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Abstract

In the last decades, advanced statistical and machine-learning tools have made enormous progress
and they find applications  in many fields.  On the other hand, their  penetration in the scientific
domain is delayed by various factors, among which one fundamental limitation is that they assume
stationary conditions. This is due to the fact that traditional machine learning tools guarantee their
results only if the data in the training set, the test set and the final application are sampled from the
same probability distribution function. On the contrary, in most scientific applications, the main
objective of new experiments consists precisely of exploring uncharted regions of the parameter
space to acquire new knowledge. Traditional methods of covariate shift to address this issue are
clearly insufficient.  In this paper, a completely new method is proposed, which is based on the
falsification  of  data  driven  models.  The  technique  is  based  on  symbol  manipulation  with
evolutionary  programmes.  The  performance  of  the  approach  has  been  extensively  tested
numerically,  proving  its  competitive  advantages.  The  capability  of  the  methodology,  to  handle
practical and experimental cases, has been shown with the example of determining scaling laws for
the design of new experiments, a typical issue violating the assumptions of stationarity. The same
methodology  can  be  adopted  also  to  investigate  large  databases  or  the  outputs  of  complex
simulations, to focus the analysis efforts on the most promising entries.
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1 Learning in non-stationary conditions and experimental design  

For about two decades, new technologies have allowed collecting unprecedented quantities

of data about society. This data deluge has been experienced also by the sciences, in particular Big

Physics experiments. For example, among the experiments coordinated by Eiroforum, at CERN the

main detector ATLAS has shown the capability of producing 25 Petabytes of data per year and in

its  prime the Hubble  space  telescope  was able  of  sending to  earth Gigabytes  of  data  per  day.

Coming to fusion, the data warehouse of the Joint European Torus (JET) is now approaching 0.5

Petabytes. These amounts of data challenge human understanding and manual analysis.  Machine

learning tools and advanced statistical techniques have therefore been extensively used to derive

useful knowledge from increasingly large datasets. The great performance of these new tools has

motivated also an increase in the ambitions, resulting in new challenges, ranging from the analysis

of more complex phenomena to increasing demands in terms of interpretability and reliability of the

results. Progress on these fronts is very substantial but, in the perspective of scientific applications,

a basic limitation of present day tools is becoming very relevant. This is the fact that practically all

machine-learning  tools  are  based  on  the  i.i.d.  assumption  [1].  Assuming  that  the  data  are

independent and identically distributed means that the examples in the training set and test set are

sampled randomly from the same probability distribution function as the final application. Such an

assumption is  clearly violated in experimental  planning for the exact  sciences.  Indeed, the vast

majority of new experiments in these fields are meant to explore new regions of the parameter

space.  Typically,  a right trade-off has to be found. Extrapolating excessively in the unexplored

regions of the parameter space can be too risky and cause the entire experiments to fail. On the

other hand, too conservative choices can result in modest increases in knowledge, insufficient to

justify the efforts. In any case, for experimental planning the i.i.d assumption is clearly untenable.

New methods are therefore needed to address situations, in which significant extrapolations are

required,  as  in  the  case  of  planning  of  new  experiments  or  of  designing  new  devices.   In

probabilistic terms, the problem can be illustrated in following way. Let us assume that the goal of

the  experiments  consists  of  studying  the  relation  between  the  regressors  xi and  the  dependent

variable y. According to the Bayesian theory, one can write:

yi = P(y|x=x i
pe)P(x i

pe)               (1)

 where  the  superscript  pe indicates  previous  experiments,  P(y|x=x i
pe)  is  the  conditional

probability and P(x i
pe) the prior. In new experiments, in general both the conditional and the prior



probabilities could be different. This is a situation of learning in non-stationary conditions or under

“concept shift” [2,3]. 

