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The effect of electrostatic microturbulence on fast particles rapidly decreases at high en-
ergy, but can be significant at moderate energy. Previous studies found that, in addition
to changes in the energetic particle density, this results in nontrivial changes to the equi-
librium velocity distribution. These effects have implications for plasma heating and the
stability of Alfvén eigenmodes, but make multiscale simulations much more difficult with-
out further approximations. Here, several related analytic model distribution functions
are derived from first principles with reasonable approximations. A single dimensionless
parameter characterizes the relative strength of turbulence relative to collisions, and this
parameter appears as an exponent in the model distribution functions. Even the most
simple of these models reproduces key features of the numerical phase-space transport
solution and provides a useful a priori heuristic for determining how strong the effect of
turbulence is on the redistribution of energetic particles in toroidal plasmas.

1. Introduction

Energetic particles, such as those utilized to heat plasma in magnetic confinement
experiments, are subject to being redistributed by turbulent transport. The net flux of
these non-Maxwellian energetic particles between flux surfaces is a strong function of en-
ergy (Hauff et al. 2009), and this causes the lower-energy (though still not thermalized)
part of the velocity distribution to be “carved out”, sometimes leaving a bump-on-tail
feature (Wilkie et al. 2016). Here, a simplified model which describes this effect is in-
troduced, with a particular focus on alpha particles produced by the deuterium-tritium
(DT) fusion reaction. It is a generalization of the analytic slowing-down distribution of
Gaffey (Gaffey 1976; Helander & Sigmar 2002) (which will repeatedly be referred to as
the “classical” slowing-down distribution) that includes an additional term mimicking
the velocity dependence of microturbulent transport. An analytic distribution was also
previously derived by Anderson et al. (1991) and Sigmar et al. (1993), wherein anomalous
transport was treated with a constant diffusion coefficient, rather than one with velocity
dependence.

Alpha particles are born isotropically from reacting deuterium and tritium nuclei at
an energy of Eα = mαv

2
α/2 = 3.52 MeV. Plasma heating is caused by the friction of these

particles against the bulk ions/electrons (which have characteristic thermal speeds vti/e =√
2Ti/e/mi/e, respectively). As they slow down and their magnetic orbits become smaller,

alpha particles become more and more susceptible to ion-scale microturbulence. As they
transport outward, they continue slowing down on outer flux surfaces. This, combined
with the fact that fewer alpha particles are produced near the cooler edge of the plasma,
means that the alpha particle energy leaving the plasma will be relatively be small (Kurki-
Suonio et al. 2011). Even so, alpha particles will be redistributed radially, changing the

† Email address for correspondence: wilkie@chalmers.se
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global heating profile. Alphas then eventually become thermalized in equilibrium with the
bulk ions, creating a population of helium “ash” with density nash > nα† and temperature
Tash = Ti. This population can then be treated as a Maxwellian impurity.

All of the aforementioned effects are captured by the kinetic transport equation from
the low-collisionality ordering of gyrokinetics for the equilibrium distribution fα:

∂fα
∂t
− 1

V ′
∂

∂r

(
V ′Drr

∂fα
∂r

+ V ′Drv
∂fα
∂v

)
− 1

v2

∂

∂v

(
v2Dvr

∂fα
∂r

+ v2Dvv
∂fα
∂v

)
= C [fα] + Sα. (1.1)

The collision operator C includes collisions of trace particles against the Maxwellian
bulk, and Sα(r, v) is the source of alpha particles from fusion reactions. Flux surfaces
are labelled by the radial coordinate r, defined as the surface half-width at the height
of the magnetic axis, and enclose a volume V (r), and primes denote differentiation with
respect to radius. The radius of the last closed flux surface is the plasma minor radius a.
The various turbulent diffusion coefficients Dxx are functions of radius and speed v, and
these can be calculated from nonlinear gyrokinetic simulations. Equation (1.1) is valid
for either trace impurities or for energetic particles (Wilkie et al. 2018). Both of these
conditions are typically satisfied for alpha particles (Wilkie et al. 2015).

