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complexity. In this contribution, the current tomography methods under de-
velopment (Tikhonov regularisation, Bayesian methods and neural networks)
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1 Introduction

Sufficient spatial resolution is required in experimental studies of high-tempera-
ture plasma physics including the fusion research and development. However,
determining the spatial behaviour is not straightforward due to the very poor
accessibility of fusion relevant plasmas. Active diagnostic systems which deter-
mine plasma properties from its interaction with a physical probe (e.g. laser
light, particle beam) offer an excellent spatial resolution in a very specific re-
gion of plasma only. Majority of the passive diagnostic systems, which can
diagnose plasma from outside its border, allow for spatial resolution of the
integral plasma emission, i.e. of the plasma projections. The aim of plasma
tomography is to determine local plasma properties from the measured pro-
jections.

Spatial resolution of the reconstructed plasma image is, however, rather
poor due to the sparse data caused by the limited accessibility, with detector
positions typically confined to ports of the vacuum vessel. Implementation of
additional constraints (e.g. non-negativity of the emission, zero border emis-
sion) and a-priori information (e.g. increased smoothess along field lines) can
improve the resolution considerably. On the other hand, temporal resolution of
the plasma tomography can be sufficiently high for studies of rapid emissivity
evolution [1], [2], [3].

Plasma tomography has been applied on several different diagnostic sys-
tems. It is rather widespread with Soft X-ray (SXR) diagnostics, often using
linear pinhole cameras, see e.g. [2], [4], [5]. Due to the high temporal reso-
lution, the SXR tomography can contribute to the MHD analyses [2] and to
the impurity transport studies [6]. At several facilities, data from bolometric
diagnostic systems are regularly analysed using tomography, e.g. at the Joint
European Torus JET [1]. In the perspective of fusion reactors the key applica-
tion of tomography is linked to analyses of data from the neutron cameras, see
[7], [8], where it is expected to contribute substantially to regular monitoring
of the fusion power.

In this paper, our recent experience with the plasma tomography develop-
ment for fusion research (in particular at JET) is summarised. In Section 2 the
main methods currently applied in plasma tomography are outlined, with a
focus on the Tikhonov regularisation. In Section 3, the Minimum Fisher Regu-
larisation method is briefly explained and its further development into current
applications, fostered by our team, is presented. In particular, a novel approach
to the combined neutron tomography with spectral unfolding is proposed. The
key recommendations for tomography applications and development in fusion
reseach are recapitulated in the conclusions.

2 Current methods of plasma tomography

The aim of a typical two-dimensional tomographic reconstruction is to retrieve
spatial distribution of a scalar field in a plane (e.g. emissivity cross-section im-
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Fig. 1 The Soft X-ray tomography setup at tokamak TCV [3]. While number of the mea-
sured line integrated projections is rather high (left) the actual coverage in the projection
space is still quite sparse (right).

age) from its line integrated values (e.g. projections of the emissivity, provided
the object is optically thin). Tomographic reconstruction is a special case of
an inversion task. Even with the complete knowledge of the line integrals (for
all angles and distances) the inversion task is ill-posed. As a consequence, a
minor error in the data may result in substantial errors in the reconstructed
image. In order to mitigate this issue, different regularisation methods are
usually applied. The regularisation process typically introduces some a-priori
knowledge, e.g. some restriction on the result complexity (typically enforcing
smoothness of the result).

In plasma tomography, however, the inversion task is further complicated
by the fact that the experimental constraints usually prevent measurements
in arbitrary directions. Therefore, many plasma projections are missed, i.e.
data are sparse, making the tomographic inversion underdetermined for
any practical spatial resolution, see Fig. 1. Semi-analytical inversion methods,
e.g. based on filtered backprojection [1], encounter diverse difficulties under
these circumstances. Therefore, dedicated methods with reliable and robust
regularisation principles had to be developed for plasma tomography.