In many applications, to solve the issues inherent in learning in non-stationary environments,

the approach of Learning under Covariate Shift (LCS) is adopted [4]. This methodology consists of

a series of techniques for supervised learning, aimed at addressing the situation when the input

points for the training follow a different probability density function as the input points of the test

and of the final application. On the other hand, it is assumed that the conditional distribution of the

output values, given the input points, remains unchanged:

 

P(y|x=x i
pe) = P(y|x=x i

ne) (2)

where the superscript ne indicates new experiments. The traditional way of addressing the issue

of covariate shift consists therefore of increasing the weight of the training points close to the one of

the  final  application.  The  weights

can be calculated on the basis of the

probability  ratio  of  the  various

inputs in the training set and in the

test  set.  An  academic  example,

similar to the one introduced in [4],

is shown in Figure 1, in which linear

fits are shown for different weights

of the data. If the actual experiments

are  planned  to  take  place  in  the

region  of  the  red  squares,  the  fit

obtained  by  weighting  more  those

points  has  higher  predictive  power

but can be misleading in other parts

of the x axis.  

Learning under covariate shift is insufficient in the case of the design of new experiments for

various reasons. First of all, the methodology assumes and does not derive the new values of the

regressors and therefore cannot guide in the planning of new experiments. Moreover, LCS needs

also an a priori definition of the mathematical form of the models to fit the data (the linear fit in the

academic  example  of  Figure  1).  In  addition,  LCS provides  only  a  partial  interpretation  of  the

experimental  evidence  and not  holistic  models,  which  take  into  account  all  the  available  data.

Figure 1 Example of learning under covariate shift for a function of one

variable. Bottom left: linear fit for equal weights. Bottom right: linear

fit for increased weights of the red squares. 



Finally, there is no reason to assume a priori that equation (2) is respected in the regions of the

parameters explored by new experiments. 

On the contrary, the new methodology proposed in this  paper is not affected by any of the

previous limitations. The approach is based on the falsification of the candidate models, extracted

from the  results  of  the  already  executed  experiments,  with  the  help  of  data  driven  tools.  The

analysis  of  the  available  data  is  performed  with  manipulation  of  symbols  (formulas)  using

evolutionary programming (see next section for the details).  The best models obtained from the

available data are compared to identify the values of the parameters for which they provide clearly

distinguishable  predictions.  New  experiments  can  therefore  be  planned  in  these  parts  of  the

operational space to falsify the models. The process can be iterated until a satisfactory solution is

found. The technique has been tested successfully with a systematic series of numerical tests, of

which some examples are reported in Section 3. An application to the definition of the scaling laws

for the energy confinement time in Tokamaks, on the basis of the ITPA database, is reported in

Section  4.   It  is  worth  mentioning  that  the  developed  methodology  is  absolutely  general  and

therefore can be applied also to guide in the investigation of large databases, which typically cannot

be studied systematically for lack of resources; the proposed approach can therefore be very useful

in identifying the most relevant entries on which to concentrate the further analysis efforts. The

same can be said for the results of complex simulation. These points are discussed in the last section

of the paper together with the conclusions. 

2 Symbolic Regression via Genetic Programming for experimental design  

As  mentioned  in  the  introductory  section,  this  paper  presents  a  new  methodology  for

experimental  design.  The  objective  consists  of  determining  the  most  important  regions  of  the

operational  space  to  plan  experiments,  in  order  to  identify  the  best  models  to  describe  the

phenomenon under study. In this perspective, the main tool used is Symbolic regression via Genetic

Programming.  The main characteristics of these tools are summarised in the next subsection. Their

application to the problem of extrapolation for  experimental design is the subject of the following

subsection.

2.1 Short overview of Symbolic Regression via Genetic Programming

SR via GP permits to identify the most appropriate

mathematical  expressions  for  modelling  the  process

under investigation.  The approach consists basically of

testing a large number of mathematical expressions to fit

a given database. To keep the number of alternatives to

Figure 2 Pictorial example of a Pareto Frontier



be fitted at a manageable level, various generations of models are tested. The most performing ones

of the previous generation are retained and used as the basis for producing a new generation of

models with genetic programming techniques. 

