other hand, is large 

overestimated by EAM. The latter value gives the saddle point for on-site rotation of the 

mixed <111> W-Re dumbbell. However, for the envisaged application of plasticity this 

shortcoming is of minor importance. 

 

Table 3 – Summary of the key point-defect properties of the EAM potential. Properties 

indicated by * were included in the fit.  

Property DFT (eV) EAM (eV) 

Ef(Re) * 0.17a 0.17 

𝐸𝐸𝑏𝑏1nn(Re-v) * 0.20b 0.22c 0.23d 0.06 

𝐸𝐸𝑏𝑏2nn(Re-v) * 0.20b 0.22c 0.06 

Em(W-v)  1.69c 1.78e 1.85 

Em(Re-v) * 1.65c 1.81 

𝐸𝐸𝑏𝑏
〈111〉(W-Re) * 0.79c 0.80d 0.80 

𝐸𝐸𝑓𝑓
〈111〉(W-Re) 9.17c 9.53a 6.56 

Δ𝐸𝐸𝑓𝑓
〈111〉−〈110〉(W-Re) 0.03c 0.02a 0.42 

Δ𝐸𝐸𝑓𝑓
〈111〉−〈100〉(W-Re) 1.03c 1.68 

Δ𝐸𝐸𝑓𝑓
〈111〉−Tetra(Re) 1.36c 1.54 

Δ𝐸𝐸𝑓𝑓
〈111〉−Octa(Re) 2.15c 1.68 
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a DFT, [49]. 
b DFT, this work. 
c DFT, [50]. 
d DFT, [51]. 
e DFT, [52]. 

 

3.3. Line defects 

 

The ½<111> atomic row displacement energy curve, or interrow potential (IRP), calculated 

by both DFT and EAM is presented in Fig. 1. The IRP profile provides a measure of the 

energy barrier that must be overcome for the movement of a ½<111> screw dislocation. The 

DFT data show that the addition of a Re atom (one Re per 2b) at 1nn distance to the displaced 

row marginally lowers the energy profile. In the case of EAM, the addition of Re has a 

negligible effect, thus consistent with the DFT data. This observation is consistent with the 

decrease in Peierls barrier for a ½<111> screw dislocation due to the alloying with Re, as 

discussed in [53]. The wide plateau near the center of the reaction path is not reproduced by 

EAM. This property is inherent to the used EAM potential for pure W, as discussed in [23]. 

We note that the IRP profile was not included in the fit of the EAM potential.  

 

0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
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1.4
1.6
1.8
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V/
b)

Displacement (b)

DFT
 bcc W
 bcc W with 1 Re atom

EAM
 bcc W
 bcc W with 1 Re atom

 
Fig. 1 – Comparison of the ½<111> IRP profile calculated by DFT and EAM with and 

without a Re atom at 1nn distance of the moving row. 
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In Fig. 2 the screw dislocation (SD) core structure is visualized by means of 

differential displacement maps [54] using EAM. It is well established by different DFT 

calculations that a SD in bcc transition metals and W in particular, exhibits a compact 

isotropic core structure [53, 55-61], a feature that is well the W EAM potential (see Fig. 2a 

and [23]). Consistent with the DFT calculations by Romaner et al [53], EAM predicts that the 

alloying of W by Re changes the SD core from a compact symmetric to a degenerate 

asymmetric structure (see Figs 2b, c and d). The introduction of a single Re atom into the SD 

core already leads to the breaking of its symmetry (see Fig. 2b). Further alloying of W with 

Re (for reasons of comparison with [53] we chose 25% Re) leads to a fully degenerate 

asymmetric SD core, regardless of the Re distribution. The latter is illustrated by two different 

local random arrangements of Re atoms around the SD core, with the Re arrangement in Fig. 

2c denser than the one in Fig. 2d. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2 – Differential displacement maps illustrating the screw dislocation core structure 

calculated by EAM in (a) pure W; (b) pure W with one Re atom in the core; representative 

snapshot for a W-25%Re random alloy (c) with many Re atoms near the core and (d) fewer 

Re atoms near the core. The large circles indicate the Re atoms while the small ones indicate 
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W atoms. The different colored W atoms illustrate the three different non-equivalent {111} 

planes. 

 

 As discussed in [53], the alloying of W with Re leads to a degenerate asymmetric SD 

core, which in turn allows for the activation the {112} slip system. This, in combination with 

a negligible or slight reduction of the IRP or Peierls barrier, leads to the experimentally 

observed softening of W-Re solid solutions [12, 13]. All mechanisms leading to this 

phenomenon are well reproduced by EAM. 

