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A GPU-based parallel Object kinetic Monte Carlo
algorithm for the evolution of defects in irradiated

materials

F. Jiméneza, C.J. Ortiza
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Complutense 40, E-28040 Madrid, Spain

Abstract

In this work we present a parallel Object kinetic Monte Carlo (OkMC) compu-
tational model implemented using GPUs (graphics processing units) computing
to simulate the evolution of interacting random walkers in materials. Different
test simulations were performed under different conditions and compared to an-
alytical solutions and sequential OkMC codes. The simulation results obtained
with our algorithm show to be in excellent agreement with sequential OkMC
codes and analytical solutions. The speedups reached with the GPU program-
ming with respect to sequential OkMC codes in the test cases used here were
in the range [30-40]. This increased efficiency allows to follow the evolution of
millions of interacting particles in a relatively short computational time in con-
trast to classical OkMC codes. We expect this parallel kMC algorithm based on
GPU programming to allow for investigations on defect evolution in materials
using simulation boxes of realistic dimentions and physical times close to those
achieved experimentally.

Keywords: Kinetic Monte Carlo, GPU, defect evolution, Parallel computing

1. Introduction

Many properties of solids, such as hardness [1], ductile-to-brittle transition
temperature [2], conductivity [3, 4] or tensile strength [5] are related to the
presence of defects or impurities, in particular when they are out-of-equilibrium
conditions. This occurs for instance when impurities are directly implanted such
as in the semiconductor industry for the fabrication of transistors, or when the
material is subject to neutron irradiation such as in fission reactors or in the
future fusion reactors.

Therefore, simulating the spatial and temporal evolution of defects and im-
purities in materials irradiated or under irradiation conditions is essential to
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understand and predict their macroscopic properties and behaviour in non-
equilibrium conditions. To do so, different models or numerical approaches
can be used like Molecular Dynamics (MD) [6, 7, 8, 9, 10, 11], kinetic Monte
Carlo (kMC) [12, 13, 14, 15, 16, 17, 18, 19] or mean field rate theory [15, 20, 21,
22, 23, 24] (also sometimes called Cluster Dynamics). Each of these methods
has advantages and drawbacks and allows to address different scales of time and
space. In this paper we focus on kMC models.

In particular, in this work we shall focus on a subset of kMC denominated
Object kMC (OkMC), which only follows the evolution of off-lattice defects,
such as impurities, interstitials or vacancies or their clusters thereoff. This
method has been widely used to simulate the evolution of defects or impurities
in different materials and fields of research [25, 15, 26, 27, 28, 29, 30]. In
this simulation framework, each object (defect or impurity) possesses a set of
characteristics such as type, shape, migration energy or binding energy to other
defects, which determine the rate of the events it can undergo [31, 12, 13, 15, 27].
It must be noted that the OkMC cannot predict the rate of events, they must
be given a priori [25]. In this respect, the rate of events is mainly determined
by the migration and binding energies of defects and can usually be accurately
calculated using First-Principle calculations [32, 33, 34, 35] and/or MD [36,
37, 38, 39]. Since OkMC keeps the coordinates of each defect, it allows to
account for spatial correlations between individual defects in the system [27],
which is an advantage over other models such as the Rate Theory [15, 40],
which are based on a mean-field approximation. Moreover, since only off-lattice
defects are followed, in contrast to MD that simulates the motion of every atom
in the simulation box, OkMC models are not limited to short times [41] like
MD but can reach physical times closer to those achieved experimentally. This
makes OkMC a valuable tool for the investigation of defect kinetics in irradiated
materials in quasi-realistic conditions.

OkMC models are based on the Bortz-Kalos-Leibowitz (BKL) algorithm [42]
also known as residence-time algorithm. This algorithm is equivalent to the
stochastic simulation algorithm (SSA) developed by Gillespie [43]. According to
this algorithm, a list of all possible event rates (the frequency line) is first formed.
An event to carry out is selected randomly from the frequency line. Then, one
of the particles that can undergo the selected event is chosen randomly and
the event is carried out. Physical time is then advanced using a Poisson law to
calculate the probable time interval that might have passed between two events.
The procedure is then repeated until a specified physical time has been reached.
Since only one event is carried out at each time step, OkMC models become
computationally intensive [44] when the evolution of a large amount of defects
must be simulated. For this reason, most OkMC codes using the standard
BKL algorithm are usually limited to relatively small simulation boxes [45], in
the order of (200a0)