In  more  detail,  in  terms  of  knowledge  representation,  the  various  candidate  formulas  are

expressed as  trees.  In  this  context,  the  trees  can  be considered  as  constituted  of  functions  and

terminal nodes. The function nodes can be arithmetic operators, any type of mathematical functions

and squashing terms [5,6]. This representation of the formulas is not unique but it is the preferred

one because permits an easy implementation of Genetic Programming  (GP) operations.  Genetic

Programs are computational techniques, which have been explicitly developed to help addressing

complex optimization problems [5,6]. They are designed to emulate the evolution of living beings

through the interplay of mutation and selection.  They operate on a population of individuals, e.g.

mathematical expressions in our case. Each individual represents a possible solution, a potential

model of the experiment under investigation in our case. One of the crucial aspects of SR via GP is

the qualification of these candidate models. Such an evaluation is based on specific indicators called

fitness functions (FFs). The FF is a metric selected to measure how good an individual is with

respect to the database.  Once the best individuals have been identified,  on the basis of the FF,

genetic operators (Reproduction, Crossover and Mutation) are applied to them to generate the new

population. Therefore SR via GP operates in such a way that better individuals are more likely to

have  more  descendants  than  inferior  individuals.  The  iteration  is  stopped  when  a  stable  and

acceptable solution is  identified or some halting condition is  met  (e.g.,  a  maximum number of

iterations or sufficiently small errors in subsequent iterations). At this point, the algorithm provides

the solution with best performance in terms of the FF [7-10]. 

The  fitness  function  is  probably  the  most  crucial  element  of  the  genetic  programming

approach, because it is the indicator that measures the quality of the candidate solutions. Various

quantities have been used in the past to implement the FF: the Akaike Information Criterion (AIC),

the Takeuchi Information Criterion (TIC) and the  Bayesian Information Criterion (BIC)  [11-13].

The AIC is based on the Kullback-Leibler divergence and it can be demonstrated that it minimises

the generalisation error. The AIC can therefore be considered an unbiased estimate of the predictive

inaccuracy of a model. The most widely used form of AIC is: 

AIC=n ⋅ ln( RMSEn )+2k ,          (3)

where RMSE  is the Root Mean Square Error, errors indicate the residuals, the difference

between the experimental values and the estimates of the scaling laws.  k  is the number of nodes in



the model and n the number of ydata provided, so the number of entries in the database (DB). 

A variation of the AIC criterion has been developed to improve its discrimination capability

when the “right model” is not included in the list of candidate models under investigation. This

more robust indicator is called the Takeuchi’s Information Criterion (TIC), which in practice can be

calculated with the formula:

TIC=n ⋅ ln(RSSn )+(
τ
σ 0 )

2

⋅(k+1−(
τ
σ 0 )

2

) ,         (4)

where  RSS  is  the  residual  sum  of  squares,  0 the  standard  deviation  of  the  models

uncertainties and  the standard deviation of the measurements, both assumed to present a Gaussian

probability density function. 

An alternative criterion, the BIC, is an unbiased estimator of the likelihood of a model. The

form of the BIC indicator used in this paper is:

BIC=n ⋅ ln (σ (ϵ )

2 )+k ⋅ ln (n ) ,               (5)

Figure 3 Block diagram of the steps required

to perform Symbolic Regression via Genetic

Programming for the data driven derivation

of mathematical models.



where ϵ= ydata− ymodel are the residuals, σ (ϵ )

2  their variance and the others symbols are defined

in analogy with the AIC expression. 

All three criteria are indicators to be minimised, in the sense that better models have lower

values of these metrics. This can be appreciated by inspection of the three indicators. Indeed, all of

them consist basically of two parts. The first one depends on the quality of the fit. Models closer to

the data have lower values of this term. The second addend implements a penalty for complexity,

since it is proportional to the number of nodes in the three representing the model equations.  All

the mathematical background to fully appreciate the relative merits of these criteria can be found in

[14]. To derive the results presented in this paper, the AIC criterion has been adopted for the FF. 