The main body of this work derives (Section 2), benchmarks, and discusses (Section
3) a particularly simple analytic distribution using a local loss term that models the
approximate effect of energy-dependent transport. The approximate velocity dependence
used is derived from first principles in Appendix A. Appendix B relaxes the isotropic
approximation and leads to a velocity dependence with the same energy scaling, but a
different pitch-angle scaling than Hauff et al. (2009). An analytic model distribution with
pitch angle dependence is thereby also derived in Appendix B. Appendix C relaxes the
local-sink approximation to solve analytically for the radial transport in a plasma that is
uniform except for the energetic particle source. These generalizations are combined to
obtain an analytic distribution in 3-dimensional phase space fSD,3D (r, v, ξ) in Eq. (C 8).

2. Model distribution function

An approximate local solution to Eq. (1.1) will be found after a series of assumptions.
In this section, it will be assumed that the energetic particles are isotropic in velocity
space, but this is relaxed in the more general treatment of Appendix B. Also, in the limit
where vti � v � vte, the collision operator acting on an isotropic alpha distribution
reduces to the simplified form C [fα] ≈ τ−1

s v−2 (∂/∂v)
(
v3
c + v3

)
fα, where the critical

speed is defined as

vc ≡ vte
(

3
√
π

4

∑
i

nime

nemi
Z2
i

)1/3

, (2.1)

with the sum over all non-trace ionic species. The slowing-down time is:

τs ≡
3

16
√
π

mαmev
3
te

Z2
αe

4ne ln Λαe
. (2.2)

Previous studies (Wilkie et al. 2017) found that the Drv, Dvr and Dvv coefficients play
a sub-dominant role compared to radial diffusion (Drr) at high energy, so this will be the
only transport term kept from Eq. (1.1). To see that this is justified, consider the two

† Here, nα refers to the density of helium that is not Maxwellian ash so that the total helium
density is nHe = nash + nα
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source terms in the gyrokinetic equation: ωe 〈φ〉R ∂fα/∂E and (c/B)ky 〈φ〉R ∂fα/∂r for
the case of ion-scale turbulence (ω ∼ vti/a is the frequency, ky ∼ ρ−1

i is a perpendicular
wave number, ρi is the thermal ion Larmor radius, E is energy, B is the magnetic field
magnitude, and 〈·〉R denotes the gyroaverage). The former term contributes to Drv and
the latter to Drr. Therefore, the latter will dominate when Ti∂fα/∂E � a∂fα/∂r, as is
the case for energetic particles. Similar arguments apply to Dvr and Dvv when comparing
their definitions to Drr and Drv (Wilkie et al. 2016). See Appendix A for more details.

An analytic model is derived in Appendix C which includes the global radial diffusion
operator, but includes other generous assumptions about the radial plasma profile. Here, a
local approximation will be made for the radial diffusion term, where the radial derivatives
are parametrized by a length scale such that:

1

V ′
∂

∂r

[
V ′Drr

∂fα
∂r

]
= − D

L2
α

fα. (2.3)

This is done to capture the approximate effect of transport on the local velocity distribu-
tion without needing to solve the radial transport equation as was done in Wilkie et al.
(2016). In this framework, transport acts as a velocity-dependent sink of alpha particles.
In reality, transported particles move to other flux surfaces, where they continue to slow
down. Therefore, this approximation represents a “worst-case scenario”. This excludes
cases where the energetic particle density might be greater at some radii due to trans-
port from inner flux surfaces. In such cases, a local model is inadequate and full radial
transport solution of Eq. (1.1) is required (Wilkie et al. 2016).

Since one does not have the luxury of the full radial and velocity dependence of fα, an
a priori proxy is desired for the purposes of defining Lα. For the classical slowing-down
distribution, nα ∝ S0, so the source is chosen to represent the radial derivative of the
energetic particle distribution so that ∂fα/∂r ≈ −fα/Lα. This defines the radial scale
length:

L−2
α ≡ −max

[
S′′0
S0

+
S′0
S0

(
D′α
Dα

+
V ′

V

)
, 0

]
, (2.4)

where Dα = Drr (v = vα) is typically small, less than about 0.01m2/s. This form of
Lα is kept in the main body of this work for generality, but it does have the drawback
of choosing a relevant energy to represent the radial distribution of energetic particles.
For an analytic model that relaxes this assumption, see Appendix C. The neoclassical
diffusion of slowing-down alphas due to collisional pitch-angle scattering (Catto 1987) is
expected to even smaller than turbulent transport, though this may be enhanced by a
lack of perfect toroidal symmetry near the plasma edge (Kurki-Suonio et al. 2011).