 

3.4. Surface Defects 

 

The ½<111>{110} stacking fault energy (SFE) profiles calculated by both DFT and EAM are 

given in Fig. 3. The SFE profile represents a measure for the energy barrier that must be 

overcome for the movement of a ½<111>{110} edge dislocation. The DFT data show that the 

addition of a Re atom (one Re per 3√2𝑎𝑎02 ) to the sheared {110} plane marginally decreases 

the maximum of the SFE profile. In the case of EAM, the addition of Re has a negligible 

effect, thus consistent with the DFT data. We note that this property was not included in the 

fit of the EAM potential. 
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Fig. 3 – Comparison of the ½<111>{110} SFE profile calculated by DFT and EAM with and 

without a Re atom in the {110} shear plane. 
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 A comparison between DFT and EAM for the GB energy, γGB, of different GBs is 

given in Table 4. Consistent with the calculations reported in [23, 62], DFT predicts the 

Σ3〈110〉{112} GB to have the lowest γGB, followed by both Σ3〈110〉{111}and Σ5〈100〉{013} 

that are almost degenerate. The W EAM potential reproduces this trend both qualitatively and 

quantitatively, except for the  Σ3〈110〉{111}GB that is largely overestimated. 

 

Table 4 – Comparison of the GB energy calculated by DFT and EAM. 

Grain boundary DFT (mJ/m²) EAM (mJ/m²) 

Σ3〈110〉{111} 2227 2734 

Σ3〈110〉{112} 673 640 

Σ5〈100〉{013} 2191 2092 

 

The binding energy of a Re atom to the Σ3〈110〉{111}  (one Re per 4√3𝑎𝑎02 ), 

Σ3〈110〉{112} (one Re per 2√6𝑎𝑎02) and Σ5〈100〉{013} (one Re per 2√10𝑎𝑎02) are presented in 

Fig. 4a, b and c, respectively. The DFT data suggest attractive interactions for all GBs and at 

any distance from the GB plane. This is consistent with similar DFT calculations presented in 

[62]. For all GBs maximum attraction is observed just above the GB plane, with the least 

strong attraction (~0.25 eV) for the GB with lowest γGB, i.e., Σ3〈110〉{112} and the strongest 

attraction by about a factor two (~0.5 eV) for the high energy GBs.  

With respect to EAM some deviations are observed. For both Σ3〈110〉{111}  and 

Σ5〈100〉{013} attraction is only reproduced for the Re atom just above the GB plane. For all 

other positions the interaction is repulsive. At the point of maximum attraction EAM 

underestimates the attraction by about a factor two. For the low energy Σ3〈110〉{112} GB, on 

the other hand, attraction at any distance from the GB plane is reproduced by EAM.  

 The underestimation of the binding energy is consistent with the underestimation of 

the Re-v binding, which provides a measure of the binding between Re and open volume 

defects, such as a GB. Besides the Re-v binding energy, none of the GB configurations were 

included in the fit of the EAM potential. 
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Fig. 4 – Comparison between DFT and EAM of the binding energy as a function of distance 

to the GB for the (a) Σ3〈110〉{111}; (b) Σ3〈110〉{112} and (c) Σ5〈100〉{013} GBs. 

 

3.5. Elastic Constants 

 

To guarantee a physical shape of both the Re-Re and W-Re pair potentials, the EAM potential 

was fitted with low priority to Rose's equation of state [29]. For the Re-Re pair potential the 

reference was hcp Re while for the W-Re pair potential the reference was the σ-phase 

compound with lowest formation energy as reported in [30]. 

 In Fig. 5 the average lattice energy, 𝐸𝐸∗ = 𝐸𝐸/𝐸𝐸c , under uniform expansion and 

contraction (with strain 𝑎𝑎∗ = 9Ω𝐵𝐵/𝐸𝐸c(𝑎𝑎 𝑎𝑎0⁄ − 1)  and B the bulk modulus) calculated by 

EAM for the different reference states is compared with Rose's universal equation of state 

[29]. Clearly,  the curves for both hcp Re and the σ W2Re are in excellent agreement with 

Rose's equation of state. 
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Fig. 5 – Comparison of the equation of state for hcp Re and the σ-phase obtained by EAM 

with Rose's universal equation of state. 

 

In the following, the elastic constants at both zero K and finite temperature were 

estimated as the average over 100 independently generated randomly disordered solid 

solutions in the boxes described in Table 1. The resulting statistical error is ~1GPa. 