In  practical  applications,  given  the  limitations  of  the  databases  available,  the  Fitness

Functions do not necessarily manage to identify a single individual model, clearly outperforming all

the others. Normally, SR via GP converges on a series of models, which are good candidates for the

interpretation  of  the  data  available.  The main  tool  implemented  to  select  the  most  performing

candidate models is the Pareto Frontier (an example is shown in Figure 2). The Pareto Frontier (PF)

reports the best models according to the FF for each level of complexity. As can be appreciated

from Figure 2, the PF present an L shape form, meaning that there is a tendency of lower returns:

increasing the complexity above a certain level does not produces significant improvements in the

fitting quality of the models. The models around the inflexion points of the PF are the ones, which

require attention and are the best candidates for extrapolation. 

The last  step  of  the  methodology  consists  of  nonlinear  fitting  of  the  candidate  models,

identified with SR via GP. This is an essential phase to associate confidence levels to the estimates

of the models, which is an indispensable piece of information for the applications considered in this

paper. A graphic overview of the methodology is shown in Figure 3. 

2.2 Application of Symbolic Regression via Genetic Programming to Experimental Design

The tools described in Subsection 2.1 can be applied to the planning of future experiments.

Indeed, the selection of the most profitable operational region, where to perform new experiments,

can  be  considered  an  essential  task  of  the  data

analysis  process.  In  this  perspective,  the  crucial

aspect  is  the  identification  of  the  best  parameter

space  region  where  to  plan  new  experiments,

which, from a statistical point of view, is equivalent

to  determining  the  new  range  of  the  regressors.

Therefore, the technique should be refined to derive

Figure 4 Function of one variable to illustrate the



the  parameter  range  more  appropriate  for  the  falsification  of  the  available  models.   In  this

perspective,  the database of past  experiments  is  analysed first  with SR via GP. The main idea

consists of selecting a pool of reasonable candidate models on the basis of the Pareto Frontier. The

crucial point to appreciate is that at this stage, after application of nonlinear fitting, it is possible to

obtain  confidence  intervals  for  the  models  predictions.  With  this  information  available,  the

algorithm, implemented to obtain the results reported in this paper,  explores the operational space

to identify the regions closest to the past data, where the candidate models differ sufficiently for

their the predictions to be outside the confidence intervals. In practice, the technique determines the

smallest variations in the operational parameters of the experiments to falsify the derived models.

The range of parameters closest to the one already explored is selected, because typically this is the

most accessible region for additional experiments. Moreover, because predictions of the previous

models in this close neighbourhood are expected to be the soundest even in presence of concept

shift, it is wise not to extrapolate too much. In any case, the level of extrapolation for the following

experiments is a parameter which can be tuned to best suit the needs of each experiment. At this

point, once the experiments have explored the new region of the operational space and new data are

collected, the process can be repeated. The best model, according to the FF, are selected using the

Pf and a new region where they can be falsified is identified to perform the successive experiments.

The process terminates when convergence on a sufficiently specific model, for the interpretation of

the phenomena under study, is reached. The potential advantages of SR via GP for experimental

design are various. The technique allows deriving directly from the data the most suited form of the

models. A purely exploratory version of the algorithms can be implemented, with minimal a priori

assumptions about the mathematical expression of the models (contrary to traditional fitting). On

the  other  hand,  if  relevant  a  priori  information  is  available,  the  solutions  can be  influenced to

converge on certain specific classes of functions (by selecting appropriately the basis functions or

the structure of the trees). The method also does not impose constraints neither on the type of errors

affecting the data  nor on the collinearity  between the regressors.  The proposed methodology is

described in detail with the help of a simple example in the next section.

3 The falsification approach to experimental design: numerical tests

The methodology proposed in the last section has been subjected to a systematic series of

numerical  tests.  Many  families  of  mathematical

functions have been used to generate synthetic data.