In a large majority of current computer codes for plasma tomography,
the unknown emissivity distribution g(r) is decomposed into basis functions
bj(r). The basis functions can be global, each covering the whole size of the
reconstructed image (e.g. special functions) or local, decomposing the image
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into regions (e.g. square pixels), see [1]. Consequently, the plasma tomography
task is reduced to finding the amplitudes gj :

g(r) =

∞∑
j

gjbj(r) , (1)

While with infinite series the image can be (in principle) reconstructed to
full perfection, in practice the sum is truncated. In other words, the choice of a
limited amount of basis functions contribute to the regularisation of the task.
In this respect, implementing any other additional information, in particular
the magnetic field geometry directly into the shape of the basis functions is dis-
couraged. Indeed, knowledge of the magnetic field geometry is burdened with
errors and, consequently, any adapted shape of the basis functions enhances
artefacts. Notice that this holds in particular for the notorius Abel inversion
(see e.g. [9]), where the unfolding procedure stems from the unprecise knowl-
edge of the magnetic axis position. In the current plasma tomography, it is
recommended to apply standard 2D tomography with preferential smoothness
along magnetic flux surfaces (see Section 3, Eq. 11) instead of the 1D Abel
inversion.

In the vast majority of diagnostic methods, the projections are determined
for a finite number of chords (lines of sight, views) fi , i = 1, ..., P which will be
further referred to as the line integrated measurements, although in general
the chords need not be strictly linear in the projection plane. Actually, the
real width of the chords is often evaluated within the tomographic algorithms.
A simple relation between the finite number of amplitudes gj and the finite
number of projection measurements fi can then be proposed:

fi =

N∑
j

Tijgj + ξi, i ∈ 1, ..., L, (2)

where Tij stands for the contribution matrix (sometimes referred to as the
geometric matrix) and ξi for misfits which compensate, in a real experimental
setup, both systematic errors and noise.

Different regularisation methods are applied in algorithms of tomographic
codes in order to find unknown gj from sparse data fi. A reliable performance
of the algorithm, with sufficient precision, robustness against artefacts caused
by ξi, low demand on CPU etc. is usually requested from any applicable to-
mography method. Some of the methods will actually find a reconstruction
matrix Mji:

gj =

L∑
i

Mjifi , (3)

Tikhonov regularisation is probably the most widespread method where
the reconstruction matrix Mji is derived. In the Tikhonov regularisation
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Mji =

L∑
k

(
N∑
l

TTklTlj + λHkj

)−1
TTki (4)

where λ is the regularisation factor which sets the relative strength of the
regularisation, and the regularisation matrix Hkj is given, in the simplest case,
by

Hkj =

L∑
m

BTkmBmj , (5)

where the smoothing matrix B corresponds to numerical differentiation, for
details see e.g. [2]. The regularisation factor λ can be determined iteratively
with the Pearson’s χ2 test:

χ2 =
1

N

N∑
i

ξ2i
σ2
i

→ 1 . (6)

Figure 2 gives a flowchart of the Tikhonov regularisation as implemented in
practice.

Besides the Tikhonov regularisation, considerable efforts in plasma tomog-
raphy have been invested into the development and application of reconstruc-
tion methods based on Bayesian approach, see e.g. [5], [10]. At present, the
Maximum likelihood (ML) tomography represents application of a probabilis-
tic method where systematic expertise in experimental data analyses has been
collected, see [11]. It is a nonlinear iterative algorithm that attempts to find
the estimate of the emissivity distribution that is most consistent with the
measured tomographic projections in the sense of maximizing the likelihood
(conditional probability of the data given the parameters). The emission is
considered to be a Poisson process and therefore fi presents a sample from
a Poisson distribution, whose expected value is f . Consequently, the prob-
ability of obtaining the measurement f = fi|i = 1, ..., L from the emissivity
g = gj |j = 1, ..., N is given by the likelihood function:

L(f/g) =
∏
i

1

fi!
(f)fi × exp(f) (7)

The ML estimate is obtained by maximizing the above expression:

gML = argmaxgL(f/g) (8)

The mathematical basis for a broadly applicable algorithm has been first
applied to images by Richardson [10] and Lucy [12] but the method has been
started to be used extensively in tomography only after the introduction of an
iterative solution for finding the ML estimate by Shepp and Vardi [13] and,
independently, by Lange and Carson [14]:

g
(k+1)
j =

g
(k)
j

sj

∑
i

fi∑
m Timg

(k)
m

Tij (9)
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Fig. 2 Flowchart of algorithm solving the Tikhonov regularisation, including the imple-
mented value of the convergence threshold of the Pearson’s test and the typical maximum
number of iteration loops.

where k indexes the iterations and sj =
∑
i Tij is the probability that

emission originating in pixel n will be recorded in a projection bin.