3, where a0 is the lattice constant, in order to restrict the
amount of particles to follow. Clearly, this strong restriction seriously hinders
the study of defect evolution in realistic pieces of materials that can contain
polycrystals and grain boundaries, which play an important role in the evolution
of defects and/or impurities and thus, cannot be neglected [46, 47, 48, 49, 50, 51].
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Furthermore, small simulation boxes are inadequate to investigate the evolution
of defects that form at low densities. This is the case for instance of dislocation
loops (DLs) that form in irradiated Fe. For example, Arakawa et al [52] observed
that DLs form in Fe under electron irradiation at densities of about 1022 −
1023 m−3. This means that with a typical OkMC simulation box with a volume
of (200a0)

3, it is only possible to follow the evolution of 1 to 20 DLs, which is
clearly not enough statistical information for the prediction of defect evolution
and their influence on a macroscopic level.

In order to address the evolution of defects in realistic conditions using the
BKL algorithm, it seems thus unavoidable to increase the simulation box vol-
ume. This implies a significant increase of the number of particles to follow (at
constant density), and, as a consequence, of the computational effort. There-
fore, it is desirable to find some way to accelerate the BKL algorithm. For
example, Mart́ınez et al [53] recently proposed a parallel version of the BKL
algorithm using a multi-processors approach and the Message Passing Interface
(MPI) paradigm. Though the authors observed a speedup of the algorithm,
they observed that the achieved speedup tends to saturate as the number of
processors increases, due to the increase of communication between processors.

In this work we present an alternative parallel BKL algorithm that we imple-
mented using GPU (graphics processing unit) programming. Owning to their
architecture, GPUs are capable of processing many data at the same time,
so they are ideal for solving parallelisable problems [54]. For example, the
NVIDIA R© GeForce R© GTX TITAN Black that we used in this work features
15 multiprocessors with 192 cores per multiprocessor, which yields a potential
maximum of 240 concurrent blocks of 128 threads per block, i.e. 30720 concur-
rent threads. As one can see, the parallelism that can be reached with a single
graphics card is important, which explains why general-purpose programming
on graphics processing units (GPGPU) has risen in recent years [55] as a reliable
and interesting alternative to inherently sequential CPU coding, especially in
scientific computation. In addition, GPUs are known as energetically efficient
devices as fewer watts per byte are needed than for CPUs.

The present article is organised as follows. In section 2 we describe our
parallel version of the BKL algorithm and highlight its advantages. In section 3
different numerical tests are performed to validate our GPU-OkMC model. In
particular, results are compared to those obtained with a CPU-based OkMC, as
far as accuracy and performance are concerned. Finally, in order to demonstrate
the efficiency of our GPU-OkMC, we reproduce a typical resistivity recovery
experiment in Fe, which is a relevant problem in materials science [15, 38, 56,
57, 58, 59].

2. parallel OkMC algorithm

In this section we describe our parallel version of the BKL algorithm, which
was implemented using the high parallelism offered by GPUs.

First, a particle array that resides in the global memory of the GPU is
built and distributed in the simulation box. Then, the following operations are
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performed in parallel.

1. For each particle pi able to undergo different events Ek with rate rk, the
sum of event rates is computed in parallel, as described by:

Ri =

qi∑
k=1

rk (1)

with qi being the total number of events that particle pi can undergo.

2. The maximum sum of event rates Rmax of all particles is determined in a
parallel manner:

Rmax = max{Ri} (2)

3. Global time is advanced by the time step:

δt =
ω

Rmax
(3)

where ω > 0 is a real number.

4. For each particle pi, the number of times Nk that each event Ek with
rate rk will occur during the time step δt is determined using the Poisson
distribution:

P (rk, Nk; δt) =
1

Nk!
(rkδt)

Nk exp(−rkδt) (4)