Various levels of Gaussian noise have been added to

the  points  generated  by  the  numerical  functions  to



simulate  experimental  conditions.  This statistics  of the noise has been chosen because typically

many measurements are affected by various sources of disturbance and therefore they satisfy the

conditions of the central limit theorem. The proposed method has then been iteratively applied to

the data  until  the original  function is  identified.  The results  have always been positive and the

proposed technique has always allowed recovering the original equations generating the data in a

very efficient way. The proposed methodology is also much more efficient than LCS, the more so

the more complicated the problem. In the following, a quite challenging example is described in

some detail  to  show the  potential  of  the  proposed  approach.  For  clarity’s  sake,  mainly  a  low

dimensional case is illustrated, but it has been verified that the approach is equally valid for high

dimensional cases, provided of course a sufficient number of good quality examples and adequate

computational resources are available.

In Figure 4 a simple example of a function of a single variable is shown. The equation of the

function used to generate the data is:

f ( x )=3sin x+exp (x /5)         (4)

Gaussian noise, of zero mean and variance equal to 10% of the average dependent variable

absolute value, has been added to the individual points. 

The first training has been performed by generating 100 points in the interval between 0 and

2. The best three solutions identified from the Pareto Frontier are:

y1,1=2.28 (sin x+
1

1+exp (−1.26 x ) )
y1,2=4.38sin x

0.62

y1,3=3.53x
0.41

The three functions are shown in Figure 5; from the confidence intervals it appears clearly

that a very advantageous interval to falsify the three

solutions is the one between 4 and 6. Therefore 100

additional points have been generated in this interval.

The best solutions identified by SR via GP are shown

in Figure 6 and their equations are:

Figure 6 Second step of the proposed methodology

to identify equation (4). The data provided to SR via

GP are  100  points  in  the  interval  in  the  interval



y2,1=1.28 [sin ( x0.67 )+sin x+
1

1+exp (−1.14 x ) ]+0.65

y2,2=2.60(sin x+
1

1+exp (−0.48 x ) )
y2,3=11.14 x exp (−x )

At this point, a suitable interval to discriminate between the models is the one between 8 and

12. To progress the identification of the most suitable  solution,  therefore 100 points have been

generated in this interval. The best outputs of SR via GP, considering also these additional entries

(100 more points), are the following three equations:

y3,1=3.27 sin x+0.43 x
1.31

−3.69
1

1+exp (−0.70 x )
+2.98

y3,2=0.83x+3.47 sin x

y3,3=0.79exp (0.19 x )

These equations provide different

predictions in the interval of the x axis

between 16 and 18. Taking into account

these  additional  inputs,  the  right

solutions  emerges  quite  clearly  among

the  competing  models,  as  shown

graphically in Figure 7. A part from the

pictorial view, the right equation can be

identified  on the basis  of the statistical

indicators, which are all clearly better for

the right model.

4 The falsification approach to experimental design: energy confinement time

To  exemplify  the  potential  of  the  proposed  methodology  with  a  concrete  example  from

Tokamak physics, in the following the scaling law of the energy confinement time is investigated.

The importance of this parameter is obvious since it quantifies the rate at which energy is lost from

Figure 7 Fourth step to converge on the final and correct solution:

eqution (4). The best data provided to SR via GP are 100 points in the

interval in the interval between 16 and 18.  The three best candidates

derived from the Pareto Front are reported in green, red and blue

with the relative confidence intervals. The input points are depicted in

black. In black also the actual function generating the data.



the plasma. To cover a large range of regressors, an international database has been considered [14],

which was explicitly built to support advanced studies of the confinement time. This ITPA database

indeed includes validated signals from the vast majority of the most relevant Tokamak machines

ever operated in the world. Coherently with the proposed procedure, for the next steps, only the

intervals of plasma current indicated by symbolic regression have been considered. For the sake of

direct comparison with previous scalings reported in the literature, the following  quantities have

been considered good candidates for the independent variables: 

B [T ] , I [MA ] ,n [1019m−3 ] ,R [m ] , M , ε , k ; P [MW ] ,M [a .m .u .].

In the previous lists  k indicates  the volume elongation,  ε  the inverse aspect  ratio,  q95 the

plasma safety factor evaluated at the flux surface enclosing the 95% of the poloidal flux, n the

central line average plasma density, B the toroidal magnetic field, R the plasma major radius, I the

plasma current and finally P the estimated lost power [15]. The selection of the discharges included

in the following analysis obeys also the selection rules of the DB3 dataset [15,16], used to obtain

the famous IPB98y scaling law.