The model energy dependence of the diffusion coefficient used for this model is bor-
rowed from Hauff et al. (2009):

Drr = Dα
v3
α

v3
. (2.5)

See Appendix A for details on how this scaling is found. In Appendix B, it is shown that
this is good approximation to the more general case where the pitch-angle dependence
of Drr is taken into account. This is because the range of pitch angles for which Drr

departs from this v−3 scaling is very narrow (Pueschel et al. 2012).
One benefit of the locality approximation is that it reduces the effect of transport to

a single dimensionless parameter, which shall be defined as:

b ≡ Dατs
L2
α

v3
α

v3
c

. (2.6)
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The appearance of the factor v3
α/v

3
c is curious, but is motivated by the solution that

follows. This dimensionless parameter can be simplified further by scaling the diffusion
coefficient similarly to Pueschel et al. (2012). There, the diffusion coefficient at thermal
energies was deemed proportional to the effective thermal diffusivity χeff . If it is supposed
that Drr (v = vc) ≈ χeff , then one can approximate b ≈ χeffτs/L

2
α.

With the aforementioned approximations, Eq. (1.1) reduces to:

b

τs

v3
c

v3
fα =

1

τs

1

v2

∂

∂v

[(
v3
c + v3

)
fα
]

+ Sα (2.7)

in steady-state. In this model, the transport term diverges as v → 0. More realistically,
one could define a cutoff speed below which the diffusion coefficient is constant – this
also results in an analytic solution. However, due to the other approximations made,
Eq. (2.7) is invalid at low energy, where the distribution is dominated by thermalized
helium ash. Therefore, a bare Drr ∝ v−3 scaling, without an ad-hoc cutoff, is used
without significant reservation. This is done with the knowledge that, like the classical
slowing-down distribution, it is not valid for v . vti. Unfortunately, this precludes a
useful analogous generalization for heated minority ions (Pusztai et al. 2016) since it is
much more sensitive to the diffusion coefficient at low energy, for which a reduced model
has yet to be developed. However, the generalization to injected auxiliary fast ions (e.g.
neutral beams) is straightforward, even if their injection energy is not as high as for alpha
particles.

The solution to Eq. (2.7) is:

fα =
τs

v3
c + v3

(
v3

v3 + v3
c

)b/3 ∫ v

∞
Sα (v′)

(
v′3

v′3 + v3
c

)−b/3
dv′. (2.8)

Now the choice of including v3
α/v

3
c in the definition of b, Eq. (2.6), becomes clear: this fac-

tor appears in the exponent of this distribution, and is thereby important in quantifying
the effect of turbulence on the energetic particle distribution. Even for fusion-produced
alpha particles, the source Sα has a significant spread in energy proportional to the ge-
ometric mean of the fuel temperature and the alpha particle birth energy (Brysk 1973).
However, in order to obtain an analytic solution, it will be convenient to use a mono-
energetic source such that Sα ≈

(
S0/4πv

2
α

)
δ (v − vα). The following analytic model

distribution is thereby found:

FSD,mod =
S0τs
4π

1

v3
c + v3

(
v3

v3
α

v3
α + v3

c

v3 + v3
c

)b/3
H (vα − v) , (2.9)

where H is the Heaviside step function. Equation (2.9) reduces to the classical slowing-
down distribution when transport is negligible: b = 0. This is a generalization of the
analytic distribution found by Sigmar et al. (1993) to the case of energy-dependent
diffusion as given by Eq. (2.5). Representative examples of this distribution at different
values of b are shown in Fig. 1.

3. Benchmarking and discussion

There are several curious features of the distribution described by Eq. (2.9) which are
nevertheless backed up by numerical simulations and physical insight.