5. Particles undergo the selected events in parallel, provided Nk > 0.

6. The surrounding of particles that have moved is analysed.

7. Particles that lie within a specified distance interact, provided interaction
is allowed.

Here, we would like to emphasise the main differences between our parallel
kMC algorithm and the original BKL [42] and the parallel algorithm proposed
by E. Mart́ınez [53]. On one hand, in the standard BKL algorithm, only one
event is performed during each time step. In the case of the parallel algorithm
from Mart́ınez et al developed using MPI, at most Nproc (number of processors
used) events can occur during the same time step due to the subdivision of space
into Nproc subdomains. In our algorithm, space is not divided into subdomains.
Instead, we consider that all particles are potentially able to undergo events
during each time step, the probility of which being determined by the Poisson
distribution (see Eq. 4). In practice, this significantly increases the number of
events that can occur in parallel during each time step. Therefore, the use of
a GPU and the high parallelism it offers is necessary. Since the probability of
each event (for each particle) explicitely depends on the time step (see Eq. 4),
it is first necessary to fix a value for the time step before events are carried out.
In contrast, in the standard BKL or in the algorithm developed by Mart́ınez et
al, events are first carried out and then the probable time interval that might
have passed between two events is calculated according to a Poisson law. Since
each particle in our algorithm is considered, the time step that is selected must
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be independent of the total number of particles in the system. Furthermore, the
time step cannot be arbitrary but must limited by the highest event rate (step
2) in the system in order to preserve accuracy. Therefore, a natural choice is
a time step that is inversely proportional to the highest sum of event rates in
the system (Eq. 2). On one hand, the ω value must be large enough so that
a significant number of events can occur during each time step. On the other
hand, the selection of the ω value must be small enough so that the system as a
whole does not change significantly and so that physical accuracy is preserved.
This issue is similar to that encountered in the tau-leaping method that was
proposed by Gillespie[60] and will be addressed in subsection 2.1.

Once the events selected have been realised in parallel, the surrounding of
each particle that has moved must be analysed in order to determine the pos-
sible interaction partners. This corresponds to steps 6-7. As it is usually done
in other OkMC models [31, 12, 27, 15], in our model we assume that a reac-
tion between two particles instantaneously takes place whenever two particles
lie within a distance rc, called the capture radius. This reflects the fact that the
interaction range is limited and that the necessary time for a reaction to occur
when species are close is much shorter than any diffusion process and can thus be
seen as instantaneous. Following this assumption, only the close surrounding of
those particles that have undergone an event is physically interesting and must
be analysed. In practice, the distance between the particles that have moved
and the other particles must be calculated to check whether they lie within the
capture radius and could thus undergo a reaction. This step could be compu-
tationaly costly if all the distances between neighbours had to be calculated at
each time step. To avoid this, we used the collision detection algorithm that is
described in chapter 32 of the book GPU Gems 3 [61]. According to this algo-
rithm, protective spheres are drawn around each particle with radii equal to the
largest capture radius of their defined interactions where they may be respec-
tively involved. The cell where the particle centre is located is labelled ’home
cell’ while cells intersecting its protective sphere are called ’phantom cells’. In
order to avoid unnecessary searches for interaction partners through the whole
system, space is divided into subdomains with a size that is at least larger than
twice the largest capture radius rc. This way, distances between particles are
only calculated for particles belonging to the same subdomain (be it as ’home’ or
’phantom’ cells, for further reference see [61]), significantly reducing the compu-
tational effort. Owing to the division of space into subdomains, the inspection
of the surrounding of each particle that has moved can clearly be achieved in
parallel and independently in the GPU. In order to perform the calculation of
distance between pairs of particles within a given subdomain and determine
the possible interactions between particles, we used the GPU concept of thread
blocks. The advantage of thread blocks is that the different threads they are
composed of share the same block of shared memory, whose access is signifi-
cantly faster than the one to the global memory. In our implementation, each
thread block is assigned a subdomain and each thread of the block is in charge of
the calculation of the distance between the particle that has moved and another
particle within that subdomain. This way, the calculation of distances between
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possible interacting pairs is achieved in parallel, which significantly accelerates
calculations. After the calculation of distances between potential interacting
pairs have been achieved, it could happen that various particles lie within a
distance lower than the capture radius. Thus, a criterion is necessary to decide
which pairs should interact. At this point, several criteria can be considered.
The most intuitive one is that the closest pair is preferential over the others
and should be the one to indeed react. Although this criterion seems logical,
from the physical point of view, there is no evidence that reactions really take
place this way and there are probably other factors to take into account, such as
the energy landscape (shape of the interaction potential) between the different
particles in presence. Another criterion is simply to consider, among all the
particles within the capture radius, the first pair that appears in the list. This
somehow takes into account the stochasticity of reactions and the fact that the
energy landscape between particles cannot be known a priori. In this work, we
chose to use a combination of both criteria. Particles in the same thread block
are iterated through and allowed to react with the closest neighbour within the
capture radius. The reaction thus takes place for this pair of particles, should
they reside within the capture radius. This step is iteratively applied to the rest
of particles in the thread block until all potential interacting pairs have reacted.