As already mentioned the tomography problem is a highly undetermined
inversion leading to an ill-posed mathematical problem. In order to obtain re-
alistic and robust solutions, it is therefore mandatory also for the ML method
to introduce a regularisation procedure which consists of imposing smooth-
ness along the magnetic surfaces, given by the plasma equilibrium. The ML
method uses 1-D average filtering on a sliding window, which moves along the
magnetic contour lines. The particular form of the iterative reconstruction for-
mula 9 can be exploited in order to allow the modelling of the projection noise
propagation, enabling the retrieval of a variance image which accompanies
the reconstructions. Accurate modelling of the projection noise propagation is
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Fig. 3 Illustration of the ML bolometry for the JET pulse #84887 at t = 54.9s: reconstruc-
tion (top-left), image variance (top-right) and radiation profile PRAD versus the coordinate
with the estimate of the uncertainties in the emitted power (bottom).

important for both qualitative interpretation and quantitative analysis of the
reconstructed images. Following the ideas first introduced by Barret [15] two
approximations can be introduced for obtaining the variance image: to con-
sider that the noise is small compared to the mean value of the reconstruction
and to assume that the convergence of the ML algorithm is fast-enough, so
that the projection of the current estimate is close to the noise-free projection.
Details of the implementation for JET tomography are given in Ref. [16].

In JET, the ML method has been applied for gamma and neutron tomogra-
phy (see e.g. Refs. [11] and [17] for representative examples). More recently it
has been implemented also for bolometry [18], where the evaluation of the un-
certainties accompanying the reconstruction is particularly important, allow-
ing the estimation of the confidence intervals for the radiated power (Fig. 3).
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The tomographic inversion process can also be performed with neural net-
works. A first attempt at doing this involved the use of a neural network
to find the parameters of a two-dimensional gaussian distribution that would
best fit the measurements of a horizontal and a vertical soft X-ray camera [19].
This assumed that the plasma profile could be approximated by a 2D gaus-
sian shape, and the neural network would learn to predict the amplitude, the
horizontal/vertical position, and the horizontal/vertical width of the gaussian
distribution.

Later, the assumption that the plasma profile had a particular shape was
relaxed to allow for models with more degrees of freedom. Namely, a model
was developed to take into account – among other parameters – ellipticity,
triangularity and the Shafranov shift [20]. A neural network was used to learn
the parameters of this model from measurements of a horizontal and a vertical
neutron camera [21]. In this case, the neural network could learn up to 16 model
parameters.

With the advent of deep learning [22], it became possible to train neural
networks with many more layers and with a much larger number of parameters.
One of the most successful applications of deep learning was image classifica-
tion using convolutional neural networks (CNNs), where a 2D input image is
transformed into a 1D output vector of class probabilities. By reversing the
architecture of a CNN, it is possible to devise a deconvolutional neural network
for plasma tomography, where a 1D input vector of bolometer measurements
is transformed into a 2D output reconstruction of the plasma profile [23].

In this case, the neural network was trained to reproduce each single pixel
of the tomographic reconstruction. For reconstructions with a resolution of
200x120 pixels, the network had 24 000 outputs, and was able to achieve a
similarity score above 90% on previously unseen data. The main advantage
is that, once trained, such network can compute hundreds or even thousands
of reconstructions per second, making it possible to visualise the plasma pro-
file over the course of an entire discharge [24] and, potentially, in real-time
applications.

3 Progress in the Minimum Fisher Regularisation

The Minimum Fisher Regularisation (MFR) presents a widespread method of
tomography in current tokamak research. It relies on Tikhonov regularisation
with an iterative optimisation of the results so that the Fisher information of
the reconstructed image is minimised:

IF =

∫ 2∑
i,j=1

∣∣∣∣∂g(x1, x2)

∂xi

∂g(x1, x2)

∂xj

1

g(x1, x2)

∣∣∣∣ dx1 dx2 . (10)

In simple terms, the optimisation allows for better spatial resolution (less
smoothness) in regions with high levels of emissivity. The method was first de-
veloped and applied on TCV [2] and at present it is implemented and updated,
among others, at JET [9], COMPASS [4] and Tore Supra [25].
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The first major extension of the MFR aimed at a possibility of rapid anal-
yses of large amounts of data via temporal averaging of the smoothess matrix,
see [3]. Nowadays the temporal averaging is hardly ever applied in practice
due to the substantial increase in the CPU performance of the computers.
With robust and rapid performance of MFR, further efforts have been in-
vested into the development of real-time relevant version of MFR. As a result
the idea of a rolling iteration was introduced, see [26]. In the rolling iteration,
the time index of analysed data is increased by one with every new round of
the iterative process. This allows for sufficient precision in the case of smooth,
slowly evolving data from line integrated measurements. Importantly, in [26]
it is demonstrated that the artefacts linked to sudden changes in data have
also rather low and rapidly decreasing amplitude in MFR, i.e. the rolling it-
eration is stable. It can be concluded that a real-time version of the MFR is
foreseeable.