Firstly, FSD,mod(v) has a local maximum at v∗ = vα
(
Dατs/3L

2
α

)1/3
. Therefore, the

distribution exhibits a “bump-on-tail” similar to what was previously observed (Wilkie
et al. 2016, 2017). In order for this inversion to be observable, this maximum must be
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Figure 1. Comparing the classical Gaffey slowing-down distribution with the analytic trans-
port-modified version – Eq. (2.9) – for different values of b. Lighter shades corresponding to
higher relative turbulence intensity. The shaded area represents the Maxwellian ash population
for nash = 10nα and Tash = Eα/350. For these cases, vc = 0.3vα.

well separated from the helium ash population. Therefore, a bump-on-tail caused by
turbulent transport is possible only if:

Dα �
3L2

α

τs

(
vt,ash

vα

)3

. (3.1)

Using Ti ∼ 10keV, τs ∼ 1s, and Lα ∼ 0.4m, the presence of a bump requires Dα � 7×
10−5m2/s. Estimates of Dα from the literature range from about 6×10−4 to 2×10−2m2/s
using gyrokinetic simulations (Hauff et al. 2009; Zhang et al. 2010; Pueschel et al. 2012;
Wilkie et al. 2015), making this condition marginally- or well-satisfied depending on
the scenario. The presence of a local maximum in velocity space has the potential to
destabilize waves, such as Alfvén eigenmodes, via inverse Landau damping. A flattening
or inversion in velocity space is destabilizing, but it accompanied by a flattening of the
radial profile, which is stabilizing. Without a detailed analysis, it is not immediately clear
what the net effect is.

Also, notice that, at the birth speed v = vα, there is no turbulent correction to the
classical slowing-down distribution. No matter how strong the turbulence is, it will not
affect newly-born alpha particles because it cannot possibly compete with a delta function
at its peak. As the alpha particle slows down, it becomes doubly affected because it
is further away in velocity space from the source in addition to turbulent transport
becoming stronger. Since most of the electron heating occurs near the injection speed,
this remains immune to turbulent transport of alphas. What might be affected is the
heating of ions at lower energy.

The model distribution was benchmarked against a numerical solution of Eq. (1.1). The
test case is an ITER-like ELMy H-mode DT scenario that is unstable to electrostatic ion-
temperature gradient turbulence beyond r = 0.5a. It can be found on the public tokamak
profile database (Roach et al. 2008) as ITER scenario 10010100. In these simulations, the
diffusion coefficient was calculated directly from first-principles gyrokinetic simulations
(and thus did not diverge as v → 0). Further, the full test-particle collision operator
was used to capture physically consistent thermalization of helium ash. For more details
about the transport of alpha particles in this case, see Wilkie et al. (2016).

The local distribution function at two different radii are shown in Fig. 2. Despite the
generous assumptions built into the analytic model, it qualitatively captures the basic
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Figure 2. Comparing the local velocity distribution function of alpha particles for two different
radii of the ITER-like scenario of (Wilkie et al. 2016). Shown are the Gaffey slowing-down distri-
bution (cyan dashed line), Eq. (2.9) (red line), and a numerical phase-space transport solution
(black line). Each of the analytic distributions are shown with a population of Maxwellian ash
added, equal to the ash density calculated with t3core.

Figure 3. Comparing the radial density profile of energetic alpha particles as predicted by
the Gaffey slowing-down distribution (cyan dashed line), Eq. (2.9) (red line), and a numerical
phase-space transport solution (black line).

features of the numerical solution including: well-confined high-energy alphas, a depletion
of the distribution at more moderate energies, and the bump-on-tail feature. At these
radii (r = 0.5a and 0.6a), the values of b were found to be 5.3 and 2.6, respectively.

The alpha particle density as a function of radius for the test case is shown in Fig.
3. There, the analytic solution is compared to the numerical transport solution and to
the slowing-down distribution without radial transport. Even when the classical density
differs from the numerical one due to transport, Eq. (2.9) captures this difference fairly
well. This motivates using the model as a heuristic to answer the question: “can one
expect significant energetic particle transport from microturbulence?” An affirmative
answer indicates that further study is warranted, but if b < 1, the classical slowing-down
distribution is reasonably accurate.

4. Conclusion

This work introduced and briefly discussed a simplified model for slowing-down alpha
particles in the presence of microturbulence. Although heuristic, this model distribution
captures the approximate effect of turbulence through a single dimensionless parameter,
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which has a stronger impact than one might expect when the birth speed vα significantly
exceeds the critical speed vc. When relaxing several assumptions made for this simple
model, more robust analytic distributions are found which maintain the same basic char-
acter of Eq. (2.9). Although more detailed simulations are generally required to robustly
predict the impact of microturbulence on plasma heating, Alfvén eigenmode drive, and
other effects mediated by energetic particles, this model provides physical insight into
the expected effect of microturbulence on these phenomena.