In Fig. 6 a comparison between experiment [12] and EAM is provided for different 

shear moduli of several bcc W-Re solid solutions at zero Kelvin. In the figure we considered 

the limiting cases for the shear modulus: C44 as upper boundary and 𝐶𝐶′ = (𝐶𝐶11 − 𝐶𝐶12)/2 as 

lower boundary. In addition, we added the shear modulus corresponding to <111> {110} 

shear deformation, which is the shear modulus encountered by dislocation glide in the {110} 

slip system.  

 The experimental data show that C44 goes through a minimum at 3% Re before 

increasing again. The other shear moduli, on the other hand, exhibit monotonous decrease 

with Re content. These data are consistent with the experimental observation of softening of 

W-Re alloys (0-10% Re) (see [13] and references therein). In addition, the reduction of C' 

indicates a reduction of the mechanical stability of the bcc phase, which is consistent with the 

appearance of the intermetallic σ- and χ-phases in the phase diagram for larger Re content 

[63]. Clearly, EAM reproduces these features. 
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Fig. 6 – Comparison between experiment [12] and EAM for different shear moduli for several 

bcc W-Re solid solutions. 
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 In Fig. 7 a and b the Voigt average of the bulk- (BV) and shear modulus (GV) at zero K 

calculated by EAM is presented as a function of composition for the various stable phases 

following the phase diagram. Where available, experimental data (bcc phase) [12] and DFT 

data (σ-phase) [30] were added for reference. Given the complex structure of both σ- and χ-

phases, we discuss BV and GV rather than the individual elastic constants. The latter values 

provide a measure for the resistance against uniform deformation and shear deformation of a 

polycrystal. In an effort not to overload the figure, we emphasized BV and GV in their stability 

range as predicted by the phase diagram. However, the extrapolations outside the stability 

range can still be followed in the same figure. Detailed tables containing all independent 

elastic constants, mixing enthalpy and equilibrium lattice constants corresponding to the 

different phases are provided in Appendix B. 

 Both σ- and χ-phases are so called topologically closed packed (tcp) phases [64], 

which have a well-defined crystallographic structure but no fixed stoichiometry. As a result, 

they exist in a large homogeneity range, although complete disorder is never observed as their 

non-equivalent sites exhibit preferential occupancy. The σ-phase is a tetragonal phase 

described by the P42/mmm (No. 136) space group with five non-equivalent positions while the 

χ-phase is a cubic phase described by the 𝐼𝐼4�3𝑚𝑚  (No. 217) space group with four non-

equivalent positions. In the work by Crivello et al [65] the partial occupancies of the non-

equivalent positions are calculated as a function of global Re content, based on simple 

thermodynamic considerations. The simulation boxes were prepared consistent with the data 

reported at 1873 K, which is in close agreement with experimental observations. As 

mentioned above, the estimated elastic constants are the result of an average over 100 

independent random solid solutions. For all phases the statistical error was ~1 GPa. 

 Within the limits of the thermodynamic stability of each phase, BV increases quasi 

linearly from 310 GPa for bcc W up to 382 GPa for hcp Re, thereby passing through the σ-

phase (~330 GPa at 50% Re) and χ-phase (350 GPa at 80% Re). Both the experimental data 

for the bcc phase (0-10% Re) and DFT data for the σ-phase (30-70% Re) are well reproduced 

by EAM. Outside the thermodynamic stability range of the σ-phase, however, EAM fails to 

reproduce the linear trend predicted by DFT. This incorrect trend is due to the large 

overestimation of BV for pure σ-phase W.  

 For the bcc phase GV remains quasi constant in the range 0-10% Re, but sharply 

increases outside this Re range. For hcp Re GV is similar to that of bcc W, but it reduces fast 
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with the addition of W. In depth analysis shows that the hcp phase becomes mechanically 

unstable below 70% Re. In their respective thermodynamic stability range, GV for the σ-phase 

is higher than for the χ-phase, but both are lower than GV for the bcc and hcp phases. Within 

the thermodynamic stability range the experimental GV for the bcc phase (0-10% Re) is well 

reproduced. For the σ-phase agreement with the DFT data is reasonable (30-70% Re). Similar 

as for BV, outside the thermodynamic stability range for the σ-phase the DFT trend for GV is 

not well reproduced, which is in part due to the large overestimation of GV for pure σ-phase 

W. 