2.1. Selection of the time step

As we mentioned previously, in our algorithm the time step must be first
fixed in order to calculate the probability that each particle has to undergo an
event. Since each particle is considered separately from the others and at the
same time, the time step must not depend on the number of particles in the
system, in contrast to what is done in the standard BKL or in the Mart́ınez
algorithms. Indeed, in the original BKL algorithm, the probable time interval
that might have passed between two events is inversely proportional to the sum
of the event rates in the system. It thus somehow depends on the total number
of particles in the system. If, for instance, we consider a simple system composed
of Npart identical particles that can only perform one type of transition with
event rate r, then the time step achieved in the standard BKL algorithm is
simply given by:

δtBKL =
− log(ζ)

Npart · r
(5)

where ζ ∈ (0, 1] is a uniform random variable. According to Eq. 5 we can see
that the time step in the BKL algorithm gets smaller as the number of particles
in the system increases. Furthermore, it can be proven that, if X := − log(ζ),
then X is distributed as an exponential distribution with mean value λ = 1.
Provided the number of time steps is large enough in the simulation, the average
time step in the BKL algorithm is thus:

δtBKL ≈ 1

Npart · r
(6)
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In our algorithm, the time step value is related to the particle that displays
the largest sum of event rates, according to Eqs. 2 and 3, and is thus independent
of the number of particles in the system. Thus, if we consider the previous
system of Npart identical particles, the time step achieved with our algorithm
is simply δt = 1/r and is in average Npart times larger than the one achieved
with the standard BKL algorithm. In practice, this means that for typical
systems containing several hundred thousands or millions of particles, with our
algorithm the time step value is several orders of magnitude larger than that
achieved with the standard BKL algorithm. This strongly reduces the number
of computational steps that are necessary to reach a specified physical time.
However, due to the large values that the time step can take in our algorithm,
there exists a significant probability that a particle undergoes several times the
same event during the same time step. This can be clearly seen in Fig. 1 where
we plotted the probability (Eq. 4) that an event E with rate r occurs N times
during the same time step. Here we have assumed a time step δt = 1/r, i.e.
ω = 1 in Eq. 3.
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Figure 1: Probability that a particle performs a given number of events during a time step in
our algorithm (closed squares) and in the BKL algorithm (open triangles).

For comparison, we also reported the probability of events for the standard
BKL algorithm, assuming a typical system containing Npart = 200000 identical
particles and the average time step given by Eq. 6. As one can see, in the
standard BKL algorithm, the probability that a particle undergoes no event
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at all during a time step is close to 1 whereas the probability that a particle
undergoes one event is Npart times smaller, i.e. orders of magnitude smaller.
Furthermore, the probability that a particle undergoes K times the same event
during the same time step becomes negligible as it varies with 1/NK

part. This
explains why in the BKL algorithm only one particle in the system experiences
one event during a time step. In contrast, in our algorithm, the time step is
such that the probability that an event occurs during a time step δt = 1/r is
relatively high (∼ 0.37), as can be seen in Fig. 1. This implies that a large
fraction of particles in the system can undergo an event during the same time
step. The probability that the event occurs two and three times is also non-
negligible as we can see in Fig. 1. However, since the surrounding of particles
is only examined after the time step has passed, this might affect the accuracy
of the solution. For instance, a large time step may allow a particle to undergo
N migrations during the time step and to ignore its surroundings, and thus
possible interactions, on Nm − 1 occasions. This might affect accuracy at large
concentrations for which the distance between particles can be relatively small.
In order to achieve a physically realistic approximation, this occurrence ought
to be minimised. As mentionned previously, this problem is also encountered
in the tau-leaping method [60] developed by Gillespie. By simply choosing
small values of ω (Eq. 3), i.e. small values of the time step, it is in principle
possible to minimise the effects of this approximation, as can be seen in Fig. 2.
In this figure we plotted the probability (Eq. 4) that an event occurs several
times during the same time step for different values of ω. As it is evidenced,
this probability significantly decreases as the ω value does. For instance, for
ω = 0.1, the probability that an event occurs twice during the time step is
already negligible. On the other hand, it is desirable to find a compromise
and select a time step that is sufficiently large in order to keep a substantial
simulation performance. However, it must be noted that in the different cases
that we studied here, we did not observe a significant influence of ω on the
result accuracy. Therefore, in the rest of the document, all simulations were
performed taking ω = 1, i.e δt = 1/Rmax. Furthermore, it seems natural to
choose this value for ω since, according to the Poisson distribution properties, it
corresponds to one event on average per time step for the particles that exhibit
the highest sum of event rates.