The author would like to thank I. Pusztai, I. Abel, and T. Fülöp for helpful comments
in preparing this manuscript. The author was supported by the EUROfusion Researcher
Grant AWP18-ERG-VR. The views and opinions expressed herein do not necessarily
reflect those of the European Commission.

Appendix A. Energy scaling of the diffusion coefficient

In this section, the fluctuating distribution of energetic particles is analyzed to moti-
vate the energy scaling of the diffusion coefficient used in this work (Hauff et al. 2009).
Only electrostatic fluctuations will be considered here. After finding a solution to the
gyrokinetic equation in the high-energy limit as was done in Wilkie et al. (2018), the ra-
dial flux is averaged over the spatial and temporal scale of the fluctuations. The diffusion
coefficient is what remains after factoring out ∂F0α/∂r. In the mean time, it will become
apparent why radial diffusion is dominant over the other turbulent terms of Eq. (1.1) in
this limit.

The collisionless gyrokinetic equation for non-Maxwellian fast particles is (Frieman &
Chen 1982; Wilkie 2015; Abel et al. 2018):

∂hα
∂t

+ v‖b · ∇hα + (vD + vφ) · ∇hα = Zαe
∂F0α

∂E
∂ 〈φ〉R
∂t

− vφ · ∇F0α, (A 1)

where it is expressed in the coordinates E = Zαeφ+mαv
2/2, and µ, which is the exactly

conserved magnetic moment. With this definition, ∂F0α/∂µ does not appear in Eq. (A 1).
It does appear, along with the adiabatic contribution, in the equations that determine
the fluctuating fields, which will not be used here. The distribution is decomposed into
an equilibrium part F0α and a fluctuating part hα such that fα = F0α + hα†. The
magnetic field is given in the Clebsch representation as B = Bb = ∇α × ∇ψ, where
ψ is the poloidal flux in the flux surface that it labels and α (not to be confused with
the subscript denoting energetic particles) labels the magnetic field line within said flux
surface. The velocity parallel to the magnetic field is v‖ = σ‖

√
(2/mα) (E − µB (θ)) and

θ is the ballooning-extended poloidal angle, used as a coordinate along the field line. The
fluctuating static potential is φ. The gyroaverage at constant gyrocenter R is denoted 〈〉R,
and the spatial gradients in Eq. (A 1) are taken with respect to R. The drift associated
with the fluctuating fields is given by vφ ≡ (c/B) b × ∇〈φ〉R, and vD is the magnetic
drift due to the curvature and gradient in B.

Consider that, in ion-scale turbulence, the bulk ions set the spatial and temporal scales
for the variation of φ and hα. In the limit where vtα � vti, the magnetic drift, parallel
streaming, and equilibrium gradient are the largest terms in Eq. (A 1). The “nonlinear”
vφ term is thereby small. It is convenient and conventional to express the fluctuating

quantities in an eikonal representation so that φ = φ̂ (θ) exp [iS (ψ, α)], where S contains

the small-scale variation perpendicular to the magnetic field and φ̂ is the relatively long-

† The adiabatic contribution to δfα, which does not contribute to the flux, comes from Taylor
expanding in the small difference between E and the kinetic energy when taking moments of fα.
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scale parallel variation (Antonsen & Lane 1980). In this representation, the energetic
limit of Eq. (A 1) reduces to:

v‖b · ∇θ
∂ĥα
∂θ

+ ivD · ∇Sĥα = ic
∂S

∂α

∂F0α

∂ψ
φ̂, (A 2)