 Thus, the experimentally observed hardening and embrittlement due to σ- and χ-phase 

precipitation [13, 66, 67] is unlikely to originate from the matrix precipitate shear modulus 

misfit. It is rather linked to the non-coherent structure of the matrix-precipitate interface, 

which implies impenetrable behavior of the σ- or χ-phase precipitate and overall resulting in 

the strong pinning of the dislocations that must overcome such inclusions by either Orowan or 

cross-slip mechanisms. Earlier, this phenomenon was studied and proven (both 

experimentally and theoretically) for Fe-Cu alloys [68]. The present EAM potential will help 

elucidate this in our further works. 
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Fig. 7 – Comparison of the Voigt average of the (a) bulk modulus and (b) shear modulus 

between EAM, available experimental [12] and DFT [30] data for the different phases. 

 

 The evolution of the mixing enthalpy, Hmix, or formation energy per atom, at zero K of 

the bcc, σ, χ, and hcp phases with composition is summarized in Fig. 8 together with 

available DFT data [30, 65]. For all phases bcc W and hcp Re were used as reference states. 

For EAM the same configurations and statistics were used to compute the elastic constants 
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(see Fig. 7) while for DFT compounds corresponding to all permutations of W and Re on the 

non-equivalent sublattices were used (see [30, 65]). Even though Hmix predicted by EAM lays 

within the DFT range (0-0.35 eV/at.), at any composition the bcc or hcp phase is energetically 

more favorable. This means that at least at low temperature, both σ- and χ-phases are 

thermodynamically unfavorable, which is consistent with both experimental and calculated 

phase diagrams [65]. 
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Fig. 8 – Evolution of the mixing enthalpy with composition for the bcc, σ, χ, and hcp phases 

with composition. DFT data [30, 65] for ordered compounds is superposed. 

 

 To ensure the stability of all phases during MD simulations at finite temperature, we 

studied the mechanical stability of bcc W, σ W-50%Re, χ W-75%Re and hcp Re in the 

temperature range 300-1500 K. For this, the same configurations and statistics were used as in 

Fig. 7, resulting in a statistical error of a few GPa. The necessary and sufficient conditions for 

mechanical stability of a given phase is a positive definite stiffness matrix for that phase, 

which is equivalent with strictly positive eigenvalues of the latter. For a cubic crystal (e.g. bcc 

and χ-phase) this leads to the following conditions [69], 

 

�
𝐶𝐶11 − 𝐶𝐶12 > 0
𝐶𝐶11 + 2𝐶𝐶12 > 0

𝐶𝐶44 > 0
 ,       (4) 

 

For a tetragonal (I) phase (e.g. hcp and the σ-phase), the necessary and sufficient conditions 

are given as [69], 
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�

𝐶𝐶11 − |𝐶𝐶12| > 0
𝐶𝐶33(𝐶𝐶11 + 𝐶𝐶12) − 2𝐶𝐶132 > 0

𝐶𝐶44 > 0
𝐶𝐶66 > 0

,     (5) 

 

where for hcp crystals the following relation 𝐶𝐶66 = (𝐶𝐶11 − 𝐶𝐶12)/2 is valid. 

 In Fig. 9 the evolution with temperature of the lowest shear moduli (see criteria 4 and 

5) for bcc W, σ W-50%Re, χ W-75%Re and hcp Re is summarized. These shear moduli are 

the most critical to satisfy criteria 4 and 5. Clearly, all shear moduli are well above zero 

leading to the conclusion that the investigated phases are mechanically stable in the 

temperature range 300-1500 K. Therefore, the EAM potential is suitable for MD studies of 

these phases up to at least 1500 K. Detailed tables containing all independent elastic constants 

and equilibrium lattice constants corresponding to the different phases EAM are provided in 

Appendix B. 
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Fig. 9 – Evolution of the lowest shear moduli with temperature for bcc W, σ W-50%Re, χ W-

75%Re and hcp Re. 

 

4. Conclusive remarks 

 

We fitted and benchmarked an EAM potential for the W-Re system against experimental and 

DFT data, of which a part was generated in this work. 
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The EAM potential was fitted to the Re formation energy in bcc W such as to 

reproduce large Re solubility at 700 K and above. EAM predicts the <111> W-Re dumbbell 

as most stable interstitial configuration with a binding energy consistent with the result of 

DFT calculations. 

 With respect to grain boundaries (GBs), EAM predicts the binding of isolated Re with 

a GB when placed just above the GB plane, in qualitative agreement with DFT data. 