3. Test cases

In this section, we show some test results simulated using our parallel OkMC
algorithm. The OkMC model that we described in previous section was imple-
mented using the programming framework CUDA 6.5 (Compute Unified De-
vice Architecture). CUDA is an extension of C/C++ that was introduced by
NVIDIA R© in 2007 for graphics cards. The simulations shown here were per-
formed on a NVIDIA R© GeForce R© GTX TITAN Black card with 6 GB of global
memory and 2880 CUDA cores. As practical cases, tests were performed con-
sidering the evolution of self-interstitial atoms (SIA) and vacancies (V) in Fe.

8



0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

 

 

Pr
ob

ab
ili
ty

Number of events

 =0.1
 =0.5
 =0.8
 =1

Figure 2: Probability that a particle performs a given number of events during the time step
δt for different values of ω.

3.1. Random walks of non-interacting particles

Since the evolution of defects in materials often occurs by means of ran-
dom walks, here we simulated the diffusion of a large amount of non-interacting
particles. In this simple case, results can be compared with analytical solu-
tions. We simulated the random walk of five million SIAs in a (36a0)

2 × 216a0
(a0 = 2.86Å) box and initially located in a plane at z = zmax

2 , with their x, y
positions 0 ≤ x ≤ xmax and 0 ≤ y ≤ ymax being initially random. By letting
these particles perform a one-dimensional random walk in the z direction, after
a time t we expect their profile in said direction to describe a Gaussian func-
tion in accordance to Fick’s laws of diffusion, provided the number of jumps
is sufficiently high. This test was carried out assuming an attempt frequency
ν0 = 1013 s−1 and a migration energy Em = 0.34 eV , which corresponds to the
parameters of the SIA in Fe[32]. According to these parameters, the rate of the
unique event (jump) that can occur in the system is:

r = ν0 · exp
(
− Em

kBT

)
(7)

where kB is the Boltzmann constant and T the temperature in K.
Simulations were performed for temperatures of T = 130, 135 and 140 K

and a time tmax = 30 s. Our results are reported in Fig. 3 and compared to a
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Gaussian function that represents the probability to find a particle between z
and z + δz after a time t [62]:

Prob(z, t) · δz =
1

2(πDt)
1
2

· exp
(
− z2

4Dt

)
· δz (8)

where D is the macroscopic diffusion coefficient of SIAs that is defined using
the attempt frequency ν0 and the migration energy Em as follows:

D =
ν0λ

2

2
exp

(
− Em

kBT

)
(9)

where λ is the jump length. The factor 1/2-instead of the typical 1/6-
corresponds to random walks in one dimension, as it is assumed here. As one
can see in Fig. 3, results obtained with our GPU-OkMC are in very good
agreement with the analytical solution.
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Figure 3: Comparison between the 1D profiles resulting from the diffusion of five million
particles during 30 s for three different temperatures as simulated by our GPU-based OKMC
code (symbols) and the analytical solution (lines).

3.2. Diffusion of non-interacting particles in the presence of absorbing surfaces
Next test case involves the random walk of non-interacting particles in the

presence of absorbing surfaces. This case if of high relevance in irradiated ma-
terials as point defects that are created by displacement cascades, such as in-
terstitials and vacancies, tend to recombine when they reach the surface.
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In this case, we simulated the evolution of five million SIAs initially dis-
tributed randomly in the simulation box and allowed to perform random walks
in the three dimensions during 200 s for different temperatures. The volume of
the simulation box was (400a0)

3
. Periodic boundary conditions were assumed

in x and y directions whereas absorbing boundary conditions were assumed at
z = 0 and z = 400a0. The same jump frequency and the migration energy
were used to calculate the event rate (jump) as in previous subsection. In order
to validate our GPU-OkMC model, simulations with classical diffusion equa-
tions and Dirichlet boundary conditions were also performed. Fig. 4 shows the
evolution of the total number of particles with respect to time for the differ-
ent temperatures. For comparison, we also reported the results obtained with
the classical diffusion equations. As we can see, the results obtained with our
GPU-OkMC model are in excellent agreement with those obtained with diffu-
sion equations. In the same way, Fig. 5 shows the depth profiles of particles for
the different temperatures considered here. The very good agreement obtained
with the diffusion equations clearly evidences that our GPU-OkMC accurately
accounts for the recombination of particles on absorbing surfaces.
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Figure 4: Evolution of the total number of random walkers as a function of time in the presence
of two absorbing surfaces. GPU-OkMC results (symbols) are compared to those obtained with
diffusion equations (lines).
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Figure 5: Depth profiles of particles in z direction for three different temperatures. GPU-
OkMC results are represented by symbols while those predicted by diffusion equations are
represented by lines.