Even near the source, where ∂F0α/∂E ∼ F0α/Ti, the first term on the right hand side
of Eq. (A 1) (which ultimately contributes to Drv) is smaller than the first term (which
leads to Drr) on the right hand side of Eq. (A 2) by virtue of the large spatial gradients
in the source of energetic particles (and therefore in F0α itself). In any case, at energies
this high, collisions acting on the equilibrium dominate both Drr and Drv. Away from
the source, where turbulence is observed to have an effect, ∂F0α/∂E ∼ F0α/Eα, and
this term is smaller still. Similar arguments apply to the turbulent heating terms (Dvr

and Dvv), only moreso. Furthermore, if the ∂ 〈φ〉R /∂t term were kept, its contribution
to the time-averaged radial flux vanishes in the energetic (thereby, linear) limit because∫
φφ̇dt = 0 in steady-state by definition. It is for these reasons that radial diffusion is

dominant over other terms in Eq. (1.1).
In finding an integrating factor to solve Eq. (A 2), it will be convenient to define:

z (θ) ≡
∫ θ

θ0

ω′D dθ′

v′‖ (b · ∇θ)′
, (A 3)

where ωD ≡ vD ·∇S and ωD (θ0) = 0. Primes denote quantities taken at θ′ rather than θ.
A saddle point is located at θ0 such that [dz/dθ]θ0 = 0. With this definition, the solution
to Eq. (A 2) is (Kim et al. 1993; Wilkie et al. 2018):

ĥα (θ) = ic
∂F0α

∂ψ

∂S

∂α

∫ θ

J0

( |∇S|v⊥
Ωα (θ′)

)
φ (θ′) exp [iz (θ)− iz (θ′)]

dθ′

v′‖ (b · ∇θ)′
, (A 4)

where J0 is the zeroth-order Bessel function of the first kind and Ωα ≡ ZαeB/mαc is
the gyrofrequency. The lower limit of integration in Eq. (A 4) is either ±∞ for passing
particles depending on the sign of v‖, or ±θb if the particles are trapped. Expanding z
in a Taylor series about θ0 leaves a Gaussian which is integrated over the contour of
steepest descent, taking advantage of the fact that z � 1 to obtain:

ĥα (θ) ≈ ic∂F0α

∂ψ

∂S

∂α
ei(z0−z)J0

( |∇S|v⊥
Ωα (θ0)

)
φ (θ0)[

v‖ (b · ∇θ)
]
0

√
2πi

ζ0
, (A 5)

where [ ]0 denotes quantities taken at θ0, and ζ0 is defined as:

ζ0 ≡
[

d2z

dθ2

]
θ0

=

[
d

dθ

ωD
v‖b · ∇θ

]
θ0

. (A 6)

The approximate solution of Eq. (A 5) excludes deeply trapped particles; namely those
that bounce at a poloidal location |θb| . |θ0|.

The radial flux is kept as a function of velocity in the kinetic phase space transport
equation, and is defined as:

Γα ≡
〈∑

σ‖

∫ ∞
−∞

hαvφ · ∇r dθ

〉
⊥,t

, (A 7)

where 〈 〉⊥ is a perpendicular spatial average over the flux tube and a time average over
the the fluctuation timescale (Abel et al. 2013). In performing the θ integral, apply the
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same large-z approximation that led to Eq. (A 5). Also note that hα is proportional to
∂F0α/∂ψ, allowing one to write Γα = −Drr∂F0α/∂r for ψ = ψ (r).† This gives:

Drr ≈
〈

2πc2
(

dr

dψ

)2(
∂S

∂α

)2

J2
0

( |∇S|v⊥
Ωα (θ0)

) |φ (θ0)|2∣∣∣(v‖b · ∇θ)θ0 d
dθ

∣∣
θ0

ωD

v‖b·∇θ

∣∣∣
〉
⊥,t

. (A 8)

The origin of the v−3 scaling of Hauff et al. (2009) is now apparent by counting powers
of v, noting that J0 (x� 1) ∼ x−1/2 and ωD ∝ v2. It was with this scaling that the
isotropic slowing-down distribution function was found in Eq. (2.9).

Appendix B. Pitch-angle dependence and anisotropic distribution

In this section, the pitch-angle dependence of the approximate diffusion coefficient in
Eq. (A 8) is kept to obtain a slowing-down distribution that includes pitch-angle de-
pendent transport. Thus an anisotropic equilibrium distribution for weakly collisional
energetic particles is derived. Doing so will require making further assumptions about
the turbulent spectrum that should have minimal impact at high energy. By using the
value of the diffusion coefficient at ξ = 0, it will be found that Eq. (2.9) remains an
adequate approximation to the anisotropic distribution up to |ξ| ≈ 0.9.