EAM reproduces the DFT predicted transition of a symmetric ½<111> screw 

dislocation core to an asymmetric core by alloying bcc W with Re. Also, both EAM and DFT, 

show a negligible effect of isolated Re on the ½<111> inter row potential and the 

½<111>{110} stacking fault energy profile. The latter properties give a measure of the impact 

of isolated Re on the movement of a ½<111> screw and ½<111>{110} edge dislocation, 

respectively. Thus, the latter in combination with an asymmetric ½<111> screw dislocation 

core, which allows the activation of the additional {112} slip system, allows EAM to 

reproduce the mechanisms responsible for the experimentally observed softening of W-Re 

alloys.  

 The Voigt average of the bulk- and shear modulus for all thermodynamically stable 

phases, i.e., bcc, σ, χ and hcp phases were calculated. The latter provide a measure for the 

resistance against uniform deformation and shear deformation of a polycrystal. While BV 

varies quasi linearly with Re composition for the different phases, GV for both bcc and hcp 

phases are significantly higher than GV for the σ-phase, which is in turn higher than GV for the 

χ-phase. 

Following the above, the hardening and embrittlement due to σ- and χ-phase 

precipitation should not be attributed to the shear modulus misfit strengthening mechanism. It 

should rather be linked to the non-coherence of the precipitates-matrix interface, a hypothesis 

that will be further investigated in our forthcoming works. 

As a final check, the mechanical stability of bcc W, σ W-50%Re, χ W-75%Re and hcp 

Re was verified in the 300-1500 K temperature range. Therefore, the developed EAM 

potential is suitable to model W-Re alloys in bcc solid solution as well as non-coherent 

precipitates embedded in a bcc W matrix, at least up to a temperature of 1500 K. 

In conclusion, the developed EAM potential can reproduce the mechanisms 

responsible for the experimentally observed softening in W-Re solid solutions and provide 

elastic constants in reasonable agreement with DFT data for the phases forming non-coherent 
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precipitates in W-Re alloys. All of this makes the presented EAM potentials an excellent tool 

to study plasticity in W-Re alloys at the atomic level. 
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Appendix A: Parameterization interatomic potential 

 

The atomic interactions are described using the embedded atom method (EAM) [22]. In 

addition to pair interactions, V, this approach includes an embedding energy, F, dependent on 

the local electron density, ρ. The latter term approximates the many-body contribution of all 

nearby atoms. The total energy within EAM is given as, 

 

 E = 1
2
∑ Vtitj(rij)N
i,j=1
j≠i

+ ∑ Fti(ρi)
N
i=1 .     (A1) 

 

Here N represents the total number of atoms in the system, rij is the distance between atoms i 

and j, and ti denotes the chemical species (W or Re). The local electron density around atom i, 

contributed from its neighbors is given as, 

 

ρi = ∑ φtj(rij)N
j=1
j≠i

,        (A2) 

 

where ϕ denotes the electron density function of the considered element. 

 In this work the pair potential V consists of three parts: (i) equilibrium part dominated 

by electronic bonding, (ii) short-range part dominated by electronic repulsion and (iii) an 

intermediate part smoothly connecting (up to second derivative) the latter two. As such the 

pair potential V is parameterized as, 
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𝑉𝑉𝑋𝑋𝑌𝑌(𝑟𝑟) = Θ(𝑟𝑟 − 𝑟𝑟𝑜𝑜) 𝑉𝑉eq(𝑟𝑟)         

              + Θ(𝑟𝑟𝑜𝑜 − 𝑟𝑟)Θ(𝑟𝑟 − 𝑟𝑟𝑖𝑖) �𝑉𝑉eq(𝑟𝑟) + 𝜁𝜁 �𝑟𝑟𝑜𝑜+𝑟𝑟𝑖𝑖−2𝑟𝑟
𝑟𝑟𝑜𝑜−𝑟𝑟𝑖𝑖

�  �𝑉𝑉nucl(𝑟𝑟) − 𝑉𝑉eq(𝑟𝑟)� �   

              + Θ(𝑟𝑟𝑖𝑖 − 𝑟𝑟) 𝑉𝑉nucl(𝑟𝑟) ,      (A3) 

 

with ri and ro the inner and outer cut-off, respectively and Θ the Heaviside function. The short 

range part,Vnucl, is parameterized as [70], 

 

 

𝑉𝑉nucl(𝑟𝑟) = 𝑄𝑄𝑋𝑋𝑄𝑄𝑌𝑌
𝑟𝑟

 𝜉𝜉(𝑟𝑟/𝑟𝑟𝑠𝑠) ,       (A4) 