Since the main scaling parameter for this kind of studies is the plasma current I, at the first

step of the procedure it  is  assumed than only data  from devices  with  I  less than 0.5 MA was

available.  This  subset  includes  a  total  of  702  entries  and  with  this  data  symbolic  regression

identifies  the following 5 scaling laws as the most  performing in terms of the model  selection

criteria: 

y1,1
τ

=0.1434 ∙ I ∙ R2 ∙
1

1+exp (−0.0363 P−7.626 )
∙

1

1+exp (−1.015n2 ε )
∙

1

1+exp (−0.5112( n
P1.486 )

1.697

)

y1,2
τ

=0.0239∙ I 0.8469 ∙R ∙exp (R ) ∙
1

1+exp (−2.5222n3.759M ε4 k )
∙P−0.604

y1,3
τ

=0.0272∙ I ∙R ∙exp (R ) ∙
1

1+exp(−1.370 n
3 ε2

B )
∙P−0.576

y1,4
τ

=0.1515 ∙ I ∙ R3.540 ∙exp (
I ∙ R

k11.62 ) ∙
1

1+exp (−1.025 R )
∙

1

1+exp (−2.519n3 ε2k )
∙P−0.730

y1,5
τ

=0.091∙ I ∙R2∙
1

1+exp (−0.548n )
∙

1
1+exp (−0.557n )

∙P−0.539



The values of the model selection

indicators for these models and the plots

of  the  variable  ranges  are  reported  in

Appendix  1.  As  expected,  the  current

interval  is  too small  to obtain coherent

results. The scaling laws vary wildly in

mathematical  form  and  provide  an

unrealistic  range  of  extrapolations  to

ITER, as reported in Table I. On the other hand, the models obtained in this

first  step belong basically  to three families,  which differ well  outside the

confidence intervals already in the current range 1.5 MA < I < 2.5 MA, as

shown in Figure 8. Including the entries in this interval of currents increases

the number of entries to 1428. Performing another iteration of the methodology allows identifying

the following set of equations as again the most performing according to the Pareto Frontier:

y2,1
τ

=0.1162 ∙ I 2 ∙ R1.953 ∙( k
0.553

P1.2008 )
3.622

∙
1

1+exp(−0.782 n
1.465

I )
∙

1

1+exp(−0.553 nM )
∙

y2,2
τ

=0.113 ∙ I ∙R ∙
1

1+exp (−7.284
n

P2 )
∙

1

1+exp(−7.381 nP )

y2,3
τ

=0.115 ∙ I ∙R ∙
1

1+exp (−0.998n )
∙

1

1+exp(−1.705 nP )
∙

1

1+exp(−5.650 I R k
2

P2 )
y2,4
τ

=0.084 ∙ I ∙R ∙
1

1+exp(−26.774
n Rk

P3 )

Even if the obtained scalings show again a wide range of different dependencies, the range

of extrapolations to ITER is significantly narrowed to the interval between 2.9 s to about 4 s. On the

other hand, the models still vary significantly in their form, suggesting that more data would be

Table I Prediction for the  ITER based
on the examples up to 0.5 MA. 

Mode
l

τITER

y1,1
τ

20.674
7

y1,2
τ

48.717
3

y1,3
τ

94.960
9

y1,4
τ 0.1175

y1,5
τ 4.7231

Figure 8 Main families of scaling laws which can be derived on the
basis of the experiments with plasma current blow 0.5 MA.