To facilitate calculating the perpendicular spatial average in Eq. (A 8), make the ansatz
that the turbulent spectrum is on the ion Larmor radius scale and has the following form:

|φ (k⊥)|2 = |φ0|2max δ (kx)
k2
y

k2
max

e−k
2
y/k

2
max+1 (B 1)

where ky ≡ a−1∂S/∂α and kmax ∼ ρ−1
i is the wavenumber at the peak of the turbulent

spectrum. The exact form of the spectrum does not significantly impact the functional
dependence of the result at high energy (especially when Dα is assumed given as it is
here), but provides a meaningful cutoff that will prove necessary. Integrating over all ky

smooths the oscillations in the Bessel function and ωD ∝ ky
(
v2
‖ + v2

⊥/2
)

. Equation (A 8)

is thereby well-approximated by:

Drr ≈ Dα
v3
α

v3

1

1 + ξ2

1√
1− ξ2 + vti

v
1

2
√
πkmaxρi

, (B 2)

where Dα is the diffusion coefficient at ξ = 0 and v = vα � vti. The rightmost factor
comes from the Padé approximation

∫∞
0
k3e−k

2

J2
0 (ak) dk ≈ (4

√
πa+ 2)

−1
. This ap-

proximate form contains all the velocity dependence of the diffusion coefficient, which
is shown in Fig. 4. Equation (B 2) recovers the energy dependence of both electrostatic
limits considered in Hauff et al. (2009), but avoids singularities in pitch angle. The pitch
angle dependence in Eq. (B 2) is approximately constant except for a narrow region near
ξ = ±1. There, the diffusion coefficient becomes large and the energy dependence changes
to v−2 (Pueschel et al. 2012). This represents the part of phase space where the energetic
particle’s Larmor radius becomes comparable to ρi, despite its large energy, by virtue
of its large pitch-angle. In this regime, the details of the turbulence do matter and the
ansatz made in Eq. (B 1) becomes unreliable. In any case, one can nevertheless expect a
significant increase in the diffusion coefficient when v ≈ |v‖|.

Consider the low-collisionality transport equation with pitch angle scattering included

† This is a specific instance of a more general result that allows Eq. (1.1) to be written as
such.
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Figure 4. Velocity dependence of the diffusion coefficient, Eq. (B 2), as compared to the
isotropic form, Eq. (2.5). Here, vc = 0.3vα and vti = 0.15kmaxρivα.

as well as the ξ dependence of transport given by Eq. (B 2):

b
v3
c

v3

[(
1 + ξ2

)(√
1− ξ2 +

vti
2v
√
πkmaxρi

)]−1

fα (B 3)

=
1

2

v3
ti

v3

∂

∂ξ

(
1− ξ2

) ∂fα
∂ξ

+
1

v2

∂

∂v

[(
v3
c + v3

)
fα
]

+
S0τs
4πv2

α

δ (v − vα) ,

where the v � vti limit was used for the deflection collision frequency on the Lorentz
operator. Note that, unless ∂ ln fα/∂ξ & O

(
v3
c/v

3
ti

)
, the pitch-angle scattering term is

small. In this case, a complicated, but analytic fα can be found with the help of the
integrating factor

(
v3
c + v3

)
exp (g), where

g (v, ξ) =
−b

(1 + ξ2)

π

24π2v3
c (1− ξ)3/2 − 3

√
πv3

ti

× (B 4){
2
√

3vcvti

(
2
√
πvc
√

1− ξ2 − vti
)

tan−1

(
2v − vc√

3vc

)
+ vcvti

(
2
√
πvc
√

1− ξ2 + vti

)
ln

[
v2 − vvc + v2

c

(vc + v)
2

]

−8πv3
c

(
1− ξ2

)
ln

 v3
c + v3(

2
√
πv
√

1− ξ2 + vti

)3


 .

The approximate distribution function with the full pitch-angle dependence of Eq. (B 2)
is therefore:

FSD,mod (v, ξ) =
S0τs
4π

1

v3
c + v3

exp [g (vα, ξ)− g (v, ξ)]H (vα − v) . (B 5)

This distribution is shown for select parameters in Fig. 5, and the pitch angle dependence
is shown in Fig. 6. With this form, the assumption of negligible pitch angle scattering
breaks down in the region |ξ| & 0.99, where pitch angle derivatives become sufficiently
large compared to the distribution. Also in this region, the turbulent spectrum used to
derive Eq. (B 5) becomes unreliable because the transport will depend on the details of
the turbulence, which can only be found from direct simulation.
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Figure 5. Pitch angle dependence of the generalized slowing-down distribution, Eq. (B 5),
for several values of turbulent intensity (parametrized by b). Here, vc = 0.3vα and
vti = 0.15kmaxρivα.