Furthermore, preferential smoothness of the reconstructed image along the
flux surfaces was introduced at JET due to the low number of the lines of
view. As a result, the reconstructed image features slowly changing emissivity
along the flux surfaces, while the emissivity gradient in plasma radius may
be steep. This corresponds to the expected plasma emissivity behaviour. In
oder to enforce this smoothness anisotropy, a new recipe for the regularisation
matrix was implemented instead of Eq. 5:

Hkj = S(η)

L∑
m

BT‖kmwmB‖mj + S(−η)

L∑
m

BT⊥kmwmB⊥mj , (11)

In this set of equations, B‖ is the smoothing matrix in the direction parallel
to the magnetic field, B⊥ the smoothing matrix in the direction perpendic-
ular to the magnetic field, the weights wm allow e.g. for implementation of
the Minimum Fisher Information according to Eq. 10, and the function S(η)
controls the anisotropy amplitude. In practice, the logistic sigmoid function is
applied. This amendment of Hkj proved so reliable and beneficial [9] that it is
nowadays applied as a routine feature in MFR.

Due to the non-linear character of the Minimum Fisher Information and to
the sophisticated smoothing procedure it is not possible to determine analyt-
ically the error transmision from line integrated data to the emissivity distri-
bution like in the ML method, see Section 2. Instead, the Monte Carlo method
was introduced, which tests statistically the MFR reconstruction response to
random errors in data. The method was first used in extensive studies of the
MFR performance at JET [27]. In this work it was shown that the MFR is
stable against artefacts and that a Gaussian noise in data transmits with a
good precision to a Gaussian noise in the reconstruction. Recently MFR con-
tributed to detailed evaluation of accuracy and precision of the ITER neutron
profile reconstruction from the simulated RNC data (Radial Neutron Camera
data). The studies proved high robustness of the MFR method and acceptable
level of precision of the neutron profiles with a sufficient temporal resolution,
in particular in the high performance discharges [8].



10 Jan Mlynar et al.

Besides plasma tomography, MFR was successfully applied in unfolding
of neutron spectra Φj from the pulse height data Ψi measured by neutron
scintillation detector with detailed knowledge of its response function Rij , for
details see [28] :

Ψi =
∑

RijΦj , (12)

Unlike in plasma tomography, in the case of unfolding the task need not be
underdetermined so that the L-curve principle based on data statistics can be
employed in search of the value of the regularisation factor instead of the χ2

Pearson’s method, see [28], [29]. Notice that the unfolding is still an ill-posed
problem with a tendency to create artefacts, therefore a reliable calibration of
the response matrix Rij was indispensable.

Based on the observed robustness of the MFR method as well as on ex-
perience with spectral unfolding, a new approach to analyses of spatially re-
solved pulse height data from the RNC scintillation detectors at ITER can be
proposed. In contrast to the step-by-step approach presented in [30], where
tomography analyses is run for separate energy bins, it is recommended to
directly combine the contribution (i.e. geometric) matrix and the response
matrix of the energy callibrated detectors into a single inversion problem as
follows:

– Denote fik a matrix of data where the rows correspond to i = 1, ..., P line
integrated measurements from the P scintillation spectrometers and the
columns to k = 1, ..., C pulse height measurements from each spectrometer.

– Seek a matrix of spectrally resolved emissivities gjl, where the rows j =
1, ..., N correspond to the pixel index in the spatially resolved mesh of
pixels, and the columns l = 1, ..., B to discrete bins of the unfolded neutron
energies.

– The double inversion problem is described – according to Eqs. 2 and 12 –
by the following set of equations

fik =

B∑
l

Rkl

N∑
j

Tijgjl + ξik, (13)

– This set of equations can be re-indexed so that a standard regularisation
procedure (e.g. the MFR code) can be applied

fα =

B×N∑
β

Sαβgβ + ξβ → gβ =

C×P∑
α

Gβαfα (14)

The main advantage of the proposed procedure is that the combined to-
mography and spectral unfolding problem is treated as a single ill-posed task,
so that the amplification of artefacts is prevented.