 

with QX and QY the nuclear charges (QW=74 and QRe=75) and rs=0.4683766/(QX
2/3+QY

2/3); 

 

𝜉𝜉(𝑥𝑥) = 0.1818 exp(−3.2𝑥𝑥) + 0.5099 exp(−0.9423𝑥𝑥) + 0.2802 exp(−0.4029) +

0.02817exp (−0.2016),           (A5) 

 

and 

 

𝜁𝜁(𝑥𝑥) = 3
16
𝑥𝑥5 − 5

8
𝑥𝑥3 + 15

16
𝑥𝑥 + 1

2
 .      (A6) 

 

 

For both W-Re and W-W the equilibrium part is parameterized as a piecewise cubic spline, 

  

𝑉𝑉eq(𝑟𝑟) = ∑ [𝑎𝑎𝑘𝑘 (𝑟𝑟𝑘𝑘 − 𝑟𝑟)3 Θ(𝑟𝑟𝑘𝑘 − 𝑟𝑟)]𝑁𝑁𝑝𝑝
𝑘𝑘=1 ,      (A7) 

 

with ak the fitting coefficients and rk the node points. 

 For pure W the equilibrium part follows from the effective gauge transformation [71] 

of  parameterization "EAM2"  from  [24]. The effective gauge is characterized by an 

equilibrium density 𝜌𝜌0 = 1 and 𝐹𝐹eff′(1) = 0. The gauge transformation is given as,   

 

�
𝑉𝑉eff(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) − 2𝐶𝐶 𝜑𝜑(𝑟𝑟)

𝜑𝜑eff(𝑟𝑟) = 𝑆𝑆 𝜑𝜑(𝑟𝑟)
𝐹𝐹eff(𝜌𝜌) = 𝐹𝐹 �𝜌𝜌

𝑆𝑆
� + 𝐶𝐶

𝑆𝑆
𝜌𝜌

,       (A8) 
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with C=1.848055990 and S=2.232322602×10-1. 

 For pure W also the embedding and density function were taken from "EAM2" in [24] 

and transformed following equation A8. However, the reported parameterization shows a 

change in curvature (from positive to negative) at about 1.35 times the equilibrium density. 

This change in curvature is unphysical and can lead to structural instabilities when alloyed 

with Re. Therefore, we modified Feff beyond the inflection point to provide a positive 

curvature for all densities. The modified embedding function is given as, 

 

𝐹𝐹mod(𝜌𝜌) = �𝐹𝐹
eff(𝜌𝜌),                                                           𝜌𝜌 ≤ 𝜌𝜌𝑖𝑖

𝐴𝐴0 + 𝐴𝐴1 𝜌𝜌 + 𝐴𝐴2 𝜌𝜌2 + 𝐴𝐴3 𝜌𝜌3,                       𝜌𝜌 > 𝜌𝜌𝑖𝑖
,  (A9) 

 

with ρi =1.359141225 the inflexion point and {Ai} spline coefficients (see Table A1) fitted to 

be continuous at ρi up to second derivative with Feff. This modification does not change the 

equilibrium properties of the potential, such as, elastic constants, lattice stabilities, formation 

energy of point defects and dislocation core structure. 

 For pure Re the embedding function is parameterized as, 

 

𝐹𝐹(𝜌𝜌) = 𝐴𝐴 �𝜌𝜌 + 𝐵𝐵 𝜌𝜌 + 𝐶𝐶 𝜌𝜌2,       (A10) 

 

while the density function is parameterized as, 

 

𝜑𝜑(𝑟𝑟) = 𝐶𝐶0(𝑟𝑟𝑐𝑐 − 𝑟𝑟)3 Θ(𝑟𝑟𝑐𝑐 − 𝑟𝑟),      (A11) 

 

with rc the cut-off. All fitting parameters are provided in Table A1 and a visualization 

of the potential functions  is given in Fig. A1. These figures illustrate the smoothness of the 

potential functions. 

 

Table A1 – Parameterization of the EAM potential. 