required. The details, including the extrapolations to ITER, the plots of the scalings and ranges of

the variable are reported in Appendix 2.  From the material in the Appendix, it can be seen how the

estimates of the various models differ outside of the confidence intervals in the plasma current

range between 3.5 and 5 MA. Fortunately in the database there are additionally examples also in

this high current range for a final complete set of 1480 inputs. Repeating the procedure including

these new entries identifies the following three high quality models:

y3,1
τ

=0.076∙ I ∙ R2 ∙ k ∙ P−1 ∙
1

1+exp (−0.201n2.004 )
∙( 1
n ∙P1.293

∙
1

1+exp (0.715M ) )
−0.1761

y3,2
τ

=0.1831∙ I ∙R2∙ P−0.662 ∙
1

1+exp (−0.094 ∙ I )
∙

1
1+exp (−0.408∙ n )

y NPL=0.070∙ I
1.071 ∙R1.706 ∙ k1.250 ∙ P−0.715 n0.100 ∙

1

1+exp (−0.408 ∙ n1.036 )

These  are  to  be  compared  with  the  pure  power  law

monomials  reported  in  [15]  and obtained  using  the  whole  of  the

database  and  not  only  the  entries  the  ranges  identified  by  the

proposed technique:

y PL1=5.55 ⋅10
−2 I 0.75B0.32n0.35M 0.06R2.0 ϵ0.76κa

1.14P−0.62

y PL2=5.62⋅10
−2 I 0.93B0.15n0.41M 0.19R1.97 ϵ 0.58κa

0.78P−0.69

  

Of  course  at  this  stage  the  procedure  has  to  be  stopped

because there are no more examples at higher plasma current. 

The scaling law yNPL is the one already identified in [7].      From the statistical parameters

provided in Appendix 3, it appears very clearly that the exponential and squashing factors improve

the  scalings  significantly  compared  to

the  power  law  monomials.  It  is  also

worth noticing that, with the developed

tools,  much  less  data  is  needed  to

converge on competitive if not superior

scaling laws: 1480 instead of 3093. The

values  of  the  estimates  for  ITER  are

reported  in  Table  II,  showing  that

Table II Prediction for the  ITER

obtained at  the  last  iteration of
the developed methodology. 

Mode
l

τITER

y3,1
τ

2.55

y3,2
τ

4.34
y NPL 2.85
y PL1 3.64
y PL2 3.22

Figure 9 Plots  of  the scaling laws obtained with all  the three
current intervals: I<0.5 MA, 1.5 MA< I<2.5 MA, 3.5 MA< I<5
MA. 



expecting  well above 3 s could be on the optimistic side. In any case, as can be appreciated from

Figure 9, ITER plasma current will  be more than sufficient to clearly discriminate between the

proposed models. 

5 Conclusions and further lines of investigation

In this paper, an original methodology has been presented to guide scientists in the design of

experiments in new regions of the operational space. This is a very important step in the scientific

process,  since  only  exploration  of  a  new  range  of  the  regressors  can  provide  real  additional

information and knowledge. On the other hand, planning experiments in an unexplored zone of the

parameters  is  delicate  both  conceptually  and  practically,  because  the  extrapolation  of  previous

knowledge is uncertain. Since the available models have been derived in conditions different from

the ones of the final applications, the i.i.d conditions cannot be invoked. As a consequence, care

must be taken because the models trained with old data can perform sub optimally and provide even

wrong answers. Moreover, contrary to other domains, no obvious assumption can be made to pin

down the best model. To operate in such a situation of concept shift, it is important to find a good

trade-off in exploring the operational space. The parameter region for the new experiments should

not be too close to the previous cases, otherwise their added value would be limited. On the other

hand, the extrapolation cannot be too aggressive, penalty the failure of the experiments, because the

available models are completely at the loss to provide guidance in the new region of the parameter

space; obviously, if there is no relation between the data in the training set and the final applications

there is nothing to learn from the past.  The methodology proposed in this paper is based on the

falsification of the models with experiments in the range of parameters as close as possible to the

previous  experiments.   Of  course,  this  condition  can  be  relaxed  or  substitute  with  others  if

appropriate  for  the  studies  to  be  performed.  The  approach,  based  on  SR  via  GP,  has  been

successfully tested with a variety of numerical tests. The application to a multimachine international

database of Tokamak devices has also provided very encouraging results.  The procedure is more

efficient  and reliable  than previous  approaches  such as  LCS.  Moreover  the proposed approach

provides better results, at least from a statistical point of view, even with a significant smaller set of

examples. On the other hand, it should be emphasized that the example of the energy confinement

time is just meant to illustrate the potential of the proposed methodology not to propose a final form

of the scaling, because the database is insufficient and also because the issue is to be addressed

again with data of metallic devices. 