3.3. Recombination of interacting particles

In this subsection we address the case of interacting random walkers, which is
of high interest in many fields of research. Indeed, the evolution of many systems
observed in biology, chemistry or in irradiated materials is often determined by
the kinetics of diffusion-limited reactions A+B → AB. As explained in section
2, it is assumed that particles A and B instantaneously react if the distance
between both is smaller than rc. As a practical case of interest, here we shall
consider the case of the annihilation of SIAs and vacancies that form by collision
cascades in irradiated Fe. This can be represented by the reaction I + V → 0.
The same physical parameters (attempt frequency and migration energy) as in
previous subsections were used for SIAs to calculate the event rate corresponding
to the jump frequency. To calculate the jump frequency of vacancies in Fe, we
used a migration energy of 0.67 eV [32, 15] and the same attempt jump frequency
as for SIAs. Regarding the capture radius for the annihilation reaction, a value
of 3.3a0 was used to describe the range of interaction between interstitials and
vacancies, as it is commonly accepted in the community [32, 15].

We considered the diffusion and recombination of 4 million SIAs and 4 mil-
lion vacancies initially randomly distributed in a hypothetic Fe material with
volume size of (200a0 × 200a0 × 70000a0). This corresponds to a material with
a thickness of about 20 µm, i.e. of realistic dimensions. The evolution of the
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Figure 6: Evolution of the number of SIAs as a function of time for different temperatures.
Results are compared to those obtained by the sequential OkMC LAKIMOCA (courtesy of
C. Domain).

system was simulated for temperatures of 130, 135 and 140 K for 500 s. Periodic
boundary conditions in all directions were assumed. Thus, in the present case,
particles can only disappear by recombination. For comparison of accuracy and
performances, simulations were also performed using a sequential (CPU) OkMC
code, i.e. based on the standard BKL algorithm. For this, LAKIMOCA[31] code
version o128p was used. LAKIMOCA simulations were performed on a CPU
AMD Opteron 6174@2.2Ghz. In Fig. 6 is shown the evolution of the number of
SIAs as a function of time for the different temperatures considered here. The
results obtained with the sequential OkMC LAKIMOCA are also reported for
comparison. Clearly, the agreement between both models is excellent, which
again validates our parallel algorithm and its implementation using GPU pro-
gramming.

Table 1 summarizes the runtime achieved to perform the simulations de-
scribed above using our GPU-OkMC. Results were obtained for ω = 1 (See
Eq. 3). For comparison, we also reported the runtimes achieved using the
CPU-based OkMC LAKIMOCA code. As we can see, our algorithm shows a
significant speedup in the range [30-40]. It is worth noting that these speedups
were achieved using a commercial GPU NVIDIA R© GeForce R© GTX TITAN
Black card with 6 GB of global memory and 2880 CUDA cores. It is expected
that even larger speedups could be achieved by simply using a more performant
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Simulation temp. CPU time GTX TITAN Black time
130 K 64 min 100 s (38.3×)
135 K 98 min 183 s (32.2×)
140 K 132 min 274 s (28.9×)

Table 1: Simulation times achieved by our GPU-OkMC using a NVIDIA R© GeForce R© GTX
TITAN Black card, compared to the runtimes needed by the sequential OkMC code LAKI-
MOCA using a CPU AMD Opteron 6174@2.2Ghz. Numbers in brackets indicate the corre-
sponding speedup.

ω 0.1 0.5 1.0 2.0 5.0
Speedup 4.5× 17.8× 32.2× 51.1× 115.6×

Table 2: Speedup achieved with our GPU-OkMC algorithm for different values of ω in com-
parison to LAKIMOCA runtimes for the case T = 135K.