Pure W Pure Re 

A0 = -5.524855802 eV A=-7.046791948 eV 

A1 = 2.317313103×10-1 eV B=1.236584720 eV 

A2 = -3.665345949×10-2 eV C=1.143405627 eV 
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A3 = 8.989367404×10-3 eV  

 C0= 3.704045964×10-3 Å-3 

 rc=5.460000000 Å 

ri=1.000000000 Å ri=1.000000000 Å 

ro=2.000000000 Å ro=2.000000000 Å 

 rk (Å) ak (eV/Å3) 

 r1=2.700000000 a1=6.726805309 

 r2=3.252000000 a2=3.217593889 

  r3=3.804000000 a3=-6.545857587×10-1 

  r4=4.356000000 a4=1.453229484×10-1 

  r5=4.908000000 a5=-2.063629464×10-1 

  r6=5.460000000 a6=6.114909116×10-2 

 W-Re 

 ri=1.000000000 Å 

 ro=2.000000000 Å 

  rk (Å) ak (eV/Å3) 

  r1=2.650000000 a1=-2.335000000×101 

  r2=2.700000000 a2=2.456959229×101 

  r3=3.075000000 a3=-2.585878138 

  r4=3.450000000 a4=3.457586051 

  r5=3.825000000 a5=-7.013105493×10-1 
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Fig. A1 – Plot of the potential functions: pair potentials (a), density functions (b) and 

embedding functions (c). 

 

Appendix B: Details of the different phases 
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The data corresponding to the evolution of the independent elastic constants, mixing enthalpy 

and lattice parameters with composition for the bcc, σ, χ and hcp phases on which Figs. 7 and 

8 are based are presented in Tabs B1, B2, B3 and B4, respectively. 

 The data corresponding to the evolution of the independent elastic constants, critical 

shear moduli (see equations 4 and 5) and elastic constants with temperature for bcc W, σ W-

50%Re, χ W-75%Re and hcp Re on which Fig. 9 is based are presented in Tabs B5, B6, B7 

and B8, respectively. 

 In Fig. A1 a comparison between experiment [42, 72] and EAM of the evolution of the 

lattice constants with temperature for bcc W and hcp Re is given. For bcc W EAM 

underestimates the experimental lattice parameter [42]. The thermal expansion coefficients in 

the plotted temperature range, on the other hand, are similar with 5.2×10-6 and 6.3×10-6 for 

the experimental and EAM data, respectively. 

 For hcp W, EAM reproduces both a and c parameters in the experimental range. With 

respect to the thermal expansion in the plotted temperature range, however, only the one for a 

is well reproduced while EAM underestimates the experimental one by almost a factor three 

(see also Table 2). 
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Fig. B1 – Comparison between experiment [42, 72] and EAM of the evolution of the lattice 

constants with temperature for bcc W and hcp Re. 
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Table B1 – Evolution of the independent elastic constants, mixing enthalpy and lattice 

parameters with composition for the bcc phase. 

CRe (at.%) C11 (GPa) C12 (GPa) C44 (GPa) Hmix (eV/at.) a (Å) 

0 523 203 160 0.000 3.140 

10 508 215 165 0.015 3.129 

20 515 248 189 0.029 3.119 

30 535 291 223 0.042 3.109 

40 552 331 254 0.055 3.100 

50 562 362 278 0.069 3.091 

60 567 386 298 0.081 3.082 

70 567 404 315 0.094 3.073 

80 562 417 329 0.106 3.064 

90 554 425 340 0.117 3.056 

100 541 431 350 0.131 3.048 

 

Table B2 – Evolution of the independent elastic constants, mixing enthalpy and lattice 

parameters with composition for the σ-phase. 

CRe 

(at.%) 

C11 

(GPa) 

C33 

(GPa) 

C12 

(GPa) 

C13 

(GPa) 

C44 

(GPa) 

C66 

(GPa) 

Hmix 

(eV/at.) 
a (Å) c (Å) 

0 1034 295 513 127 63 166 0.206 9.538 5.070 

10 863 312 438 123 57 142 0.207 9.531 5.074 

20 735 346 379 124 55 125 0.216 9.524 5.079 

30 678 380 340 130 58 120 0.197 9.519 5.074 

40 647 429 312 140 63 121 0.185 9.512 5.062 

50 633 475 290 152 69 124 0.178 9.503 5.043 

60 636 524 281 162 73 127 0.178 9.490 5.023 

70 644 580 279 170 72 126 0.192 9.473 5.005 

80 654 644 284 175 65 122 0.216 9.450 4.989 

90 661 709 292 177 52 113 0.248 9.426 4.976 

100 667 779 307 173 26 104 0.299 9.395 4.963 

 

Table B3 – Evolution of the independent elastic constants, mixing enthalpy and lattice 

parameters with composition for the χ-phase. 