It is worth pointing out that the developed technique can be used not only for experimental

design. The approach can also be deployed to focus the analysis on existing databases, which are



typically too large for exhaustive investigations. Indeed in many large devices, and particularly at

JET given the large warehouse, only a small fraction of the data is actually analysed in detail. The

tools developed can be utilised to identify the most relevant entries in the DB to be analysed with

specific attention. The same applies to computer simulations, which are nowadays sometimes so

complex that a lot of information remains untapped because for lack of resources to investigate the

details of their outputs. 

With  regard  to  future  developments,  an  important  topic  to  be  further  developed  is  the

treatment  of  the  errors.  Methods  of  Information  Geometry,  particularly  the  Geodesic  Distance

between  probability  density  functions,  are  expected  to  have  strong  potential  to  improve  the

capability  of  the  proposed methodology [17].  Application  to  scenario  integration,  with specific

attention to the effects of the impurities, is also expected to provide interesting results [18-22]. 
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Appendix 1 Data for plasma current below 0.5 MA
This  set  of  discharges  includes  702  inputs.  The  histograms  of  the  main  variables  are

reported in Figure 1.1 and their averages in Table 1.2. The values of the AIC and BIC of the various

candidate models are reported in Table 1.1.

Figure 1.1

The values of AIC and BIC are reported in Table 1.1

Tabella 1.1

Model k AIC [103] BIC [103]
y1,1
τ 32 -6.9789 -6.8328

y1,2
τ 26 -6.9264 -6.8071

y1,3
τ 29 -6.8704 -6.7374

y1,4
τ 17 -6.8248 -6.7467

y1,5
τ 42 -6.3828 -6.2714

Tabella 2.2

Variabl
e

Average

B 1.9144
n 4.1996
R 1.5379
M 1.6091
Ɛ 0.2419
k 1.1545
P 1.7319



Appendix 2 Data for plasma current  in the intervals  0<Ip< 0.5 MA and 1.5

MA<Ip<2.5 MA

This  set  of  discharges  includes  1428 inputs.  The  histograms of  the  main  variables  are

reported in Figure 2.1 and their averages in Table 2.3. The values of the AIC and BIC of the various

candidate models and their extrapolations to ITER are reported in Table 2.1 and 2.2.

Figura 2.1

Table 2.1

Model k AIC [103] BIC [103]

y2,1
τ

35 -9.7962 -9.6115

y2,2
τ

33 -9.6692 -9.4945

y2,3
τ

17 -9.457 -9.3699

y2,4
τ

19 -9.3558 -9.2554

Table 2.2

Model τITER

y2,1
τ 2.8903

y2,2
τ 4.1469

y2,3
τ 3.2341

y2,4
τ 3.9519

Table 2.3

Variable Average value

B 2.0854

n 4.7019

R 2.2421

M 1.8143
Ɛ 0.2796



k 1.3660

P 6.5544



Appendix  3  Data  for  plasma  current  in  the  intervals  0<Ip<0.5  MA  1.5

MA<Ip<2.5 MA and 3.5 MA<Ip<5 MA

This  set  of  discharges  includes  1480 inputs.  The  histograms of  the  main  variables  are

reported in Figure 3.1 and their averages in Table 3.2. The values of the AIC and BIC of the various

candidate models are reported in Table 3.1.

Figura 3.1

Table 3.1

Model k AIC BIC 

y3,1
τ

29
-

9935.54
-

9781.27

y3,2
τ

17
-

9752.85
-

9662.69

y NPL 9
-

9778.58
-

9760.42

y PL1 10
-

9628.72
-

9599.26

y PL2 10
-

9379.43
-

9506.43

Table 3.2

Variabl
e

Average

B 2.1313
n 4.7314
R 2.2644
M 1.8241
Ɛ 0.2818
k 1.3750
P 6.8464
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