The method was tested on phantom functions with random noise. The con-
tribution matrix Tij was based on geometry of the JET neutron camera, and
the response matrix Rkl was applied from the callibrated JET liquid scintilla-
tion detector [31]. One of the test functions and the resulting reconstruction
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Fig. 4 Preliminary results of the combined tomography and unfoling MFR code, with
phantom functions in left column and combined 2D tomography and unfolding results in
the right column. In the top row, the spatial distribution of the DT neutron emissivity
is shown, while the bottom row presents the model temperature profile and the unfolded
temperature distribution, based on spectral width of the DT neutron energy.

is exemplified in figure 4. In this example, a simple gaussian profile of neutron
emissivity was used as a phantom function on the grid of 10x15 pixels, with
100 energy bins in each. The phantom neutron spectrum was based on the
DT neutron emission (14.1 MeV) with Doppler broadening corresponding to a
parabolic plasma temperature profile. As a result, the combined procedure re-
sulted in considerably improved precision of reconstruction (by approx. 15%)
compared to the step-by-step unfolding and tomography. It can be concluded
that the preliminary results are promising.

Since its introduction more than 20 years ago, the MFR also went through
several code remakes and numerical optimisations. The most important exten-
sion happened in 2012 when the original MatLab MFR package was ported
to the Python platform with new numerical options included [9]. The Python
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Fig. 5 Left: Two-dimensional plot of the normalised magnetic flux function ΨN (R, z) as
reconstructed by EFIT at JET, including Last Closed Flux Surface in black (the value of
the flux is normalised to the value at this contour). The red arrows mark the gradient of
the Ψ function and the white arrows the perpendicular direction. Right: A similar plot of
inverse tangent of the direction perpendicular to the gradient of Ψ . This function is then
used in order to find proper weights for the derivative (smoothing) matrix with preferential
smoothing along the magnetic flux contours.

version was significantly refactored again in 2017, with a new streamlined hier-
archic module structure and Mercurial version control. In the version currently
maintained for the JET tomography, a new implementation of the anisotropic
smoothness matrix based on gradient of the poloidal magnetic flux (instead
of the flux surface interpolation) was introduced, see figure 5. Besides, the
same mesh of pixels was pre-defined for the three JET tomography diagnostic
systems: the neutron, the soft X-ray and the bolometry cameras, and a new
simple access to JET data is under development. A new graphical user inter-
face (GUI) was introduced, which allows, among others, to evaluate evolution
of radiation in between regions of interest pre-defined by the user, profiting
from data of all the three diagnostic systems.

The MFR method was also applied in reconstruction of data from fast 2D
matrix cameras with tangential view of the plasma in the visible region (based
on the plasma axial symmetry) on the COMPASS tokamak, see e.g. [32], and
tentatively to unfolding in analyses of the data from the activation probes at
JET, see [33]). Its potential to reconstruct the plasma current density from
the magnetic data is under discussion. Last, but not least a possible merger of
the MFR with the neural networks can be considered in future, as proposed in
[34]. According to this scheme, MFR regularisation parameters in Eqs. 4 and
11 would be determined by a trained neural network, combining robustness of
MFR with the real-time relevance of the neural networks.
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4 Conclusions and outlook

In this contribution, research and development efforts in plasma tomography
in fusion were presented. Particular focus was given to the large number of
applications that a reliable method resolving the inversion problem may offer
in fusion data analyses. Indeed, the potential of the tomography development
for fusion is still to be exploited. At present, several methods with their ad-
vantages and disadvantages compete, in which a rich set of constraints may
(but need not) be applied. Importantly, the JET contributors involved in to-
mography analyses have been currently working on quantitative comparison of
performance of the three methods presented in the second part of this contri-
bution. The conclusions are yet to be drawn, however, the preliminary results
demonstrate that (i) with sparse data, the room for improvement is limited so
that in this respect, augmented data precision is rather called for, and (ii) the
correct attitude is to maintain a few different inversion methods in order to be
able to critically compare their results in analyses of important data events.

For future fusion reactors, it will be instrumental to develop a real-time
tomography algorithm with low susceptibility of developing major artefacts.
This task is of a particular importance in determination of the fusion neutron
emissivity distribution. In this respect, several works and conceptual studies
based on Minimum Fisher Regularisation method were also presented in this
contribution. Obviously, similar ideas can be also anticipated in other plasma
tomography methods.
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