GPU, i.e. with more memory and more CUDA cores.
In order to examine the influence of the choice of time step width on accuracy

and speedup, as discussed in subsection 2.1, the case T = 135 K was repeated
with different values of ω ranging from 0.1 to 5. As previously, results were
compared to the result obtained with LAKIMOCA. The speedup achieved for
the different values of ω is reported in Table 2. As we can see, speedup can
be significantly improved by reasonably increasing the ω value, i.e. the time
step, from 1 to 5. Indeed, larger time step values imply that less computational
steps are necessary to reach a specified physical time. It is important to note
that simulation results (not shown here) evidenced only a slight deviation of
the results for the highest value of ω tested here, i.e. for the largest time step.
As mentioned in subsection 2.1, in general we only observed a slight influence
of ω on the accuracy, at least in the conditions tested here. Thus, in the tests
studied here, it was easy to find a good compromise between performance and
accuracy for values of ω > 1.

3.4. Application: Simulation of a resistivity recovery experiment

In order to demonstrate the efficiency of our GPU-OkMC to simulate the
evolution of a large amount of interacting particles in realistic conditions, we
simulated a typical resistivity recovery (RR) experiment in a Fe sample with
realistic dimentions. This type of experiment is of importance as it allows to
investigate the kinetics of defects in metals [63, 64, 65]. In a typical RR ex-
periment, the sample is first cooled down to a very low temperature (4− 77K)
and is then irradiated with electrons, such that only Frenkel pairs (I − V ) are
produced. At these temperatures, self-interstitials and vacancies are immobile
and thus their recombination is inhibited. Temperature is then increased by
δT and kept constant for a fixed amount of time, in general in the order of a
few minutes. Resistivity ρ is measured at the end of the isothermal anneal-
ing and the process is repeated until a preset temperature is reached. Since
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resistivity reflects the total number of defects that affect electron diffusion in
the metal, RR experiments are a valuable tool to study the evolution of de-
fects and the thermally-activated mechanisms they undergo. In practice, a
typical RR curve exhibits several drops, reflecting the activation of recombina-
tion processes. Indeed, as temperature increases, the migration of the different
defects gets thermally activated, allowing them to diffuse and recombine with
defects of the opposite type. As a result, if the derivative of the total number
of defects is plotted with respect to temperature, a typical RR spectrum ex-
hibits several peaks, also called recovery stages, corresponding to the different
thermally-activated mechanisms [15, 38, 57] that take place in the metal.

To simulate a typical RR experiment in Fe, we considered the evolution of
SIAs and Vs in pure Fe, assuming that they both migrate and can recombine,
as described in previous subsection. The formation of SIA or V clusters or other
mechanisms were neglected here. We emphasize that our goal is not to propose a
physically-based model to explain the different features of the kinetics of defects
in Fe but to show that, taking into account basic mechanisms and Fe parameters,
our GPU-OkMC can be used to reproduce typical experiments using realistic
simulation boxes representative of real samples with a large amount of particles
and in short runtimes.

Here we consider a simulation box similar to that of a typical sample thick-
ness in a RR experiment, with a thickness of about 20 µm (70000a0). For the
sake of simplicity, the effect of electron irradiation, i.e. the formation of Frenkel
pairs during irradiation, was emulated by distributing randomly an equal num-
ber of interstitials and vacancies in the simulation box. In the present case we
used 10 million SIAs and 10 million Vs. The evolution of the system was then
simulated for temperatures starting from 77 K up to 140 K with increase steps
of δT

T = 0.008, and an annealing time t = 300 s at each temperature. Each RR
curve simulated here consists thus of 77 simulations at different temperatures.
This was done for different values of xmax and ymax, in order to vary the vol-
ume of the simulation box and thus the initial concentration of particles. Like
in previous cases, ω = 1 was used to compute time step values.

In Fig. 7, we show the derivative of the total number of defects as a function
of temperature for different initial concentrations (different xmax and ymax). As
the figure evidences, two different peaks (or stages) can be observed, depending
on the initial concentration. When the initial concentration is sufficiently high,
our GPU-OkMC predicts a first peak at about 107K, which corresponds to the
so-called ID stage reported in literature [57, 32] for Fe. This stage corresponds
to the recombination of correlated interstitials and vacancies, i.e. that are spa-
tially close. When the migration of SIAs is thermally activated, the probability
that they recombine with their vacancy after the first jump is relatively high,
giving rise to a recombination at relatively low temperature. The temperature
at which our GPU-OkMC predicts this stage to appear is in perfect agreement
with what is observed experimentally [57] and predicted theoretically [32]. Our
GPU-OkMC also predicts a second peak at a temperature of about 120−130K,
in very good agreement to what is reported in the literature [57, 32]. In contrast
to previous stage (ID), this stage, commonly denoted stage IE , corresponds to
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the recombination of uncorrelated I−V pairs. It is related to the recombination
of interstitials that must perform several jumps before they can find a vacancy
and recombine. As one can see in Fig. 7, this peak shifts towards higher temper-
atures as initial concentration decreases. This is expected and experimentally
observed [58] since for lower particle densities, the mean distance between par-
ticles increases and thus, interstitials need to perform more jumps to find a
vacancy to recombine with. As a result, it becomes more difficult for intersti-
tials to find a vacancy in a limited amount of time as the initial concentration
decreases. Hence, higher temperatures are necessary for them to perform the
required number of jumps before they can recombine with a vacancy, leading to
the shift in temperature of stage IE .
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Figure 7: Resistivity recovery spectra corresponding to different initial SIA and V densities.