Figure 6. Pitch angle dependence of the generalized slowing-down distribution, Eq. (B 5), at
v = vc = 0.3vα and vti = 0.15kmaxρivα. Dotted lines represent the value of the isotropic
distribution, Eq. (2.9) using the diffusion coefficient at ξ = 0.

Appendix C. Global model

In this section, an analytic distribution with radial dependence is derived similarly,
but more generally, than Anderson et al. (1991), which will aid in interpreting the length
scale Lα more rigorously. This is possible for a fictitious radial profile in the large aspect
ratio limit where Drr, τs, and vc are independent of radius, while the energetic particle
source (which is typically more strongly peaked than the other parameters) retains full
radial dependence. This establishes that the velocity dependence of the model maintains
its general form even when consistently accounting for radial transport. Equation (C 8)
provides a turbulence-modified analytic distribution with radial, energy, and pitch-angle
dependence.

Expand the radial dependence of the source in a Fourier-Bessel series:

Sα (r, v) =

∞∑
j=1

σj
4πv2

α

J0

(
a0,j

r

a

)
(C 1)

where σ1 is the velocity-integrated source at the magnetic axis and a0,j is the jth positive
root of the zero-order Bessel function J0. This diagonalizes the radial diffusion operator
in the large-aspect ratio limit where V ′ (r) ∝ r. Expand fα (r, v) =

∑
fα,j (v) J0 (a0,jr/a)

and use the same approximations of Section 2 for radial diffusion, the collision operator,
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and source to obtain:

−
∞∑
j=1

fα,j
1

r

∂

∂r
Dα

v3
α

v3

∂

∂r
J0

(
a0,j

r

a

)
+

1

τsv2

∂

∂v

[(
v3
c + v3

)
fα,j

]
J0

(
a0,j

r

a

)
(C 2)

=

∞∑
j=1

σj
4πv2

α

δ (v − vα) J0

(
a0,j

r

a

)
= 0. (C 3)

After multiplying by rJ0 (a0,kr/a) and integrating from r = 0 to a, the approximate
equation for each Bessel mode k is:

Dα

a2
0,k

a2

v3
α

v3
fα,k −

1

τsv2

∂

∂v

[(
v3
c + v3

)
fα,k

]
+

σk
4πv2

α

δ (v − vα) . (C 4)

This can be solved the same way as Eq. (2.7) to obtain:

fSD,r (r, v) =
∑
j

σjτs
4π

1

v3
c + v3

(
v3

v3
α

v3
α + v3

c

v3 + v3
c

)bj/3
H (vα − v) J0

(
a0,j

r

a

)
(C 5)

where:

bj ≡
Dατs
a2

v3
α

v3
c

a2
0,j , (C 6)

and

σj ≡
2
∫ a

0
S0(r)J0 (a0,jr/a) r dr

a2J2
1 (a0,j)

. (C 7)

This is a radially global distribution approximately valid where the plasma profile (par-
ticularly, Drr, τs, and vc) is uniform, but the energetic particle source is not. It has a
similar velocity dependence to the local distribution, Eq. (2.9). If only the first term is
used to approximate the source, then Sα ∝ J0 (a0,1r/a), and the correspondence is direct
with a more rigorous definition of Lα = a/a0,1. Otherwise, the global distribution will
be a sum of distributions like FSD,mod, with each term having its own value of b.

If the pitch-angle and radial dependence are retained simultaneously and one further
assumes that vti is uniform in r, an analytic distribution is obtainable in 3D phase space:

fSD,3D (r, v, ξ) =
∑
j

σjτs
4π

1

v3
c + v3

exp [gj (vα, ξ)− gj (v, ξ)]H (vα − v) J0

(
aj,0

r

a

)
,

(C 8)
where gj is given by Eq. (B 4), except b replaced by bj from Eq. (C 6).
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