CRe (at.%) C11 (GPa) C12 (GPa) C44 (GPa) Hmix (eV/at.) a (Å) 

0 530 243 94 0.254 9.711 
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10 456 214 87 0.245 9.696 

20 437 201 85 0.233 9.683 

30 434 194 84 0.232 9.670 

40 448 193 85 0.227 9.656 

50 476 196 86 0.223 9.639 

60 515 203 88 0.223 9.616 

70 556 211 89 0.227 9.586 

80 594 221 87 0.235 9.553 

90 631 233 78 0.259 9.515 

100 661 241 60 0.307 9.476 

 

Table B4 – Evolution of the independent elastic constants, mixing enthalpy and lattice 

parameters with composition for the hcp phase. 

CRe 

(at.%) 
C11 

(GPa) 
C33 

(GPa) 
C12 

(GPa) 
C13 

(GPa) 
C44 

(GPa) 
Hmix 

(eV/at.) 
a (Å) c (Å) 

70 363 500 255 162 85 0.109 2.777 4.519 
80 455 541 261 184 107 0.074 2.773 4.496 
90 536 601 278 208 132 0.038 2.768 4.475 

100 611 682 299 234 159 0.000 2.761 4.456 

 

Table B5 – Evolution of the independent elastic constants, critical shear moduli and elastic 

constants with temperature for bcc W. 

 300 K 600 K 900 K 1200 K 1500 K 

𝐶𝐶11 (GPa) 596 606 597 577 551 
𝐶𝐶12 (GPa) 295 323 331 330 323 
𝐶𝐶44 (GPa) 253 281 291 291 286 
𝐶𝐶11−𝐶𝐶12

2
 (GPa) 150 142 133 124 114 

𝐶𝐶11+2𝐶𝐶12
3

 (GPa) 395 417 420 412 399 

a (Å) 3.149 3.155 3.161 3.166 3.170 

 

Table B6 – Evolution of the independent elastic constants, critical shear moduli and elastic 

constants with temperature for σ W-50%Re. 

 300 K 600 K 900 K 1200 K 1500 K 

𝐶𝐶11 (GPa) 579 554 531 508 486 

𝐶𝐶33 (GPa) 527 536 533 524 511 
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𝐶𝐶12 (GPa) 249 236 225 216 208 

𝐶𝐶13 (GPa) 163 161 158 154 151 

𝐶𝐶44 (GPa) 73 71 69 67 64 

𝐶𝐶66 (GPa) 124 120 114 109 104 
𝐶𝐶11−|𝐶𝐶12|

2
 (GPa) 165 159 153 146 139 

𝐶𝐶33(𝐶𝐶11+𝐶𝐶12)−2𝐶𝐶132

4
 (GPa2) 95936 92815 88267 82910 77298 

a (Å) 9.520 9.538 9.556 9.573 9.591 

c (Å) 5.041 5.044 5.048 5.054 5.060 

 

Table B7 – Evolution of the independent elastic constants, critical shear moduli and elastic 

constants with temperature for χ W-75%Re. 

 300 K 600 K 900 K 1200 K 1500 K 

𝐶𝐶11 (GPa) 562 551 541 527 513 

𝐶𝐶12 (GPa) 212 208 203 198 192 

𝐶𝐶44 (GPa) 84 80 77 74 71 
𝐶𝐶11−𝐶𝐶12

2
 (GPa) 175 172 169 165 160 

𝐶𝐶11+2𝐶𝐶12
3

 (GPa) 329 322 316 308 299 

a (Å) 9.582 9.594 9.605 9.618 9.631 

 

Table B8 – Evolution of the independent elastic constants, critical shear moduli and elastic 

constants with temperature for hcp Re. 

 300 K 600 K  900 K 1200 K 1500 K 

𝐶𝐶11 (GPa) 616 617 616 611 602 

𝐶𝐶33 (GPa) 692 695 694 689 679 

𝐶𝐶12 (GPa) 302 303 304 302 299 

𝐶𝐶13 (GPa) 236 236 236 233 230 

𝐶𝐶44 (GPa) 160 160 159 157 154 
𝐶𝐶11−|𝐶𝐶12|

2
 (GPa) 157 157 156 154 152 

𝐶𝐶33(𝐶𝐶11+𝐶𝐶12)−2𝐶𝐶132

4
 (GPa2) 130830 131898 131663 129907 126562 

a (Å) 2.763 2.765 2.763 2.768 2.771 

c (Å) 4.458 4.460 4.475 4.478 4.484 
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