In Table 3 we reported the runtimes that were necessary to achieve the simu-
lations shown in Fig. 7 for the different initial concentrations, the initial number
of particles being 20 million in all cases. As one can see, our GPU-OkMC allows
to simulate the evolution of a large number of particles and reproduce a real-
istic experiment in very reasonable runtimes. Where an OkMC based on the
standard BKL algorithm would likely require days of calculations, our parallel
OkMC algorithm implemented using GPU programming only requires compu-
tational times between 6 min and slightly less than 1 h in the worst case (lowest
concentration). Longer runtimes were indeed obtained in the cases where the
system is diluted due to the fact that the probability of encounter/recombination
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Simulation box Initial density of defects (cm−3) Runtime (s)
100a0 × 100a0 × 70000a0 1.22× 1021 400.7
100a0 × 200a0 × 70000a0 6.12× 1020 476.6
200a0 × 200a0 × 70000a0 3.06× 1020 631.4
400a0 × 400a0 × 70000a0 7.64× 1019 1270
1000a0 × 1000a0 × 70000a0 1.22× 1019 3481

Table 3: Size of simulation box, initial concentration of defects and respective runtimes cor-
responding to Fig. 7.

between SIAs and Vs is lower and thus, a larger amount of particles is present
in the system during the simulations.

4. Conclusions

In this work we have proposed a parallel Object kinetic Monte Carlo algo-
rithm that was implemented using a GPU programming approach to simulate
the evolution of large amounts of interacting particles in materials. In our algo-
rithm, the time step value is first fixed and then the Poisson probability that an
event occurs is computed independently and in parallel for each particle. This
allows to increase the time step values by orders of magnitude in contrast to
the standard BKL algorithm. At the same time, this allows a large fraction of
particles to undergo events in parallel during the same time step, in contrast
to the standard BKL algorithm that allows only one event to occur per time
step. As a result, the number of computational steps to be performed to reach
a specified physical time is significantly reduced.

Accuracy and performances of our GPU-OkMC code have been tested under
different conditions. In the case of random walks under reflective or absorbing
surfaces, the results obtained with our GPU-OkMC are in excellent agreement
with those obtained with classical Fick’s laws of diffusion. In the case of diffu-
sion of interacting particles, the results obtained with our GPU-OkMC are in
excellent agreement with those obtained with a OkMC code based on the stan-
dard BKL algorithm. Performances of our GPU-OkMC have been compared
to those of a CPU-based OkMC, evidencing speedups in the range [30-40] with
constant time step δt = 1/Rmax, i.e. for ω = 1. Larger speedups were obtained
by using larger values for ω at the expense of a slight loss of accuracy. It must be
noted that even higher speedups could be obtained by using a more performant
graphics card than the one that was used in the present study.

In order to evidence the usefulness of our GPU-OkMC to simulate realistic
experiments, we have reproduced a typical resistivity recovery (RR) experiment
assuming an irradiated Fe sample of realistic sizes containing 20 million I − V
pairs. By only taking into account the migration and recombination of intersti-
tials and vacancies in Fe, our GPU-OkMC was able to accurately predict the
main features of RR spectra in Fe that are observed experimentally and reported
in the literature. On average, our GPU-OkMC was able to reproduce a complete
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RR experiment with runtimes between 6 min and less than 1 h, when several
days of computation would have been necessary with a OkMC code based on
the standard BKL algorithm.

We believe this parallel OkMC algorithm implemented using a GPU pro-
gramming approach will open new possibilities in the investigation of defects
in irradiated materials or in other fields of research as it allows now to study
the evolution of a large amount of interacting species in samples of realistic
dimensions.
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